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ABSTRACT

This paper reports on our approaches to combine various
software comprehension techniques (and technologies) in or-
der to establish confidence whether a given reusable compo-
nent satisfies the needs of the intended reuse situation.

Some parts of the problem we are addressing result from
differences in knowledge representation about a component
depending on whether this component is a well documented
in-house development, some externally built componentry,
or a COTS-component.
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1. MOTIVATION

While the issue of building software from building blocks
[12, 15] shifts from using classical reusable building blocks to
using off-the-shelf components, modern software technology
supports software development on the basis of non-trivial
componentry. However, one of the key issues causing the
Not-Invented-Here syndrome [29] remains: How can devel-
opers be sure that the component they plan to use in their
new construction venture meets the expectations placed into
it.

As long as reuse is confined to domain-specific in-house
reuse, the question on whether one can trust into a compo-
nent provided by colleagues is relatively benign. It can be
resolved informally and final confidence might be established
by means of test data. As soon as reuse transcends orga-
nizational boundaries — and with COTS integration, this is
the normal situation —, this informal trust (whether it was
ever justified or not is here not the issue) is lost. Just testing
is insufficient to re-establish it. Specific mechanisms have to
be devised in order to compensate for the loss of in-depth
informal information.
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This paper reports on a project where we try to compen-
sate for this loss of informal information by means of soft-
ware comprehension technology. The approach we follow
rests on a broad spectrum of approaches intelligently com-
bined to solve a particular software comprehension task.

The breadth of the spectrum is needed, since we have to
foresee that the software to be integrated will come at dif-
ferent levels of representation and it will be supported by
different degrees of documentation. Thus, if only binaries
are available, the armory for checking whether the respective
software actually is what it is supposed to be will be rather
limited (although the situation is not hopeless). But if other
forms of documentation are available, the set of comprehen-
sion aids will correspondingly become larger, thus allowing
for more efficient analysis.

In the sequel, we will highlight our approach, discuss the
various strategies one might combine and finally describe,
how we plan to benefit from the interaction of these strate-
gies. The paper concludes with a sketch of a framework for a
conceptual comprehension-architecture a software engineer
might use for investigating reusable components.

2. BACKGROUND AND OVERVIEW

2.1 Reuseand Software Comprehension

The issue we are dealing with is essentially a software
comprehension problem. This problem is discussed from
many vantage points in the software maintenance literature
as well as at special conferences and workshops dedicated
to this question, e.g. the IWPC or ICSM. The key problem
discussed at these rather maintenance oriented conferences
is, that software engineers want to have some aid for rapidly
building themselves a conceptual model about the piece of
software they are facing.

Usually they need this model to safely perform some main-
tenance operation. Therefore, it suffices to obtain only some
partial (in most cases local) understanding. An understand-
ing that suffices to build a mental model one can trust upon
when performing a particular change or a model for locating
the spots where such a change needs to be applied. Thus,
the conceptual model to be built needs to be rather detailed
at critical spots but it might not address at all those por-
tions of the system that are definitely not inflicted by any
far reaching side effects of the intended modification.

In the context of software reuse or COTS integration, the
fundamental issue is similar: A software engineer does not
need to know every detail about a component to be inte-
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Figure 1: Different views onto a component

grated. S/he does need to know though, whether the compo-
nent at hand renders the required functionality and whether
in doing so it would not occasionally spoil parts of the sys-
tem to be built by performing unwanted functionality. (One
might also be interested in performance issues or other extra-
functional issues. But these questions are not addressed in
this paper). Hence, at a first glance, the reusers needs and
the maintainers needs look alike. They are different though
from two perspectives:

1. The reuser even more than the maintainer might be in-
terested in perusing the component at hand at various
levels of granularity [17], and

2. the reuser, specifically the COTS-integrator, might not
have all the information available, a maintainer might
have at hand.

Figure 1 attempts to conceptually show this situation.
The semantics of the component at hand is always in the
center of the consideration. However, while the maintainer
is rather interested on the components internal structure
(missing bottom-side of the triangle), the reuser is rather
interested in the components functionality. In analogy to
testing terminology, we refer to it as “black-box function-
ality” and “white-box functionality”. The former rests on
externally observable information. Thus, it is based on the
components interface structure (signature) and can be ob-
served by conventional testing, or, with state bearing com-
ponents, from trace data. With white-box functionality, we
refer to functional descriptions derivable from the very con-
struction of the component. We will address this issue in
more detail in section 5.2.

