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Abstract

Even though currently available workflow management systems
(WFMSs) offer sophisticated modeling tools for specifying and
analyzing workflow processes, their time management support is
rudimentary. Existing time management functionality mainly
addresses process simulations (to identify process bottlenecks,
analyze execution durations, etc.), assignment of deadlines to acti-
vities, and triggering of process-specific exception-handling acti-
vities (referred to as escalations) when deadlines are missed du-
ring process execution. In this paper, we address the crucial role
of time management in the lifecycle of workflow processes. In par-
ticular, we describe how structural (i.e. execution order depen-
dent) and explicit (i.e. fixed-date, periodic, upper- and lower-
bound) time constraints can be modeled during process definition,
validated during modeling and instantiation-times and, finally,
monitored and managed during execution time.

1 Introduction

Today, the most critical need in companies striving to become more com-
petitive is the ability to control the flow of information and work throug-
hout the enterprise in a timely manner. Consequently, time-related re-
strictions, such as bounded execution durations and absolute deadlines,
are often associated with process activities and sub-processes. However,
arbitrary time constraints and unexpected delays could lead to time viola-
tions. Typically, time violations increase the cost of business processes
because they require some type of exception handling [28]. Therefore, the
comprehensive treatment of time and time constraints is crucial in desi-
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gning and managing business processes. For instance, process managers
need tools to help them anticipate time problems, pro-actively avoid time
constraints violations, and make decisions about the relative process prio-
rities and timing constraints when significant or unexpected delays occur.

Workflow management systems (WFMSs) improve business
processes by automating tasks, getting the right information to the right
place for a specific job function, and integrating information in the enter-
prise [14,16,22,34]. Although currently available commercial workflow
products offer sophisticated modeling tools for specifying and analyzing
workflow processes, their time management functionality is rudimentary
[19,30]. In particular, existing time management functionality supports
process simulations (to identify potential bottlenecks, analyze activity
execution durations, etc.), assignment of deadlines to activities, and trig-
gering of escalations (i.e. process-specific exception-handling activities)
when deadlines are not met [3,4,13,18,23,32,33]. However, the consisten-
cy of these deadlines and the side effects of missing some of them are
neglected.

It is imperative that current and future WFMSs provide the necessary
information about a process, its time restrictions, and its actual time re-
guirements to process modelers and managers.

* At build-time, when workflow schemas are defined and develo-
ped, workflow modelers need means to represent time-related as-
pects of business processes (activity durations, time constraints
between activities, etc.) and check their feasibility;

* At run-time, when workflow processes are instantiated and their
executions are started, process managers should be able to adjust
time plans (e.g. extend deadlines) according to time constraints
and any unexpected delays;

» During process execution, pro-active mechanisms are needed for
notifying process managers about potential time constraint viola-
tions so that they can take the necessary steps to avoid time failu-
res;

e If a time constraint is violated, the WFMS system should be able
to trigger exception handling to regain a consistent state of the
workflow instance;

»  Workflow participants need information about urgencies of the
tasks assigned to them to manage their personal work lists in ac-
cordance with the overall goals;



» Business process re-engineers need information about the actual
time consumption of workflow executions to improve business
processes;

» Finally, controllers and quality managers need information about
activity start times and execution durations.

The latter two aspects are usually provided by workflow systems via
workflow documentation (also referred to as workflow history or
workflow logging) and monitoring interfaces. In this paper, we are mainly
interested in the first three aspects. In particular, we address the following
issues.

* Modeling of time and time constraints to capture the available ti-
me information;

* Pro-active time calculations to detect time constraint violations
and raise alerts in case of potential future time violations;

* Time monitoring, deadline checking, and handling of time errors
at run-time.

We should note, however, that the effectiveness of time management
depends on the workflow kind, how detailed its description is, and whe-
ther there are external causes for time relevant events. For highly structu-
red, production-based workflows, time requirements can be calculated
with a high degree of accuracy. For administrative workflows, which
span different organizations, depend on external events (e.g. waiting for a
customer to reply), or may change their schema during execution (dyna-
mic and ad-hoc workflows), time calculations are imprecise. Neverthe-
less, time planning, management, and controlling has to be done, and, to
our experience, it is a common practice. Typically, time planning relies
on estimates based on experience. Time management during the executi-
on of a process becomes even more important in such environments, whe-
re time monitoring is essential for adjusting plans to avoid deadline vio-
lations. Therefore, any knowledge about time issues should be modeled
and used during workflow execution.

