
Composition of XML-Transformations

Johann Eder and Walter Strametz

University of Klagenfurt
Department of Informatics Systems

eder@isys.uni-klu.ac.at, walter.strametz@infologs.com

Abstract. Electronic commerce seeks improvements of business pro-
cesses by aggressively exploiting the enormous increases in information
exchange o�ered by digital telecommunication systems. XML is seen as
an important step to overcome the problems of heterogeneity of data
exchange between di�erent systems, albeit the structural as well as the
semantic heterogeneities are not even touched by this standard: The same
information is encoded quite di�erently in XML by di�erent information
systems. Therefore, to let these information systems communicate and
interoperate, it is necessary to transform XML documents.
We propose a new way to generate such transformations based on the
XSLT language which was originally developed for rendering XML doc-
uments. We aim to improve the way XSLT transformations are devel-
oped by binding XSLT transformers to the document type descriptions of
source and target documents and introducing and exploiting the concepts
of composition and specialization for DTD as well as for transformers in
XSLT, resulting in highly improved eÆciency and quality.

Keywords: XML, heterogeneous information systems, e-commerce

1 Introduction

Electronic commerce in all its forms and variants depends on the electronic ex-
change of information - in interactive form, and/or by exchange of electronic doc-
uments. While interactive form is still frequently used in business-to-consumer
(B2C) applications, in business-to-business (B2B) applications the exchange of
electronic documents is the preferred way. This allows to overcome costly me-
dia breaks in business processes and enables IT-systems to interoperate with
di�erent IT-systems of business partners [5].

In such a scenario, an IT-system has to be capable of accepting electronic
documents from various sources or generating electronic documents for various
receivers. The necessity of adapting to formats of electronic documents de�ned
by others depends on the market power of the organizations.

There are no generally accepted standards for electronic business documents,
although many attempts have been made (e.g. EDIFACT). Exchange of docu-
ments in electronic commerce su�ers from heterogeneity on several levels: from
the choice of the code, the structure of documents up to semantic di�erences.

katja
published in: Proceedings of 2nd International Conference, EC Web, Springer Verlag, ISBN 3-540-42517-9, pp 71-80

For the lower levels of electronic document exchange XML, the extended
markup language [6], is developing as generally accepted standard. It can be
soon taken for granted that it is possible to send XML documents to a commu-
nication partner and this communication partner is equipped with software to
process XML documents. However, it is not at all sure that this communication
partner also understands the documents. For successful communication it will be
necessary to negotiate the form of XML documents and/or to transform XML
documents into di�erent XML representations.

For an example: There are numerous electronic bookshops on the web. So
it should be easy to write an application to get the best bid for a given book
(including taxes and shipment costs). However, all the book-outlets have di�erent
interfaces for costumers and even if a request for quote could be received by
sending an XML document, all the document forms are probably di�erent. So
for writing the application sketched above, it is indeed necessary to transform
the XML document into di�erent forms.

In this paper we report on an approach to facilitate the development of
XML-transformers. We use the widely available language XSLT [3, 7, 6, 8, 11]
as transformation language. To overcome some shortcomings of this language
we �rst bind XSLT transformers to the DTD (document type de�nition) of
the source and destination document types. This makes it easier to search for
appropriate transformers when a new one has to be developed. Then we introduce
the notions of composition and specialization of XML documents as well as of
XSLT transformers and provide a meta structure for storing this information.
Then we can use this structure for composing new XSLT transformations from
already available component transformers.

We will also briey describe our prototype implementation of a transforma-
tion system named CoX (component-based XML transformer), based on these
concepts.

2 XML and XSLT

In this section we revisit the basic notions of XML and XSLT to introduce the
concepts and terminology we need in the following sections to make the paper
more self-contained.

2.1 XML and DTDs

Semi-structured data [2, 1, 9] can be represented with the XML language [3, 10]
standardized by the W3C. Semi-structured data (documents) are modelled in
form of trees, whereby nodes contain data and the named edges (tags) describe
the nodes (elements). The labels are interpreted as schema information and
thus the tree contains the schema information of the document. For an example,
Figure 1 shows a sample document of a simpli�ed order document.