Likewise, we could (presuming the respective information
is available) take the most conventional approach to assess
functionality by just analyzing the components specification.
Thus, Figure 1 can also be seen as three dimensional entity,
with the dimension running from the bottom triangle to the
top of the pyramid consisting of the levels “data”, “code”,
and “specification”. The reusers problem is then to iden-
tify in an efficient manner, whether this pyramid contains a
sub-pyramid whose specification (the problem to be solved)
is contained in the specification of the component. Hence,
whether, without detailed examination of the code, those
portions of code that might ever be executed in the prospec-
tive environment will yield exactly the behavior (data-level)
corresponding to the problem specification.

In sections 3 to 5 we discuss the first issue about different
granularities in more detail. In the remainder of this section
we discuss the scenarios resulting from differences in the
available information.

2.2 Information about Components

2.2.1 JustBinaries

The situation where only binaries (and some moderately
telling natural language documentation) are available seems
to be the poorest among the options to be considered. How-
ever, this is quite common for people working with COTS.
But even in this case, we are not left in despair. Binaries
can be executed and it seems fair to assume that the rudi-
mentary documentation that comes with them tells at least
something about the environment needed and the function-
ality claimed for this component. The latter has to describe
at least how input is to be presented to the component. If
even this simple assumption is not warranted, we have to
accept that the piece at hand is useless and we better don’t
waste time on it.

If we are able to (systematically) execute a component
though, we have already at least two forms of complemen-
tary representation: the binaries, which we hardly under-
stand in their materialized form, and test data in the form
of tuples of input-output value combinations. We might use
data tuples as alternate representation from which we try
to infer the components semantic in a more compact form.
Thus, the input-output tuples will constitute the basis on
which the comprehender forms hypotheses about the com-
ponent.

These hypotheses about software need to be verified, ir-
respective on which grounds they have been established. In
conventional forward engineering, we write code and ver-
ify the hypothesis that the code we’ve written is the code
we wanted by means of testing. Here, we can reverse the
process.

2.2.2 SouceCodes modesRole

We might use the binary in its executable form and/or
use source code directly to verify the hypotheses established
previously. Such hypotheses result from the execution of
the component or from investigating some specification. Of
course, it is fair to assume that the source code is too volu-
minous (too ill-structured, or otherwise too problematic) to
be inspected by hand and by eyesight. Hence, we might use
partitioning (e.g. slicing) or (partial) visualization to sup-
port our comprehension task. The approaches for source-
code visualization are multifarious and diverse. We will
discuss techniques to support source-code comprehension in
section 3.

Thus, and this might seem astonishing at first glance, the
role of source code in its original textual form is quite lim-
ited, if the component to be analyzed is beyond a critical
size. Of course, if we want to focus on some specific details
of an operation, source code is the most telling representa-
tion.

2.2.3 Specifications

In a more luxurious situation we might even have some
formal specification coming along with source code. Be-
fore being too glad, we have to verify, whether this is not
a Danaean gift, i.e. whether the specification is still a valid



high level representation of the code at hand. This needs
verification too. But in order to check for this as well as in
order to comprehend a huge formal specification, we are as
much at loss as with voluminous code. We even reach the
limits earlier, since the semantic contents of specifications
is much tighter packed than the semantic contents of code
written in an executable programming language. Hence, vi-
sualization is going to play its role again. We might even
be lucky by being faced with an executable specification. In
this case, we can again reach down into the level of exem-
plary data. Relating data for specification execution with
data from program execution will be an interesting alterna-
tive to overcome the limitations of program comprehension.
We will discuss aids for specification comprehension in sec-
tion 4.

