Proceedings of 12th International Workshop on Database and Expert Systems Applications (DEXA 2001), ISBN [

0-7695-1230-5, pp 128-132

Design of a Data Warehouse over Object-Oriented
and Dynamically Evolving Data Sources

Bodgan Czejdol, Johann Eder2,
Tadeusz Morzy”, Robert Wrembel’

! Department of Mathematics and Computer Science, Loyola University
St. Charles Ave., New Orleans, LA 70118
czejdo@loyno.edu
? Institut fiir Informatik-Systeme, Universitit Klagenfurt
Universititsstr. 65, A-9020 Klagenfurt, Austria
eder@ifi.uni-klu.ac.at
3 Institute of Computing Science, Poznan University of Technology
Piotrowo 34, 60-965 Poznan, Poland
morzy@put.poznan.pl, Robert. Wrembel@cs.put.poznan.pl

Abstract

In this paper we present some of the results achieved
while realizing an international research project aiming
at the design and development of an Object-Relational
Data Warehousing System (ORDAWA). The most
important goals of the project are as follows: the
development of techniques for the integration and
consolidation of different external data sources in an
object-relational data warehouse, the construction and
maintenance of materialized relational as well as object-
oriented views, and the development of techniques
allowing to modify the schema of a data warehouse when
data sources change their schemas.

1. Introduction

Organizational decision support systems require a
comprehensive view of all aspects of an enterprise.
Information collected in an enterprise are often of
different data format and complexity (e.g. relational,
object-relational, and object-oriented databases, on-line
multimedia data stores, Web pages, spreadsheets, flat
files). Therefore, the ability to integrate information from
different, autonomous and heterogeneous external data
sources (EDS) is crucial for today's businesses.

One of the basic approaches to integrate distributed
external data sources and to provide integrated
information to users [9, 2] is the data warehousing
approach (or materialized views approach). The data
warehousing approach offers: (1) high query
performance, since all data is retrieved from a single
location without the necessity of accessing remote
external data sources which may be expensive and time
consuming (due to the network delays), (2) higher
availability of data since it can operate even when EDSs
become temporarily unavailable, (3) logical and physical
data independence between EDSs and global applications

(at least partially) since global queries posed against the
data warehouse are not visible outside the data
warehouse. On the other hand, local processing at local
sources is not affected by global applications. Due to its
properties, the data warehousing approach has been found
to be an extremely useful technology for information
integration for large and medium companies requiring
high query performance and high data availability [9, 2,
6].

Research in the data warehousing area focused on
design issues, data maintenance strategies and query
optimization in connection with relational view
materialization and implementation issues. However, two
important research issues have received relatively little
attention so far: integration of object-oriented and/or
object-relational databases with data warehouses and
evolution of a data warehouse schema resulting from
schema changes in underlying external data sources.

The more and more frequent need to create, store, and
manage data of a complex structure and behavior leads to
the make use of object-relational or object-oriented
databases. These complex data, similarly as relational,
will be the subject of the integration and analysis in a data
warehouse. To this end, the data model of such a data
warehouse should support complex types in order to
reflect the complexity of source information. Moreover,
object data use the methods and these methods should
also be available in the integrated system, in order to
retain the functionality and information as well as to be
able to process the information. Therefore, recently some
research papers suggest to use an object-relational or
object-oriented data model (cf. [1]) as a common model
for integrating heterogeneous data sources.

The second problem is related to dynamicity of
external data sources. The data warehouse integrates
autonomous and heterogeneous EDSs. The main feature
of EDSs that makes the integration process difficult is
autonomy of EDSs. Autonomy means that the external

katja
Proceedings of 12th International Workshop on Database and Expert Systems Applications (DEXA 2001), ISBN 0-7695-1230-5, pp 128-132

data sources were designed and developed independently,
and that they preserve the autonomous control over their
data. An important consequence of the autonomy of EDSs
is that they may evolve in time independently of each
other and that they may change their contents (i.e. their
data) as well as their schemas, without being controlled
from the data warehouse level. When EDSs change their
contents, these changes have to be propagated to the data
warehouse to ensure that the data warehouse is kept up to
date. However, the content of a data warechouse may
become obsolete also because local schemas of EDSs
have changed. Therefore, there is evidently a need to
analyze and study the propagation of EDS schema
changes to data warehouse systems.