The remainder of the paper is structured as follows. Section 2 descri-
bes the workflow model we assume in this paper, addresses activity dura-
tions and deadlines, and defines explicit time constraints. Section 3 pre-
sents how time information and time constraints can be modeled. Section
4 discusses time constraint satisfiability and monitoring during the lifeti-



me of a workflow process. Section 5 outlines possible solutions to time
violation that may occur at run-time. Section 6 touches upon schedule-
based workflow executions. Section 7 offers a comparison with related
work and, finally, Section 8 concludes our presentation.

2  Workflow Time Constraints

In this section, we begin by describing the assumptions we make about
the workflow model that is used in the remainder of this paper. Then, we
discuss the various time constraints that can be associated with processes
and their activities.

2.1 Workflow Model

A workflow is a collection of activities, agents, and dependencies bet-
ween activities. Activities correspond to individual steps in a business
process, and agents (software systems or humans) are responsible for the
execution of activities. Dependencies determine the execution sequence
of activities and the data flow between them. Activities can be executed
sequentially, repeatedly in a loop, or in parallel. Parallel executions can
be unconditional (all activities are executed), conditional (only activities
that satisfy a certain condition are executed), or alternative (any activity
among several alternatives can be executed). In addition, workflows may
contain optional activities. These activities may not be executed during a
specific workflow instance in order to satisfy the time constraints asso-
ciated with this instance.

Typically, workflows are represented by workflow graphs or process
maps, where nodes correspond to activities and edges correspond to de-
pendencies between activities. shows an example workflow
graph that is based on the aforementioned notions. Activity A is the start
activity. A is followed by a conditional or-split, and either B or C is exe-
cuted next. If C is executed after A, an and-split follows C, and E and F
are executed in parallel when C is completed. When both E and F com-
plete their execution, G starts its execution. Activities D and | are optio-
nal. After I, there is an alternative-split, either J or K is executed (both
are valid choices). Finally, L corresponds to the final activity of the
workflow.
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Figure 1: Example workflow graph

We should note that there exists an important difference between con-
ditional and alternative execution of activities. In the conditional case, the
activity that is executed next depends on data and state generated during
the execution of the workflow process instance. In the alternative case,
the activity that is executed next depends on policies and information that
is shared by all instances of the same workflow process. This implies that
any alternative will lead to a valid workflow execution and, for time ma-
nagement, when the schedule is tight, the alternative with the shortest
execution time can always be chosen (e.g. FedEx Express is chosen for
international shipment instead of the regular postal service).

Due to conditional and alternative structures, different sets of activities
are executed, depending on the case data of the workflow and/or on the
policies and choices of workflow participants. Each different set of acti-
vities that corresponds to a valid execution is referred to as workflow
instance type. For example, A,B,H,I,LK,L is a workflow instance type of
the workflow shown in

2.2 Execution Durations and Deadlines

In order to represent time information, we need to augment the workflow
model with the following basic temporal types: time points, durations,
and deadlines. For the sake of simplicity, we assume that all time infor-
mation is given in some basic time units.

Given a workflow schema, a workflow designer can assign execution
durations and deadlines to individual activities and to the whole workflow
process [13,15,18,23]. These durations can be either calculated from past
executions, or they can be assigned by specialists based on their experi-
ence and expectations. In addition, multiple execution durations may be



assigned to an activity. Typically, the most common duration values used
are minimum, maximum, and average.

Activity and process deadlines, on the other hand, correspond to ma-
ximum allowable execution times for activities and processes, respecti-
vely. In the remainder of this paper, we refer to these deadlines as explicit
deadlines. At process build-time, these deadlines are specified relative to
the beginning of the process, using some time granularity, e.g. 2 hours, 5
minutes, or by Wednesday. At process instantiation-time, a calendar is
used to convert all relative deadlines to absolute time points, modify the
assigned deadlines, or assign new deadlines.