2.2.4 Partial Understanding

Finally, we have to see that in general, we are not in-
terested in (and not capable for) comprehending a larger
piece of software in its entirety. We are just interested to
know, whether it does what we want it to do and whether
it does not what it should not do. In between, there might
be a quite substantial space, we do not care about, since we
know from the specification of the problem currently to be
solved, that the current usage environment will never delve
into those areas. The parts of the system that take care of
these “unused portions of the domain offered” will be execu-
tionally dead in the foreseen usage environment. Dead code,
specifically pseudo-dead code of this kind will not excite any
software engineer. But we are so used to it in huge systems
we use all day long that we should accept it - at least for
a while - in systems we are really rushed to build. These
issues of sufficient and partial understanding is addressed in
section 6.

3. CONVENTION AL APPROACHES FOR
SOFTWARE COMPREHENSION

We consider the comprehension problem as the problem
of building oneself a conceptual model about a piece of soft-
ware. As argued in [17] there are good reasons to assume
that such a reversely established conceptual model might be
as much leveled as software models we consider necessary
during forward development are represented at various lev-
els. Likewise, the representational form of the models will
change depending on the level of abstraction as well as de-
pending on the level of comprehensiveness of such a model.
The point of departure in conventional software comprehen-
sion approaches is usually source code. Therefore, we will
first discuss approaches to better grasp the semantic content
of source code. The prominent approaches to be followed are
partitioning and visualization. Of course these conceptually
orthogonal approaches can be combined to yield more fo-
cussed understanding.

3.1 ComprehensionSupport by Source Code
Partitioning

If one wants to remain on the textual representation of the
source-code level, comprehension support usually amounts
to some kind of partitioning. If this partitioning is to be
comprehensive but strictly without changing the level of ab-
straction, some kind of slicing will be the result. A slice,
according to Weiser’s original definition is an independently

executable piece of code taken out of a more comprehen-
sive piece of executable software [32]. Whether something
belongs to the slice or not depends on the given slicing cri-
terion, i.e. on a specific point in the program (a variable
at a concrete point in the control structure). Everything
contributing to the value of this variable on this spot will
belong to the respective backward slice. Everything depend-
ing from the value of this variable on this spot will belong
to the forward slice. This simple but powerful idea can be
(and has been) generalized in various directions. We will
fall back on this concept later.

Other partitioning strategies on the source-code level, be
they declaration analysis, signature analysis, chunking etc,
leads to loss of a key property of software: its executability.
Therefore, these approaches cannot serve to model “reduced
functionality” in the sense of “just the functionality neces-
sary for the environment the component under consideration
is to be integrated in”. Indeed, most of these approaches,
while maintaining the low-level textuality aim at higher lev-
els of abstraction. Hence, they are valuable for focussed
partial comprehension. We therefore put these approaches
in a separate but distinct bag.

While this distinction holds in general, we might still
briefly come back to the technique of chunking [5]. Aim-
ing at black-box reuse, this technique will be of little use
for comprehension, other that the boundaries of a chunk
define an obvious boundary of focus. Considering white-
box reuse though, a chunk is an executable subsection one
might scavenge out of a more comprehensive system. Thus,
figuratively, a chunk can be seen as a “horizontal” portion
of code while a slice is a “vertical” portion cut along the
data- and control-flow. Given proper “excitation” by prop-
erly defined parameters, we might rest assured that nothing
else but a specific slice of the code will be executed. Thus,
comprehending a slice amounts to comprehending the com-
ponent in a domain-restricted way while comprehending a
chunk would amount to comprehend some sub-functionality
embedded in the component.

3.2 Program Visualization

With visualizations, we are changing the level of repre-
sentation. Thus, we leave the fine granularity of textuality
and replace it by some semantically rich notation (usually
supported by text, whenever precision in terms of detailed
semantics is needed). An overview of program visualization
approaches can be found in the work of Stasko et al. [25].
They propose the following classification:

e The range of programs in terms of generality and scal-
ability that program visualization systems are able
to take as input for visualization are qualified in the
“Scope” category.

e The “Content” category focuses on the subset of (pro-
gram and/or algorithm related) information that soft-
ware systems are able to visualize. It also applies to
questions of fidelity, completeness and the time of data
gathering.

e The “Form” category includes the medium (primary
target), the presentation style (graphical vocabulary,
animation, sound), granularity, multiple views and syn-
chronization capabilities.



o The “Method” category focuses on the fundamental
features of the program visualization system, includ-
ing the visualization specification style (hand-coded,
library-based) and connection techniques (connecting
visualization and code).

e The “Interaction” area describes the control and inter-
action capabilities of the user (style, navigation, script-
ing facilities).

o “Effectiveness”, finally, aims at measuring the quality
and quantity of information which is communicated to
the user.