In this paper, we present and briefly discuss some
results obtained within the scope of the international
research project, called ORDAWA, aiming at the design
and development of an Object-Relational Data
Warehousing System. The results concern: (1) the
integration of object-oriented data in a data warehouse
and (2) schema evolution in a data warehouse.

This paper is organized as follows. Section 2 briefly
discusses the goals of the ORDAWA project and presents
a data warehouse architecture. Section 3 discusses our
approach to the design and maintenance of materialized
object-oriented views. Section 4 discusses the impact of
external data source schema changes on the data
warchouse schema, the data warehouse content, and the
middleware. Section 5 summarizes and concludes the

paper.

2. ORDAWA Project

2.1. Goals of the Project

An international research project aiming at the design
and development of an Object-Relational Data
Warehousing System - ORDAWA was set up a year ago
[4]. The project is conducted in co-operation of the
Institute for Informatics-Systems at Klagenfurt
University, the Institute of Computing Science at Poznan
University of Technology, and the Department of
Mathematics and Computer Science at Loyola University.

The most important goals of the ORDAWA project are
as follows:

e the development of techniques for the integration
and consolidation of different external data sources
in an object-relational data warehouse;

e the construction and maintenance of materialized
relational as well as object-oriented views;

e the development of techniques allowing to modify
the schema of a data warehouse when data sources
change their structures.

The results achieved so far concern: (1) the

construction and maintenance of materialized object-

oriented views [10, 7, 11, 12] and (2) the design of a data
warehouse with dynamically changing data sources [3].

2.2. Operational Data Store

In our approach we use the architecture of a data
warehouse with an operational data store, cf. [6]. An
operational data store is a subject-oriented set of data
coming from one or more data sources. The purpose to
build an ODS is to separate long lasting, time consuming
processing, e.g. On-Line Analytical Processing queries,
from data sources. Since OLAP queries operate on data in
an ODS, they do not interfere with the processing in data
sources. Furthermore, an ODS may be designed and tuned
especially for a particular pattern of processing, whereas
the underlying data sources may be designed and tuned
for other kind of processing, e.g. OLTP.

The need to bring into a warehouse the data of various
complex formats implies that rich data model must be
used in an operational data store. To this end, an object-
oriented data model seems to be very promising [1, 5, 4].

Object-oriented views are important mechanisms
providing an integrated access to data of complex
structure and behavior. We argue that object-oriented
features, especially methods, can bring a new powerful
mechanism in data transformation, integration, and
analysis in an object-relational data warehouse. Due to the
high expressiveness of an object-oriented data model,
object-oriented views seem to be well suited for the
transformation and integration of many different data
sources that use different data models. In our approach an
ODS is modeled as the set of materialized object-oriented
views.

2.3. Requirements for Object-Oriented Views

For object-oriented views that are used to ease the
process of complex data warehousing, we identified the
set of the following basic features that such views have to
support.

Feature 1: View complexity. A view should be
defined as a schema of an arbitrary complex structure and
behavior, as data to be accessed by views may be
complex.

Feature 2: View materialization. A view should
provide means for materialization of its instances and
consistency maintenance of such materialized data, due to
efficiency reasons.

Feature 3: View separation from a source database.
This feature means that referencing from a view the
source database is not allowed. The main reason for the
separation is as follows. A view schema that is used for
data integration in an object-relational data warehousing
system has to make available the means to integrate and
locally materialize data coming from remote databases in

order to reduce access time to data and to eliminate the
problem of temporary unavailability of data sources.

3. Designing and Implementing Materialized
Object-Oriented Views

Within the area of object-oriented views application in
data warehousing process we developed the concept of an
object-oriented view that support the three features
mentioned in Section 2.3.

3.1. The Concept of View Schema

In our approach, called View Schema Approach
(VSA), an object-oriented view is defined as a view
schema of an arbitrary complex structure and behavior,
composed of view classes. Each view class is derived
from one or more classes in a database schema. A view
class is derived by an OQL-like command defining its
structure, behavior, and set of instances [11, 12]. View
classes in a view schema are connected by inheritance and
aggregation relationships. Several view schemas may be
defined in one database and each of them is uniquely
identified by its name.