It is important to note that activity durations and deadlines may not be
the same, which is how they are always treated by some of the existing
workflow management systems. Distinguishing between the two is bene-
ficial for cases where the actions taken when a deadline is missed have a
high cost associated with them (e.g. rollback of the entire process). In
such cases, when an activity takes longer to execute than the duration
assigned to it in the workflow schema, preemptive steps can be taken to
assess deadline satisfiability, modify workflow parameters, and alert ap-
propriate agents and process managers.

Deadlines do not have to be associated with every activity of a
workflow schema. However, it is extremely beneficial to assign deadlines
to all activities. The most compelling reason for this is the ability to mo-
nitor the execution progress of activities and processes so that preemptive
actions are taken when delays are developed. We present how these
deadlines, referred to as internal deadlines, are computed at process
build- and instantiation-time and used at run-time in the sequel.

2.3 Explicit Time Constraints

Many time constraints are derived implicitly from control dependencies
and activity durations. They arise from the fact that an activity can only
start when its predecessor activities have finished. Such constraints are
called structural time constraints because they reflect the control structu-
re of the workflow. On the other hand, workflow designers can specify
explicit time constraints based on organizational rules and business poli-
cies, laws and regulations, service-level agreements, and so on. Examples
of such constraints include: (1) an invitation for a meeting has to be mai-
led to the participants at least one week before the meeting; (2) after a
hardware failure is reported, a service team should be at the customer's
site within 4 hours; (3) vacant positions can be announced on the first



Wednesday of each month; (4) inventory checks should finish by Decem-
ber 31st; (5) loans above USD 1M are approved during scheduled mee-
tings of the board of directors.

Such explicit constraints are either temporal relations between events
or bindings of events to certain sets of calendar dates. In workflow sy-
stems, these events correspond to two main events that are associated
with an activity: start and end. The start event denotes the start of the
activity, while the end event denotes its completion. For temporal relati-
onships between events, the following time constraints can be defined,
assuming that o corresponds to a relative time duration.

e Lower-bound constraint: The time distance between source
event s and destination event d must be greater than or equal to J.
The notation used is Ibc(s,d,d).

e Upper-bound constraint: The time distance between source
event s and destination event d must be smaller than or equal to .
The notation used is ubc(s,d,?d).

An example of a lower-bound constraint includes a legal workflow
with activities of serving a warning and closing a business, with the re-
quirement that a certain time period passes between serving the warning
and closing the business. Another example is a chemical process control
workflow where a reaction is initiated only when certain time passes after
the start of another reaction. Upper-bound constraints are even more
common. The requirement that a final patent filing is done within a cer-
tain time period after the preliminary filing and time limits for responses
to business letters provide typical examples of such constraints.

To express constraints that bind events to specific calendar dates, an
abstraction that generalizes a typically infinite set of dates (i.e. “every
other Monday* or “every 5th workday of a month*) is required.

» Fixed-date object: A fixed-date object is an abstract data type T
with the following methods: T.next(D) and T.prev(D) return, re-
spectively, the next and previous valid dates after an arbitrary date
D; T.period returns the maximum distance between valid dates;
and T.dist(T’) returns the maximum distance between valid dates
in the given object and in another fixed-date object T’, having as
default value T.period.



An example of such a fixed date object would be em (every Monday).
The operation em.next(D) would return the date of next Monday after D,
em.prev(D) would return the last Monday, and em.period would return 6
days. For the fixed-date object efm (every first of a month), the distance
em.dist(efm) would be 30 days, while efm.dist(em) would be 6 days.

Having fixed-date objects in our disposal, we can now define fixed-
date constraints as follows.

» Fixed-date constraint: To express a time constraint that binds an
event E to some fixed date(s), we write fdc(E,T), where T is a fi-
xed-date object.

Although several fixed-date constraints could be associated with an
activity, for simplicity, we assume that only one such constraint is used in
the remainder of the paper.

2 Workflow Time Modeling

Workflow graphs can be extended to include time-related data. Since
workflow graph nodes, which correspond to activities, have attributes
associated with them, such as the role that is responsible for the
enactment of the activity, one could easily model time-related data by
adding more attributes. Moreover, time constraints between activities
could be shown in the graph by additional edges, such as time edges [5].
In the rest of the paper, we focus on time-related activity attributes, and
we discuss how these attributes can be used during the lifecycle of a
process. A workflow graph that includes time information is referred to as
timed activity graph or timed graph. Each activity node in an timed graph
is called timed activity node.