Most approaches discussed by Stasko, only focus on a spe-
cific problem domain. Thus, they do not support different
cognition models and they can only be applied in a very
specific field. There are visualizing tools for concurrent pro-
grams (PVaniM [25, p. 237f]), tools for supporting educa-
tion (beginning with BALSA, or Piper [25, p. 383f] or tools
in the field of software engineering e.g. maintaining large
systems using SeeSoft [25, p. 315f]. As a more comprehen-
sive approach, one might consider the RIGI tool [33]. It is
specifically geared towards the support of reverse engineer-
ing [26].

The RIGI Reverse Engineering tool uses wviews to direct
the user’s focus by means of visual data and to guide the ex-
ploration of spatial data to support program documentation
and understanding [28, 19]. The system consists of a pars-
ing subsystem, a repository and a graph editor. The reverse-
engineering methodology is based on subsystem comprehen-
sion, views, hypertext layers. An extension using scripting
languages is possible, too [20, 21]. The reverse engineer-
ing process involves the parsing of the program resulting
in a graph where nodes represent functions and data-types
and arcs represent dependencies among them. Thus, RIGI
specifically aims at raising levels of abstraction and at pro-
viding focuses on various system dimensions. Specifically
the latter property motivates us to mention it here, while
not mentioning a host of other visualization approaches de-
veloped to support software maintenance and/or software
evaluation.

4. SPECIFICATION VISUALIZA TION

In considering the material at hand for component com-
prehension, we discussed the case, when specifications are
available as an almost ideal situation. However, whether it
is a myth and/or a fact, formal specifications [30, p 2303]
are often criticized to be hard to understand [10] or not con-
taining all important facets a software developer is interested
in [14].

Some of the properties, formal specifications are criticized
for (e.g. the lacking connection to other representational
forms, either upstream or downstream in the software de-
velopment process) might not pertain in our case. But still,
even for single components, specifications might get large
and if so, readers tend to be overwhelmed not least due
to the semantical compactness of specifications. Therefore,
specification visualization and animation, specification slic-
ing and requirements tracing, have also been explored to im-
prove specification comprehension. Following the arguments
raised above, specification visualization techniques can be
classified as follows :

1. The first class comprises tools to support writing and

reading of specifications e.g. by providing some kind
of pretty-printing. These tools are related to tools
for syntax highlighting in source-code or to other aids
helping to provide some specific focus on textual rep-
resentations. One must not deny that also specifica-
tion browsers are important devices for raising the un-
derstandability. We can hardly classify these aids as
visualization instruments. But it is well known from
source-code comprehension, that the geometrical ar-
rangement of statements substantially aids compre-
hensibility. The same argument applies for specifica-
tion styles and the respective arrangement of proper-
ties and terms [11].

. Proper visualization, in the sense of transforming tex-

tual information into some graphical representation, is
usually not the theme when considering formal speci-
fications expressed in Z or VDM. We should not for-
get though that with certain specification languages
(e.g. Petri Nets or finite state machines) the graphical
representation is so prominent that we tend to for-
get the textual linear or tabular representation behind
the graphs. While tools would obviously depend on
the latter, people reason about the formal model in
terms of the graphical representation. A justification
of this phenomenon might be the explicit connected-
ness of related (e.g. neighboring) states. This obser-
vation might as well be transferred to those specifica-
tion languages, we usually see in their textual form.
Specifically in connection with context related high-
lighting, using graphics (or color) to highlight related-
ness should prove to be helpful.

. We might consider animation as the next step to ren-

der formal specifications “digestible”. Here, we need to
have executable specifications or at least a way to gen-
erate test data from specifications [7, 22]. Of course,
animation per se is not a proper visualization. In an
animated model, we rather do not see the model in its
entirety. We do see a sequence of snapshots instead.
Hence, model animation has to be compared with con-
ventional code testing supported by additional mech-
anisms to interpret or interrelate the results of such
executions).