In order to check whether a view schema was designed
correctly, we proposed two kinds of consistency criteria,
namely: closure and well formed inheritance (cf. [12]).

3.2. View Schema Materialization and
Maintenance - Structural Parts

Similarly as materialized relational views, a
materialized object-oriented view schema has to be kept
up-to-date with the content of a source database. Three
following techniques for keeping a materialized view
schema up-to-date were developed within the View
Schema Approach, namely:

e deferred on commit incremental refreshing;

e deferred on demand incremental refreshing;

e deferred on demand complete refreshing.

Refreshing given view schema VS; means that all the
materialized instances of view classes in VS; are
refreshed. However, the incremental refreshing mode
developed in our View Schema Approach is applicable to
a limited set of view classes (for details refer to [12]).

In order to incrementally propagate the modifications
from base to view objects we have developed additional
data structures, called Class Mapping Structure (CMS),
Object Mapping Structure (OMS), and Log, cf. [11, 12].

Class Mapping Structure. The structure is used to
store derivation links between base class C; and view
class V; derived from C;. CMS is used while recording the
changes made to base objects whether the modification
needs to be propagated to materialized view objects.

Object Mapping Structure. The update of base object
o; should be propagated only to those view objects that
were derived from o;. Therefore, one important issue that
must be solved is the identification of these materialized
view objects that are affected by the update of o,. To this
end, OMS is used. The system uses the content of a given
OMS also while creating complex view objects (cf. [12]).

Log. Modifications made to base objects are recorded
in a data structure called Log. Log is associated with each
base class from which a view class has been derived. It is
created automatically by the system when creating a view
class. The content of logs are used while refreshing a
view schema.

3.3. View Schema Materialization and
Maintenance - Behavioral Parts

By default, methods defined in a view class are
computed each time they are invoked. When the
computation of a method result takes long time it may be
reasonable to store the result persistently in an ODS, i.e.
materialize it. After materializing method m;, the result of
the first invocation of m; for view object vo; is stored
persistently. Each subsequent invocation of m; for the
same object vo; uses the already materialized value.

Methods may have various numbers of input
arguments, that can be of different types. Methods that
have input arguments are not good candidates for the
materialization. However, in the View Schema Approach
a method with input arguments can be materialized and
maintained within acceptable time overhead provided
that: (1) the method has few input arguments and (2) each
of the arguments has a narrow, discrete domain.

We have proposed a novel technique of method
materialization, called hierarchical materialization. When
hierarchical materialization is applied to method m;, then
the result of mi is stored persistently and additionally, the
results of methods called from m; are also stored
persistently. Hierarchical materialization may be useful
only for those methods that call other methods and the
computation of those called methods is costly.

The maintenance of materialized methods can take the
advantage of hierarchical materialization. When a view
object vo,, used to materialize the result of method m;, is
updated or deleted, then m; has to be recomputed. This
recomputation can use unaffected intermediate
materialized results, thus reducing the recomputation time
overhead.

In order to materialize methods in a view class and
maintain the materialized results, three additional data
structures have been created in an operational data store.
These structures, which are described below, are called
View Methods, Materialized Method Results Structure,
and Graph of Method Calls (cf. [7, 12]).

3.4. View Schema Approach Prototype

The theoretical foundation concerning a materialized
object-oriented view have been incorporated into a
prototype software, called the View Schema Approach
Prototype (VSAP). The prototype has been implemented
in C++ on top of the Oracle8i DBMS.

The functionality that has been implemented and is
supported by the View Schema Approach Prototype is the
following: (1) the creation and management of several
view schemas, (2) the creation and management of view
classes in a given view schema, (3) the materialization of
view schemas and the maintenance of their consistency,
and (4) checking the consistency of a view schema.