As we mentioned in the previous section, each activity A has start and
end events associated with it. Depending on the execution duration(s)
associated with A, one could “attach* several pairs of these events to A.
For simplicity, however, we use the average execution time as the ex-
pected execution duration of an activity. Here, the start event can be
computed when the end event is known and, thus, we only need to consi-
der end events when modeling time constraints. For the computation of
activity end events we developed an extension of the Critical Path Me-



thod (CPM) [29], a project planning method that is frequently used for
project management.

Activity Name

duration | optional
Esr Lwr
EBS LBS
Ewr Lwr
EWS LWS

Figure 2: Timed activity node

Due to the conditional/optional execution of activities, the following
time information can be associated with the end event of an activity A:
Egs, Ews, Egr, Ewe, I—BS,a Lws, Lgg, and Lwe, as shown in Here, E
stands for the earliest point in time A may end, while L stands for the
latest possible point in time A can finish to ensure minimal execution time
for the entire process. Since conditional branches may require different
execution times, we use B to denote the best-case and W to denote the
worst-case. Finally, optional and alternative activity executions are captu-
red by F and S; F corresponds to an execution where optional activities
are not executed and the fastest alternative is always selected, while S
corresponds to an execution where all optional activities are executed and
any alternative can be selected.

For example, E\,’?,S corresponds to the earliest point in time A may fi-

nish when it belongs to the path that has the worst conditional branches,
all optional activities are executed, and the slowest alternative is chosen.

On the other hand, L@s corresponds to the latest possible point in time

activity A has to finish in order to minimize the execution of the entire
process, assuming that the worst conditional branches will be followed,
all optional activities will be executed, and any alternative can be selected
in the remaining of the process. [Figure 3 shows the result of calculating
the E- and L-values for the workflow shown in|Figure 1} These computa-
tions are outlined in the next section.
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Figure 3: Example workflow graph including time information

The most important information present in this timed graph is activity
E-values and, in particular, the E-values of activity L. This is because L is
the last activity to be executed and, hence, its termination time point cor-
responds to the termination time point for the entire process. In particular,
the earliest possible time for the entire workflow to end is 21, which cor-

responds to Eg. . This can happen when the conditional branch contai-

ning B is followed, activities D and | are not executed, and J is selected
instead of K. On the other hand, if all optional activities are executed, the

workflow can finish as early as 51 (ES; ) and as late as 72 (E ), depen-

ding on the specific alternative and conditional activity executions.

The L-values of an activity indicate whether there is a path containing
this activity that may lead to a time error at process execution. In parti-
cular, if all L-values of an activity are greater than their corresponding E-
values, there exist execution paths containing this activity that are likely
to avoid time violations. However, if there exist L-values that are less
than their matching E-values, then there exist paths that may lead to time
violations. For example, activity C has negative Lgr and Lgs values in
Figure 3. Therefore, if C is executed at run-time and the deadline of the
entire process is set to 21, the deadline will be violated.

Finally, each node in a timed workflow graph includes aggregated ti-
me information across all workflow instance types. In the presence of
conditionally executed activities with considerable variations in execution
durations, this information might be too coarse grained for workflow
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designers. Here, the unforlded timed workflow graph may offer a soluti-
on. This graph contains exactly the same set of instance types as the ori-
ginal graph. However, it does not contain or-joins and has several termi-
nation nodes, one for each instance type. Once a workflow graph is un-
folded, different time information can be assigned to activities in dispa-
rate instance types after their separating split node. We present more de-
tails about this in the following section.

3 Time Constraint Satisfiability

After activity durations and deadlines are assigned, time calculations are
required for computing optimistic and pessimistic activity start and finish
times, computing available slack time, updating existing deadlines, con-
verting relative time information to absolute time points, and so on. Typi-
cally, the assignment of external deadlines is an iterative process. The
designer first assigns activity durations and, then, she uses the time
calculations at process build-time to compute the duration of the whole
process and the relative position of all activities. The designer can then
choose to set external deadlines to some of the activities and recompute
the time information. If external deadlines cannot be met, the designer
might modify the workflow structure, or change the deadlines.

4.1 Process Build-time

In this section, we outline a technique that can be used to verify time con-
straint satisfiability, i.e. it is possible to find a workflow execution that
satisfies all constraints. A more detailed description of the technique can
be found in [9,10].