. A more involved class of specification comprehension

tools are to be targeted at rewriting a specification
and/or reasoning about it. Here, the objective is cer-
tainly to raise comprehensibility by generating a more
compact representation. Thus, usually the level of ab-
straction is raised.

We might, however, also consider this as a specifica-
tion level analogous to program slicers. This will be
true specifically, if the tool helps to prove certain prop-
erties of input-/output relations, or if it tells, which
terms of the specifications have been used to establish
a certain proof. In this context, we point to Daniel
Jackson’s work [11]. He introduces partial specifica-
tions as views (consisting of a state space and a set of
operations) and composes them to a full specification.
Using multiple representations (of different views), it
is possible to improve the clarity and modularization



of specifications. Another idea is to use advanced slic-
ing techniques [6], either static or dynamic ones, to
improve the readability and comprehensibility of spec-
ifications.

5. We finally have to think about cross-level tools allow-
ing to trace from a specification to its implementation.
Such links (e.g. service channels), can be built into the
system in a rather simple-minded but inflexible way
or can be dynamically established with neatly built
systems. To define them for industrial-strength code
is very complex though. A cross-section of such ap-
proaches can be found in the literature on software
evolution [4].

The above discussion shows, that specifications are not
just what we see when opening a textbook on formal meth-
ods. They are software that can be scrutinized at various
levels of precision and they can be presented in various repre-
sentational forms. Thus, people not “in love” with textbook-
style formal methods can still benefit from the preciseness
formal methods offer, by inspecting them in a highly fo-
cussed manner.

5. USING DYNAMIC INFORMATION FOR
SOFTWARE COMPREHENSION

With specification animation we have seen already the
link between static and dynamic information. In this sec-
tion, we want to discuss this issue even a bit further. Our
focus is on state-bearing software (objects, classes). Here,
the crucial question is to identify, whether the hidden state
of such an object (class) satisfies the properties a reuser is
expecting from the piece of code at hand. Our approach to
this question departs from two corners:

1. One is the assessment of object-oriented code, specif-
ically of object-oriented code scavenged out of non-
object-oriented legacy software [27, 24].

2. The other stems from generalizing previous attempts
for describing procedural, state-less software by means
of its executional properties [23, 18] to state bearing
software.

This second approach is based on an important require-
ment: We do not want a human to produce the description
for the analyzed components. This would entail potential
for latent ambiguity. Our goal is to derive an understand-
able and interpretable behavioral model automatically by
analyzing the effect (the test data) of software directly.

In both cases, we restricted ourselves to descriptions based
on the (relatively simple) model of finite state machines, well
knowing, that this covers only a modest portion of potential
software. However, it covers the portion which can currently
help to easily gain some understanding. Attacking software
with more involved input/state-interactions is left for times
when these seemingly simple issue is adequately understood.
In the sequel, we will discuss these approaches, highlighting
their merits and their differences.

5.1 Analysisof Trace-Information

In order to keep assumptions minimal, we first look at
situations, where only trace-data is available as reliable re-
source. With trace-data we refer to sequences of function

calls invoking a complex component. Such sequences are
available by analyzing test logs. Textual documentation is
of course also needed, but natural language documentation
is always burdened with doubtful trustworthiness due to its
ambiguity.

The approach we take stems from formal language the-
ory. Thus, we can bank on the fact that any finite sequence
of finite length words can always be described by a finite
automaton. Various trace sequences, which in our case are
represented by different test cases, are such finite length
words. We obtain traces by analyzing the component’s test
logs. However, while the result quoted from formal language
theory is reassuring, it is of little help in this context, since
the automaton accepting exactly a set of given finite traces
provides no reduction in complexity. Hence, what is referred
to in literature [2] as grammar inference problem is looking
for a more compact canonical automaton that accepts not
just the trace-strings but all possible valid trace-strings ob-
tainable from the software component being analyzed.