4. Management of Changes in a Data

Warehouse Schema

As we mentioned already in the introduction, EDSs
may evolve in time independently of each other and they
may change their contents (i.e. their data) as well as their
schemas, without being controlled from the data
warehouse level. The local changes visible at the
integration level can be categorized as: (1) content
changes such as insert/delete/update tuples, and (2)
schema changes such as add/delete/modify attribute or
add/drop table. Most of the research done so far with
respect to the data warehouse refreshment has focused on
the issue of how to provide transactional incremental data
warehouse refresh under content changes of EDSs.
However, schema changes of EDSs during their life
cycles are very common and inevitable as reported by
different studies [8].

Integrating data from evolving EDSs raises new
challenges in the maintenance and evolution of data
warehouse systems. These challenges can be classified
into three groups [8]:

e modifying data warchouse schema according to

data source schema changes;

e modifying middleware level according to data

source schema changes;

e modifying data warehouse content according to

data source schema changes.
4.1. Modifying data warehouse schema
according to EDS schema changes

Usually, a data warehouse schema is defined in terms
of EDS exported schemas (the data warehouse defined as
a set of materialized views over EDS exported schemas).
Therefore, changes in underlying EDS schemas will result
in an invalid definition of the data warehouse schema.
They may change also the functionality of the data
warehouse. There are two possible solutions to cope with
EDS schema changes; either ensure the correct

propagation of these changes to the data warehouse
definition, or appropriately isolate the data warehouse
from these changes. Isolation can be accomplished by the
middleware level. However, the second approach is
applicable for a limited period of time only, since
evolution of EDS schemas will lead to inconsistency
between EDSs and their descriptions at the data
warehouse level. It may restrict the usage of existing
client queries and reports (removal of some attributes,
attribute meaning changes), or some important data will
not be available for data warehouse clients (addition of
new attributes, changes of attribute meanings). Another
important aspect of the adaptation of the data warehouse
system to EDS schema changes concerns the metadata
repository. Evolution of EDS schemas must be
propagated also to the metadata repository.

4.2. Modifying middleware level according to
EDS schema changes

New solutions and algorithms are necessary to provide
dynamic adaptation of middleware to EDS schema
changes. The first problem is how to detect EDS schema
changes. Even, if a data source is a fully-fledged DBMS
using the replication option, it does not mean that it
notifies the middleware level of the data warehouse
system about these kind of changes. In general, we may
distinguish two classes of EDS, depending on the level of
cooperation between the EDS and a higher level of data
warehouse system: cooperating sources and non-
cooperating sources. The first type of a source is able to
notify the higher levels of a data warechouse system about
all changes that are made at the source level. The second
type of the data source provides no cooperation
functionality or a very limited one. However, for both
types of data sources, it is necessary to adapt middleware
to evolving data sources in such a way that wrappers are
able to preserve their capabilities to translate all
updates/queries types through wrappers. It is also obvious
that other functions at the middleware level (data
cleansing, transformation, etc.) should be adapted to data
source changes.

4.3. Modifying data warehouse content according
to EDS schema changes

It is clear from above that if we decided to modify a
data warehouse schema according to EDS schema
changes, these changes should be accompanied by
corresponding adjustments of the data warehouse content.
The data warehouse content adjustments can be done in
two different ways. Once the definition and conceptual
data warehouse schema have changed, the original data
warehouse schema and corresponding data are archived
and replaced by an altered data warehouse schema. The

data warehouse server has to be reloaded with new data.
This solution leads to a "multiversion" data warehouse
system and raises new challenges in the maintenance and
evolution of such data warehousing systems. The second
approach is based on adjustment of data warehouse
content according to changes in the data warehouse
schema caused by EDS changes. For example, adding a
new attribute to an existing relation in the data warehouse
will require data for this new attribute for all previously
created tuples. Moreover, it also may be necessary to
adjust some of the aggregates derived from basic
relations.

However, the main problem is how to adapt the data
warehouse content to EDS schema changes, which change
meaning of attributes or meaning of some aggregates. It is
easy to notice that this problem is closely related to the
more general problem of how to provide the logical
independence between the conceptual level of the data
warehouse system and external level (i.e. existing front-
end applications). Is it possible to wuse existing
applications with respect to the altered data warehouse
schema and content to produce correct answers? From
this point of view, we may classify front-end applications
into: applications that do not require any changes,
applications that would run correctly after some changes,
and applications that are no longer valid.