The tree-representation of an XML document such as an order can be con-
strained and further documented by a Document Type De�nition (DTD), which

2

 <ship_address>

<!DOCTYPE order SYSTEM "ecommerce.dtd">
<order>

<?xml version="1.0" encoding="UTF−8"?>

 <address>Uncle Sam</address>
 </ship_address>
 <bill_address>
 <address>Aunt Sam</address>
 </bill_address>
 <products>
 <product><prod_name>Tea</prod_name>
 <price>10</price></product>
 <product><prod_name>Coffee</prod_name>
 <price>20</price></product>
 </products>
</order>

adress

address

product

product

order

root
elements

Fig. 1. An order-document in XML. The dotted rectangles indicate the components of
the document and the arrows the root elements of the components.

is part of the XML language. In Figure 2 the DTD of the order document of
Figure 1 is shown. A DTD is a context-free grammar for the structure of an
XML document. An XML parser validates the conformance of a document with
a DTD. For example, in the order-document a product-tag inside an address-tag
should not be accepted. The DTD is an optional part of an XML document but
in this paper we only consider documents with DTD - syntactically expressed in
the DOCTYPE clause of an XML document. E.g. the clause <!DOCTYPE order

SYSTEM ''ecommerce.dtd''> binds the DTD "ecommerce.dtd" to the docu-
ment of Figure 1.

<!ELEMENT order (ship_address, bill_address?, products)>

<!ELEMENT bill (bill_address, products)>

<!ELEMENT ship_address (address)>

<!ELEMENT bill_address (address)>

<!ELEMENT address ANY>

<!ELEMENT products (product)*>

<!ELEMENT product (ANY)>

Fig. 2. The DTD of the XML document in Figure 1.

As a DTD may feature many choices and optional parts, a particular DTD
can describe several disjoint sets of document schemas - for example it is possi-
ble that one single DTD can validate an order-document as well as an invoice.
The DTD in Figure 2 uses this property to validate an order as well as a billing
document. Thereby, the root-element of the document is used as an entry-point
to the DTD to put together the grammar for validating the schema-tree. As

3

you can see the bill element shares structure (bill address, products) with
the order element. So parts of the DTD can be reused with the consequence
that documents share structural parts for particular subtrees of the XML docu-
ment. The main idea of our approach is to reuse the transformations of shared
structures among di�erent documents which are based on the same DTD.

2.2 Transforming Documents with XSLT

XSLT (eXtensible Stylesheet Language for Transformations) [3, 7, 6, 8, 11] is
a language for transforming XML documents. A transformation in the XSLT
language is expressed as an XML document and can therefore be validated and
parsed by XML parsers. A transformation expressed in XSLT consists of rules
for transforming a source tree of an XML document into a result tree, which are
executed by an XSLT processor. The XSLT standard does not specify how an
XSLT transformation is associated with an XML document. As a consequence a
system has to keep track which transformations must be applied on a document
in order to get the desired output. When transforming various document types
this task becomes diÆcult to manage.

As a solution to this we wanted a transformation system which supports docu-
ment types: A transformer (consisting of a set of XSLT transformation programs)
should be simply invoked by providing the source document and a target type of
the output document. The transformation process itself should be transparent
to the user. Our solution to this problem is to bind the XSLT transformation
to the DTDs of source and target documents. The CoX transformation system
uses this information to �nd and apply the proper transformers for the speci�c
instance of a document type. We extended this basic idea and added support for
composition and specialization to further simplify and accelerate the process of
creating document transformations.

3 Composition and Specialization of Documents

3.1 XML Components

A document can be seen as an aggregation of components. For example, in a
document for ordering goods we can identify the shipping and billing address, the
products, etc. as components of the ordering document. In an XML document
the tags can be interpreted as delimiter of the components of the document. In
the tree model thus we de�ne a component of an XML document as a subtree
identi�ed through its root element.

The type of a component is then de�ned as the elements reachable from the
type name of its root element in the DTD of the document. A component can in
this way be validated against its DTD and type using conventional XML parsers.

In principle, every element de�ned in a DTD can be considered as a com-
ponent. However, we recommend to restrict to those elements which represent
semantically meaningful units (entities) of the problem domain.