4.1.1 Initial Computations

Initially, two passes over the workflow graph are performed, and the E-
and L-values of all activities are computed using an extension of the
CPM method. In particular, E-values of activities without predecessors
are set to the durations of these activities, and a forward traversal of the
workflow graph is done for computing the remaining E-values. Next, the
L-values of activities without successors are set to their corresponding E-
values, and a backward traversal of the workflow graph is done for com-
puting the remaining L-values. During this traversal, if external deadlines
exist, the L-values of the activities with such deadlines are set to these
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deadlines, which are assumed to be relative to the beginning of the
workflow.

Once the above procedure is finished, the calculated E- and L-values
reflect activity execution durations, lower-bound constraints, structural
constraints, external deadlines, and explicit fixed-date constraints. An
important aspect of the computation is the transformation of fixed-date
constraints into lower-bound constraints using worst-case estimates. This
mapping is necessary because, at build-time, calendar values for the
workflow execution are not available and, thus, we can only use informa-
tion about the duration between two valid time points for a fixed-date
object. In particular, a fixed-date constraint fdc(a,T) is mapped to a lower-
bound constraint Ibc(b,a,d) for every b that is a predecessor of a. The
value of d depends on whether b has a fixed-date constraint itself or not.
If b does not have a fixed-date constraint, then Jis equal to a.d+T.period,
where a.d is a's execution duration. If fdc(b,T’) exists, then d is set to

T.dist(T").

4.1.2 Incorporation of Upper-bound Constraints

Once the above process is completed, upper-bound constraints are incor-
porated into the computed E- and L-values. A necessary condition for the
constraint ubc(s,d,d) to be satisfiable is that the distance between the E-
and L-values of s and their corresponding E- and L-values of d is less
than &. This distance is the sum of the execution durations of the activities
on the longest path between s and d. Since this distance only depends on
the E- and L-values of s and d, a violated upper-bound constraint could
be satisfied by changing these values in a consistent way, i.e. by increa-
sing the E-values of s and decreasing the L-values of d. The details on
how such changes are performed, as well as the algorithmic properties of
our technique can be found in [10]. We should note, though, that the sa-
tisfaction of individual upper-bound constraints may lead to a violation of
already incorporated upper-bound constraints. Therefore, when an upper-
bound constraint is incorporated into the E- and L-values of activities, all
previously incorporated upper-bound constraints should be validated
again.

At the end of the build-time calculations, there exist at least two (pos-
sibly not distinct) valid workflow executions. These executions are ob-
tained when all activities complete at their E-values or their L-values.
There may be other valid combinations of activity completion times
within (E,L) ranges. We will say that a timed graph satisfies a constraint
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if the executions in which either all activities complete at their E- or all
activities terminate at their L-values are valid with respect to this con-
straint. In addition, by examining the L-values of an activity, one can
determine if there is a path containing this activity that may lead to time
error during process execution. In particular, if all L-values of an activity
are greater than their corresponding E-values, there exist execution paths
containing this activity that are likely to avoid time violations. However,
if some L-values are less than their corresponding E-values, then there
exist paths that may lead to time violations.

4.1.3 Conditional Executions

When explicit time constraints involve conditionally executed activities,
it may be beneficial to consider some/all of the conditional paths in isola-
tion. By doing so, we may be able to avoid superfluous constraint viola-
tions and scheduling conflicts during process execution. In general, the
following issues need to be addressed when we derive timed graphs that
violate explicit time constraints.

» Checking individual constraints for violation may not be sufficient.
As shown in [10], a set of time constraints may not be satisfiable,
even when each individual constraint is satisfiable. Consequently, the
incorporation procedure should consider all constraints together;

»  Checking workflow instance types for constraint violation in isolation
is not sufficient. Instance types only differ after or-splits and have the
same initial activities; these common initial activities should have the
same E- and L-values. If we cannot find such E- and L-values in all
instance types to satisfy the constraints, then it may not be possible to
schedule the execution of this workflow so that all time constraints
are met;

» Incorporating upper-bound constraints using best-case values may
not be meaningful. When an upper-bound constraint exists between a
conditionally executed activity C and a successor activity G, which is
always executed, checking this constraint for the best-case is not pos-
sible when the E- and L-values of G do not depend on the best-case
E- and L-values of C;

» Checking violation of upper-bound constraints using worst-case va-
lues may lead to unnecessary rejections when the workflow has con-
ditional branches. Similar to the above case, when the worst-case E-
and L-values of C do not contribute to the worst-case values of
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another activity, we may find a constraint violation when trying to in-
corporate several constraints.