AD
ABBD
// an empty test case
ABBBDCC
BAD
BAADC
ABD

Figure 2: The grammar inference problem

In figure 2 an example for such an analysis is presented.
Given is a set of test data in the form of method calls
(method A, B, ... ) to a component. Each line represent
the sequence of method calls during a “life cycle” of a com-
ponent. The question is, which regularities may be hidden
in the huge amount of unstructured test logs. Such regulari-
ties are expressed by a DFA to represent the knowledge about
the behavior of components in an understandable form.

We are well aware about the fact that we loose the infor-
mation about the value transformations performed by the
method calls. This information covers a behavioral dimen-
sion of the description space which must be handled by other
methods (e.g. [23, 18]). With automatic trace analysis, no
human aid is necessary to obtain the resulting automaton.
Thus the understanding of the component depends solely on
the capability of the “reader” of the description (automa-
ton), not on the capability of its producer.

What is left open is the question about the quality of the
resulting automaton. Is the description such obtained really
the optimal one? Therefore, it is important that the analy-



sis results in a canonical form. With such a canonical deter-
ministic finite automaton (DFA), one aims for the following
properties, which taken together determine the quality of
the resulting automaton [1]:

Completeness: The DFA should preserve all transitions which

can be found in the trace data. All sequences in the
log must be generated by the DFA.

Irredundancy: No transition of the DFA should be spuri-
ous. This property should prohibit incorrect transi-
tions in the resulting automaton.

Minimality: The DFA shall consist of a minimal number of
state transitions.

In 1978 Mark Gold [8] proved that in general the identi-
fication of a canonical automaton on the basis of given pos-
itive and negative examples is NP-hard. However, if only
positive examples are available, such identification in the
general case is not feasible. Therefore, research concentrated
in the mid 80ies on heuristics and domain input for building
automata in a specific context.

Dana Angluin [2, 3] focussed on methods, which allow to
add collateral information to the knowledge base. In fact,
her algorithms depend on an oracle, which answers ques-
tions like “Is this string accepted by the automaton to be
constructed?”. Knowing about traces which can not be gen-
erated by an component restricts the search space and helps
to resolve ambiguities which occur during the inference pro-
cess. In most cases, such an oracle can be easily obtained in
our context, since components are executable and the query
can be reformulated in the form of method calls to the com-
ponent. Thus, the question, if a certain word is accepted
by an automaton (which is indeed the sequence of method
calls to a component) can be answered immediately. (On
the other hand, this may be infeasible, if the component is
not executable and can not be transformed to such an form
within reasonable time.)

Building on these results, forming of merge-hypotheses
and of loop-hypotheses which can be individually tested, can
be seen as a promising approach towards automatically gen-
erating descriptions of components. The step of reducing an
automaton, accepting test-sequences only, to an automaton
(presumably) accepting the full “language” a component is
ready to deal with is only a small one. The word “presum-
ably” is used in this context, since as in our previous work
on this topic, the quality of the result dependents heavily
on the quality of the test-data available.

In contrast to this previous work, however, we need not
rely on trustworthy test-data only in those special cases,
where access to original development information is available
either by means of having a formal specification or by means
of the test data directly used by the developers as well as
during quality assurance of maintenance operations. This is,
because we can form hypothesis and test them by directly
executing the component we analyze.

5.2 DynamicModelsderivedfrom staticinfor-
mation

The second approach to be mentioned here is not plagued
with the problem whether the trace contains all crucial cases.
However, it requires the availability of source code. This
approach [24] infers dynamic models (state charts) from

(object-oriented) source code. In essence, those variables,
resp. object attributes maintaining state information are
identified. From that attributes we infer the potential states
by analyzing conditions in the control flow graph. Such
identified states are the basis for revealing state transitions
by looking at the variable’s value changes. By comnsidering
all identifiable objects of one class we derive many poten-
tial modification curriculi. The combination of all potential
modification curriculi represents the final dynamic model
of the component. Deviations of the such re-engineered dy-
namic model from a dynamic model an UML-designer would
develop, can be considered as hints for problems in the code
and/or problems in the understanding of the component.
This applies for the analysis of reuse-candidates as much as
for the analysis of classes re-engineered from procedurally
structured legacy code. To check whether the result of such
transformations leads to semantically sound classes was the
original aim under which this approach was developed.