4

transformation

XSLT documentDTD

0..n
1

1..n

cardinalities:

XML document
DTD + root = component target component

component

is_a

to
from

has_xslt

constraint

consists_of

has_DTD

Fig. 3. Type information stored within the CoX transformation system (metaschema).

In the metaschema we represent the aggregation hierarchies of documents
and of document types. Fig. 3 shows the realization of the de�nitions above
with the associations from component to the entities DTD and root: A compo-
nent is related to exactly one DTD and has exactly one root element. De�ning
components only makes sense if there are several components for one DTD.
Later, when we introduce specialization it will be clear that having multiple
components which have the same DTD and the same root element is perfectly
reasonable.

We can generalize the meaning of a component in a way that also a whole
document can be seen as a component. So a document is a component with a
certain base type (i.e. a DTD together with a root element). Like a document can
have components also a component may be composed of components in turn.
The consists of -relation of Figure 3 reects that a component may consist of
several components. The model also shows that every component is assigned to
a DTD and to an element name. Given that information an XML parser can
validate a component.

3.2 Specialization of XML-Components

So far we presented the aggregation structure of XML documents and XML
types. In good modeling tradition, we also introduce the notion of specialization.
This concepts covers three di�erent phenomena:

1. specialization through environment
2. specialization through restricted structure
3. specialization through restricted instances

The �rst type of specialization allows to distinguish between components
with the same type but di�erent semantics due to di�erent environment. As an
example for this kind of specialization we look at the components shipping and
billing address of the example above. Both are addresses and we can't distinguish

5

(component)is_a

(component)is_a

order

ship_addr bill_addrproductship_addr

address

abroad_ship_addr //address[not(@country=’’Austria’’)]

ship_address/address

bill_addr
bill_adress/address

has

a) b)

Fig. 4. a) is an example of a specialization tree of the address component. b) shows
the component tree of an order document.

between them by type and therefore we can bind only one transformation to the
addresses.

The second kind of specialization considers the fact that a document type
de�nition may be very generic and allows the validation of many di�erent struc-
tures of documents. We de�ne a specialization as a DTD which restricts the
structural genericity of a DTD. For an example, it might be required that the
shipping address is a physical address with street and number and not merely
a post-box address. So the physical address restricts the DTD of address and it
would validate only a subset of valid address documents.

The third way of specialization restricts the possible instances of a type by
restricting values. As an example, certain values can be de�ned as mandatory.
The type "domestic-address" would require that the country component of an
address is always �lled with Austria, in our example.

For all three kinds of specialization we found a uniform way of representing
them in our metaschema: We de�ne a component A as specialization of compo-
nent B, if every document which is valid for A is also valid for B, and addition-
ally satis�es the specialization constraint. The relationships between components
de�ned through specialization is represented through the is a hierarchy in our
metaschema where the condition attribute of the is a relationship represents the
specialization constraint.

The specialization constraints are expressed in the language XPath [3, 12]
which is part of XSLT and thus can be processed by an XSLT processor. XPath
provides a way to select a subtree of a document by selecting a speci�c element. If
the selected subtree is identical to the instance of the specialized component the
constraint is satis�ed. The identity is checked by comparing the root element of
the component instance with the result of the XPath expression. If both elements
are equal then the test succeeds. The test is also called an "element test".

XPath allows to specify the path to an element of a document. The syntax of
a sample XPath constraint for the shipping address is: "ship address/address"
which matches any address element with an ship address parent (see also Fig-
ure 4a). With this functionality it is possible to distinguish between the billing
and the shipping address of the sample document in Figure 1: When the trans-
former recognizes an address it executes an element test for the root element
(<address>) of the component. It evaluates the XPath expression which is as-

6

signed to a specialized component. If the result of the XPath expression contains
the root element of the component instance then the test is successful and we
can infer that the document is valid for the specialization (i.e. the actual type
of the document is the subtype considered). [7, 6, 12] provide details of XPath
and the expressive power of this language.

3.3 Specialization and Transformation

The specialization allows to provide di�erent transformations for documents with
the same DTD based on the their dynamic subtypes, i.e. on the specialization
whose specialization conditions they satisfy.

In our metaschema (Figure 3) the is a relationship represents the specializa-
tion for components. A component can be a specialization of an other component,
whereby all assoziations and attributes are inherited from the parent. The as-
soziations except has DTD can be overwritten by the specializing component.
Thus the base type of a specialization hierarchy is the same for all components.