To meet these restrictions we employ the technique of unfolding
workflow graphs, which was sketched in Section 3. The unfolded graph is
equivalent to the original graph since every execution valid in one
workflow specification is also valid in the other. Another advantage of
unfolding a workflow graph is that different deadlines, i.e. worst-case E-
and L-values, may be assigned to activities belonging to different instan-
ce types. Consequently, different deadlines for the final activities of some
instance types may be computed. As shown in [27], combining the diffe-
rent deadlines for disparate instance types together with the probabilities
of executing such instance types is beneficial.

Intuitively, the unfolded timed workflow graph is derived from the
original workflow graph by duplicating the graph at or-joins. Therefore,
two instance types share the same nodes before the first or-split that di-
stinguishes them and have different nodes for activities thereafter, even
for activities shared after the or-join that merges these instances in the
original graph. In practice, however, the unfolding procedure is more
complicated since all unconditionally executed parallel branches have to
be closed with and-joins (see [8] for details).

After the construction of the unfolded workflow graph, the temporal
constraints are mapped into this graph. The mapping is done in such a
way that if a constraint with source s and destination d exists in the origi-
nal graph, then this constraint exists between all copies of s and d that
belong to the same instance type in the unfolded graph. Once we are done
mapping the constraints, we can compute the timed workflow graph ba-
sed on the unfolded graph and then incorporate the temporal constraints
using a variation of the algorithms presented in [10].

While the above procedure addresses the constraint incorporation pro-
blems, it suffers from the potential explosion of the number of “duplica-
te* nodes in the unfolded graph, since it considers each instance type
separately. This is not desirable when discriminating between instance
types is not necessary because either there are no interfering constraints
in these instance types or we can check the satisfiability of such con-
straints without unfolding. This problem is addressed by partially unfol-
ding the graph.

Partial unfolding takes place when an upper-bound constraint is vio-
lated during its incorporation in the original time graph. In particular,
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when an upper-bound constraint is violated, we determine whether its
source and destination nodes are connected via conditionally executed
activities or they belong to the same workflow instance type. Here we
partially unfold the workflow graph and, finally, we attempt the con-
straint incorporation procedure again. If a constraint is violated and its
source and destination nodes cannot be used for unfolding, then we check
whether there is an overlapping constraint and perform the unfold for the
source and destination nodes of this constraint. See [8] for details on the
procedures for partial unfold and determination where to partially unfold.

4.2 Process Instantiation-time

At process instantiation-time, all relative E- and L-values should be re-
placed with absolute time points, and all time constraints should be chek-
ked for satisfiability. Depending on the kind of the workflow, replacing
relative E-and L-values with absolute time points may not be a
straightforward process. The main factors that complicate this process are
agent loads and availability and activity executions in many time zones.

Agent load and availability are hard to compute, especially when
agents are humans. What complicates these computations is the fact that
agents may participate in multiple workflow processes and have different
availability schedules. One way to address this issue is by computing
service time probability distributions for each agent. Such computations
can be performed using the information that is usually logged by WFMSs
about activity and process executions. When several agents can execute
an activity, the minimum, maximum, or average service time can be used
for computing the absolute E- and L-values of the activities executed by
these agents.

With regards to activity executions in different time zones, multiple
calendars will have to be used during the mapping to absolute time
points. For example, consider an upper-bound constraint between s and d
with dbeing 5 business days. Depending on the geographic location whe-
re s and d are executed, 5 business days may correspond to many more
than 5 calendar days.

Once the mapping to absolute time points is completed, an overall
deadline for the entire process may be specified. Then, the same
technique that was used during build-time calculations can be used here.
shows the workflow graph after deadlines for activities L, H, and
G are assigned. By looking at the values for activity A, we can conclude
that it is possible to meet all deadlines. However, if at conditional bran-
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ches longer paths are followed, then it is necessary to skip optional acti-
vities or select faster alternatives.
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Figure 4: Example workflow graph with deadlines

If all L-values are negative, we cannot make it and we should raise a
time exception. At this point, E-values are not really needed since the L-
values are affected by the external deadlines. However, E-values could
be used for performing agent load analysis. This can be done by checking
the activities that are/will be assigned to an agent and the E-values for
these activities. This topic, not discussed further in this paper, is subject
of ongoing research to improve the forecast of delays in workflow execu-
tions.