If EDS schema changes did not affect the part of the
data warehouse schema that is of interest to an
application, then the application does not require any
modification. Sometimes, an application may be easily
modified according to the altered data warehouse schema
resulting from EDS changes. However, some changes to
the data warehouse schema may result in invalid
application since information necessary to run the
application is not available in the data warehouse.

5. Summary

In this paper, we presented and briefly discussed some
results obtained within the scope of the international
research project ORDAWA, aiming at the design and
development of an Object-Relational Data Warehousing
System. The results concern two problems of data
warehousing, namely: (1) integration of heterogeneous
data in a data warehouse and (2) schema evolution in a
data warehouse. With regard to the first problem we have
developed: (1) the concept of an object-oriented view,
defined as a view schema, (2) consistency criteria used for
the verification of a view schema correctness, (3) view
schema materialization and maintenance techniques, (4)
methods materialization and maintenance technique in a
view which, to the best of our knowledge, is the only such
work done so far; we have proposed a novel method
materialization technique, called hierarchical
materialization, (5) the implementation of a prototype

system supporting the construction, materialization, and
maintenance of view schemas.

With regard to the second problem we presented the
issue of a data warehouse system evolution resulting from
the changes in underlying external data sources (EDS).
We discussed how EDS schema changes affect (1) data
warehouse schema, (2) middleware level, and (3) data
warehouse content.

Further research issues will concern the development
of schema and data versioning techniques in a data
warehouse as well as the design of a query language
applicable in a multiversion data warehouse.

6. References

[1] Bukhres O. A., Elmagarmid A. (eds.): Object-Oriented
Multidatabase Systems: A Solution for Advanced Applications,
Prentice Hall, 1996

[2] Chaudhuri S., Dayal U.: An overview of data warehousing
and OLAP technology. ACM SIGMOD Record, 26, 1997

[3] Czejdo B., Messa K., Morzy T., Putonti C.: Design of Data
Warehouses with Dynamically Changing Data Sources. In Proc.
of the Southern Conference on Computing. October, 2000

[4] J.Eder, H.Frank, T.Morzy, R.Wrembel, M.Zakrzewicz,
Designing an Object-Relational Database System: Project
ORDAWA. Proc. of challenges of the ADBIS-DASFAA'00
Conference, Czech Republic, 2000

[5] Fankhauser P., Gardarin G., Lopez M., Munoz J., Tomasic
A.: Experiences in Federated Databases: From IRO-DB to
MIRO-Web. Porc. of the VLDB Conference, USA, 1998, pp.
655-658

[6] Jarke M., Lenzerini M., Vassiliou Y., Vassiliadis P.:
Fundamentals of Data Warehouses. Springer-Verlag, 2000,
ISBN 3-540-65365-1

[7] Morzy T., Wrembel R., Koszlajda T.: Hierarchical
materialisation of method results in object-oriented views. Proc.
of the ADBIS-DASFAA'00 Conference, Czech Republic, 2000,
LNCS 1874, Springer-Verlag, pp. 200-214

[8] Rudensteiner E., Koeller A., and Zhang X.: Maintaining
Data Warehouses over Changing Information Sources.
Communications of the ACM, vol. 43, No. 6, 2000

[9] Widom J.: Research Problems in Data Warehousing, Proc. of
the 4th Int. Conference on Information and Knowledge
Management (CIKM), 1995, pp. 25-30

[10] Wrembel R.: On a formal model of an object-oriented
database with views supporting data materialisation. Proc. (of
short papers) of the ADBIS'99 Conference, Slovenia, 1999, pp.
109-116

[11] Wrembel R.: On Materialising Object-Oriented Views. In
Barzdins J., Caplinskas A. (eds.): Databases and Information
Systems. Kluwer Academic Publishers, 2001, ISBN 0-7923-
6823-1, pp. 15-28

[12] Wrembel R.: The Construction and Maintenance of
Mateiralised Object-Oriented Views in Data Warehousing
Systems. PhD thesis, Poznan University of Technology, Institute
of Computing Sicence, Poznan, Poland, 2001