Figure 4a shows an example of the specialization hierarchy of the address
component and its constraints. The root of the tree is the most general compo-
nent with the most general transformation. Each specialization adds a constraint
to the constraints inherited by its preceding components. To meet the criteria
for a specialized component all constraints must be checked successfully. In the
example the abroad ship addr component has to satisfy two constraints - it is a
shipping address (environment specialization) and it does not contain country
code "Austria" (instance specialization). The transformation of this component
can be highly specialized in transforming "abroad shipping addresses" and the
transformation program can rely on the constraints de�ned in the specialization
hierarchy. If no transformation is de�ned for this component then the transfor-
mation of the ship addr component will be applied. It is guaranteed that all
possible specializations of ship addr meet the criteria to be a ship addr compo-
nent and, therefore, all transformations de�ned for ship addr can be applied.

4 Generating Transformations

4.1 The Process of Transforming a Document

In this section we discuss how a document is transformed with the CoX trans-
formation system. Assume that some XSLT transformations are already pro-
grammed and the type information is stored within the system. We start with
an XML-document and the target type. With the DTD and the root element of
the document the principal component can be found. Now the type of the source
and the type target document is known. The CoX transformer will only apply
transformations which lead to the DTD of the target component.

To determine the dynamic type of the document the transformer analyzes
the source document and determines the base type by using the DTD and the
root element of the component. The is a relation is searched depth-�rst to apply

7

the constraint expressions on the document. So a document is decomposed and
the most specialized subcomponents are identi�ed by checking the constraints
given in the specialization hierarchy.

When a component is transformed it is important that the transformation
has access to the component only. Otherwise an XSLT transformation could
have undesirable side e�ects on the whole document. To obtain a scope for each
component the CoX transformer extracts the XML subtree representing the from
the document. Each component is transformed as it was a separate document.

For the transformation, therefore the document is decomposed into it's com-
ponents which are in turn transformed and afterwards (re-)assembled to obtain
the target XML document.

The transformer uses the consists of association to recursively determine
the smallest components for which a transformation program to the target DTD
has been registered. For each of the components identi�ed in this way, the is a

hierarchy is descended to identify the most specialized dynamic type of each
component in a depth-�rst manner. A component is thus transformed if its con-
sists of relation is empty or if all of its components are already transformed. If
no transformation is found the search continues at the next higher component
in the specialization hierarchy.

4.2 Transformation of a Sample Document

On the sample document of Figure 1 we want to show the principle of how a
transformation of a document is generated.

First, the transformation system has to make sure that the schema infor-
mation is correct. For example the component and specialization trees must be
checked if they are correct trees and have no circular links. Another requirement
is that all components in the component tree have the same DTD, and so on.
The data for the metaschema of Figure 3 is stored in an external XML document
which is read at startup time of the transformation system.

With the CoX transformation system it is possible to transform one docu-
ment to many other types and DTDs simply by naming the target component
or target DTD. In the following example a document which represents an order
document (see Figure 1) should be transformed into an HTML representation. In
Figure 4b you can see a fragment of the type information of the order document
which is stored within the CoX transformation system. The specialization tree
of the address component (see Figure 4a) is also stored within the system. For
the transformation of the components there are �ve transformations de�ned1:
t order, t addr, t ship addr, and t prod which are assigned to the according
components. Note that there is no transformation for the billing address.

With the DTD and the root element of the document the transformation sys-
tem selects the proper component tree of the order document. From there the
transformer learns to look for an address component. Two address components

1 The transformations may be implemented with one XSLT document or even more
than �ve documents using import and include statements.

8

are found which are processed consecutively. As there are specializations for
an address it searches the specialization tree, evaluates the XPath constraints
and determines the dynamic subtype, which is ship addr. This leads to the
t ship addr transformation which is applied to the subtree (starting an the �rst
<address> tag). The second address is processed similar but the dynamic sub-
type is bill addr. This component has no transformation assigned and therefore
the transformation is taken from the address component. In other words the
billing address inherits the transformation from the address component. Then
the transformations for the products are applied. The �nal transformation is
the order transformation which is the only transformation having access to the
whole document. This way also a �nal rearrangement or the merging of com-
ponents can be carried out. So the transformer executes the following sequence
of XSLT transformations in their particular scope: t ship addr, t addr, t prod
and t order. The transformation of the whole document is composed of a set of
transformers for parts of this document and can be generated from these partial
transformers.