4.3 Process Execution

At run-time, the workflow system should monitor the temporal status of a
workflow so that an alert for a possible violation of a time constraint is
raised early enough for pre-emptive steps to be taken. Furthermore, since
the timed graph only guarantees that there exists a correct execution bet-
ween the E- and L-values of each activity, recomputations of the timed
graph are necessary to accomodate the time information, when activities
are actually executed, and to use the information about decisions made at
split points.
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4.3.1 Process State Monitoring

During the execution of a workflow instance, actual activity execution
times may vary considerably from the estimated execution times used in
the time computations during process build and instantiation. When the
execution time is less than the estimated execution, slack time becomes
available. On the other hand, when the execution takes longer than the
estimated execution, slack time for future activities may be reduced. In
addition to the slack time generated when activities take less time to fi-
nish, slack time may be available due to the following.

e The deadline assigned to the workflow process is greater than the
L-values of all activities that signal the end of the process, i.e. they
have no successors;

» Activities belonging to parallel branches may have different exe-
cution characteristics. Since the longest branch determines the
execution of all parallel branches belonging to the same uncondi-
tional split point, shorter branches have slack available to them;

* In conditional and alternative structures, slack is generated from
the difference in the duration of different paths;

* When an optional activity is not executed, its estimated execution
time becomes the available slack for its successor activities.

Given the current absolute time point, now, the estimated duration of
an activity A, and the L-values of A, we can assess the state of the
workflow instance containing A with respect to its execution progress as
follows.

« If now-+duration(A) < Ljs, the process is running smoothly and

all deadlines will be met, given that remaining activities finish
within their expected execution times;

« If Ljs <now-+duration(A) < Lj., the process can still meet all

deadlines. However, it might be necessary to drop optional activi-
ties or choose faster alternatives;

« If now+duration(A) < Lj-, there is still a chance that the

workflow finishes in time. However, this depends on the executed
conditional branches;
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« If L5 < now-+duration(A), then it is possible to meet the dead-
lines only if the remaining activities finish faster than expected.

We should note that since externally defined deadlines are already ta-
ken into account during the construction of the timed graph, we do not
have to consider these deadlines as long as Lgr can be met. If Lge is
missed, escalation is invoked. Based on the above observations, we can
summarize the status of a workflow using the following states.

green: We expect to finish the workflow in time without dropping any
of the optional activities or changing the alternative selection po-
licies;

yellow: Although we may still be able to finish in time, we may have to
eliminate some of the optional activities or select fast alternati-
ves. In particular, before launching an optional activity, a decisi-
on has to be made whether the activity should be executed. Si-
milarly, a decision needs to be made regarding the selection of
the alternative activity to execute next. The rest of the activities
are executed normally in this state;

red:  The threat of missing a deadline is great and a time error should
be raised to trigger escalation actions.

To monitor the state at which a process instance is currently opera-
ting, we can use two threshold values for each activity, Lgy and Lyg. Lgy
signals the change from a green state to a yellow state. Lyg signals the
change from a yellow state to a red state. Default values for these thres-

holds are set as follows: L4, = L{s and L% = Ly . These values are con-

servative choices, where no risk concerning alternative paths is taken.
However, these threshold values should take into account the variance in
activity durations, the proportion of best- and worst-cases, and the wil-
lingness to accept risks and, thus, are influenced by more information
than is usually available in workflow systems. It is an important tuning
knob for time management, and we believe that it should be the responsi-
bility of a process manager to set these values and adjust them accor-
dingly.
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4.3.2 Time Computations

The above thresholds could be treated as internal activity deadlines (i.e.
deadlines not assigned at build or instantiation-times). In particular, the
deadlines of all non-optional activities could be set to Lyg, While the
deadlines of optional activities could be set to Lgy. Note that for optional
activities we use Lgy because a decision has to be made before launching
such activities, according to the discussion presented in the description of
the yellow state. However, it may be beneficial to assign different internal
activity deadlines than the above threshold values when these deadlines
can influence the sequence in which activities are selected from worklists
and, hence, influence when activities are executed. For instance, in
workflow systems where the shortest deadline first scheduling policy is
used by the engine or the workflow participants can choose the next acti-
vity to execute from their worklists, strict internal deadlines can be used
to accelerate process execution and create slack that can be used to
address unexpected delays and exceptions in the future. If these deadlines
cannot be met, deadline extension can be granted based on the current
state of the process and the available slack.