6. GOAL DRIVEN PARTIAL COMPREHEN-
SION

If we see the comprehension problem as the problem of
building oneself a conceptual model about a piece of software
at hand, one can consider our approach as a generate-and-
test approach.

The software integrator first establishes her-/himself a
conceptual and/or mental model about the piece of code
at hand and then tries to verify whether this model holds.
This verification will usually be done by analyzing a varia-
tion of the representational form for this software. Here, we
can only give some preliminary sketches of such variations of
representational form or goal directed probing into models
about software.

The basic premise of this approach is that humans do not
comprehend (and mentally manipulate) conceptual models
when facing them as long strings of text. Without resort-
ing to psychological literature, we take the host of semi-
graphical notations as pieces of evidence for this claim. If so,
and if further resorting to the over-used result, that humans
can hold up to about seven elementary items concurrently
in their short-term memory, we have to accept that “full
comprehension” of some sufficiently sizable piece of code is
impossible anyway. The reuser does need an adequate proxy
for this full comprehension though. Hence, a suitable way
(perhaps the only way) is to correlate partial evidence to
form a hypothesis about what the piece at hand actually
is all about and then use further clues to either stepwise
support this hypothesis until a level of satisfactory trust is
reached or to disprove it.

In the case of disproof, one has either to reject the hypoth-
esis (and in most cases this decision implies also rejection of
the candidate component too) or to continue with analyzing
a freshly updated hypothesis if a (thus weakened) hypoth-
esis is still of interest relative to the problem specification
at hand. If an “experiment” supports the initial hypothe-
sis, we are in a pragmatically better, but intellectually less
satisfying situation. This is because a reusable component
at hand is in general to immense to fully grasp it by either
of the methods discussed above [17]. Thus, again resort-
ing to general principles of scientific discovery, we aim not
only for a variation of focal length but also for a variation
of representational form.
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Figure 3: Conceptual dimensions for analyzing Software

Debating focal length, we think about the levels of speci-
fication, source-code, and data-points as three distinct rep-
resentations. Specification and source-code share the prop-
erty of completeness (and overwhelmingness), data-points
are comprehensible but episodic. For each of these levels, we
suggest a textual representation as representational norm.
This choice seems adequate, since textuality is needed if one
aims at adequate machine support in the analysis process’.

In addition to the textual representation we consider par-
titioning (on the text level) and visualization as key options
to support comprehension. Partitioning for supporting com-
prehensibility by reduction in volume, visualization (trans-
formation into whatever form of two- or even higher dimen-
sional representations) as a means to spread out information
in various dimensions [16] (e.g. color can be used to model
more than two dimensions on the plane of a sheet of pa-
per or a video-screen [9]). Thus by combining various tools
and techniques, we obtain a torus of various representational
forms around of a common semantic core of functionality.
Using animation-tools, this torus might even become “ac-
tive”. One must not underestimate the suggestive power of
“making things behave”. However, one must also not over-
estimate animation, because it is always burdened by its
episodical character.

Figure 3 shows a grid into which such a torus might be
placed. Obvious questions at this point are: “What is an op-
timal combination of grid-points to establish such a torus?”

! Binaries might also be considered as textual representa-
tions. But even while they are the final result a reuser is
aiming for, they play no role in our considerations other
than that they are needed to make source code executable
(as much as executable specifications need some representa-
tion transformation for being executable).

or “What is the optimal path through this torus?” — At this
point, we have to deny an answer. We attempt at the more
modest answer of sketching various more detailed road maps
through it in our future research though. We can mention at
this time though, that this representational torus is a con-
ceptual framework. The concrete positioning of the various
representation nodes in this framework leads to a “compre-
hension architecture” that needs to be domain specific.

7. CONCLUSION

Integrating ready-made components into a new software
system under construction has always to do with trust. Trust,
that the component integrated really behaves as specified
resp. as desired. This paper presented a “tour de raison”
through various approaches to establish this trust.

The key-claim of the paper is, that the proper combination
of partial representations of software, be it representations
by means of test-/trace-data, by means of source-code or
by means for formal specifications as well as variations in
the level of abstraction and presentation will help software
engineers to more effectively and more efficiently establish
the trust needed to integrate a component which is not-
invented-here.
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