4.3 Creating New Transformations

The more transformations and di�erent DTDs are employed in a system the more
important it gets to manage the transformations. The CoX transformer helps
to organize documents and transformations in reusable pieces. A major goal for
the development of CoX was to support the programmers of transformation pro-
grams to increase the eÆciency of the process for creating transformations and
to achieve quality improvements by employing certi�ed well tested component
transformers.

The process of creating a new transformation starts with searching the meta-
structure whether transformations for the DTD of the document have been de-
�ned already. If no suitable transformation is found, the search is continued for
the components of the DTD. If transformation programs for components are
found, they can be ready used as part of the transformation of the new docu-
ment. The specialization hierarchy also supports the creation and application of
transformations which reect the actual structure (dynamic type) and content
of a document, which increases the exibility for handling semi-structured data
in a exible yet reliable way.

4.4 Implementation

The previous sections introduced the concepts of composition and specializa-
tion for XML transformations. The ideas are applicable for the transformation
of an XML document and do not depend on any transformation language. To
keep the implementation simple we have chosen XSLT as the transforming lan-
guage. The CoX transformer is written in the Java language and is based on the
XSLT/XPath processor "Xalan" which is available on http://www.apache.org.
The architecture of CoX makes extensive usage of the factory pattern [4] which

9

makes it possible to exchange the XSLT and the XPath processors. The type in-
formation about components, DTDs and specialization trees is stored in an XML
document which is parsed and evaluated by the CoX transformer. For that it
uses the "Xerces" XML parser which is also exchangeable. The transformation
system is accessible via a Java, a commandline and a graphical interface.

5 Conclusions

We presented the XML transformation systems CoX and its underlying method-
ology. CoX was developed to support the process of developing transformations
of XML documents from one format to another. The main contributions of this
approach are the following:

{ Recording source and target DTDs of XSLT transformations.
{ Composition and specialization of XML documents.
{ Composition and specialization of XSLT transformations.

The information obtained by decomposition and specialization is documented
in a metastructure which is then used in the process of identifying available
transformations.

The methodology introduced in the CoX system is intended to increase the
eÆciency of the development process for creating transformations between XML
documents. It greatly increases the productivity by promoting reuse of already
developed transformations (for components) and thus reduces the necessity of
developing new transformations from scratch.

References

[1] S. Abiteboul, P. Buneman, and D. Suciu. Data on the Web. Morgan Kaufmann
Publishers, 2000.

[2] P. Buneman. Semistructured data. Tutorial in Proceedings of the 16th ACM
Symposium on Principles of Database Systems, 1997.

[3] World Wide Web Consortium. W3C. http://www.w3c.org/, 2001.
[4] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Entwurfsmuster - Elemente

wiederverwendbarer objektorientierter Software. Addison-Wesley, 1996.
[5] H. Groiss and J. Eder. Workow systems for inter-organizational business pro-

cesses. ACM SIGGROUP Bulletin, Dec. 1997.
[6] E. R. Harold. XML Bible. IDG Books Worldwide, 1999.
[7] D. Martin, M. Birbeck, M. Kay, et al. Professional XML. Wrox Press, 2000.
[8] T. Milo, D. Suciu, and V. Vianu. Typechecking for XML transformers. In Proceed-

ings of the Nineteenth ACM SIGACT-SIGMOD-SIGART Symposium on Princi-
ples of Database Systems (PODS 2000, Dallas, Texas), 2000.

[9] D. Suciu. An overview of semistructured data. ACM SIGACT News, 1998.
[10] D. Suciu. Semistructured data and XML. In Proceedings of International Con-

ference on Foundations of Data Organization, Kobe, Japan, 1998.
[11] P. Wadler. A formal semantics of patterns in XSLT. Markup Technologies, 1999.
[12] P. Wadler. Two semantics for XPath. http://cm.bell-

labs.com/cm/cs/who/wadler/, 2000.

10