Possible alternatives for computing these internal deadlines are the
no slack and proportional slack policies described in [28]. In the former
case, the internal deadline is set to the duration of the activity. In the later
case, the duration is extended by a fraction of the available slack accor-
ding to the proportion of the duration of the actual activity to the duration
of the rest of the workflow. If the internal deadline does not influence the
order in which activities are selected from worklists, which is the case
when FIFO is used, the internal deadlines are not necessary and the thres-
hold values introduced above can be used. This policy corresponds to the
total slack policy presented in [28]. For these worklist selection strate-
gies, the deadline is only necessary to determine when an escalation has
to be raised.

With regards to time constraints and their satisfiability, we may have
to delay the execution of some of the activities that are either sources of
upper-bound constraints or destinations of lower-bound constraints. Even
when we can immediately start the execution of an activity that is the
source of some upper-bound constraint, it can be advantageous to delay
its execution so that the remaining activities have more slack time, as
shown in [10]. While existing work [26,27,28] can be used for distribu-
ting available slack times to activities, selecting an optimal delay value
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for an activity and allowing an activity to finish before its Evalue are part
of on-going work.

When an activity a finishes in the interval (a.E,a.L), we may have to
recompute the timed graph and reincorporate upper-bound constraints
before modifying the L-values of the ready activities according to the
slack distribution algorithm. In addition, the re-computation of the timed
graph should use the L-values of any active activities for computing E-
values in order to avoid upper-bound constraint violations. Finally, time
constraint satisfiability tests would have to be performed when explicit
time constraints involve activities that belong to loops. Here, during each
loop iteration, time calculation would have to take place.

4 Handling Missed Deadlines

When a deadline is missed, a time failure is generated and escalation ac-
tions are taken. These escalation actions depend on the state of the
workflow process (green, yellow, or red), and some of the possible alter-
natives are the following.

- Deadline extension: When an internal deadline is missed while the
process is in either the green or the yellow state, the deadline may be
extended. For non-optional activities, the upper-bound for the new in-
ternal deadline is Lyg. For optional activities, the upper-bound for the
new internal deadline is Lyg, according to the discussion presented in
the previous section. Extending internal deadlines is helpful when the
proportional slack or the no slack strategies are followed during dead-
line assignment;

- Alternative selection: When the process is in the yellow state and its
internal deadline is missed, besides extending its deadline, the selection
policy for future alternative activities may be changed to favor alterna-
tives with faster execution times. Of course, the above is beneficial only
when the process deadline can be met with these changes. The preemp-
tive escalation work of [27,28] can be used for determining this;

- Option removal: If no deadline extension can be granted and no alter-
native selection policy can be altered to preserve the process deadline,
future optional activities can be eliminated. Actually, these optional ac-
tivities are marked as dropped, and the decision to drop them is made
when they are about to be scheduled for execution;
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- Time error: If the process is in the red state, a timing exception has to
be raised to escalate the problem. Here, recovery may be automatically
invoked (similar to [11]) or human interaction may be required to
proceed. In the latter case, there are several options available to process
managers in order to regain a valid workflow state. The workflow
schema can be dynamically changed (e.g. by parallelizing sequential
activities), activity priorities can be raised to speed up execution, or
deadlines can be renegotiated.

The escalation strategy tries to avoid higher escalations as long as pos-
sible. The threshold values between the timing states defined above are
again used for determining the escalation level. Pro-active actions like
avoiding alternative branches or skipping optional activities are delayed
as long as possible. When such pro-active means are taken, the timed
graph has to be recomputed to reflect the changed workflow.

6 Schedule-based Executions

The execution of a workflow instance requires re-computation of the
timed graph after the completion of an activity that is the source of a lo-
wer-bound constraint or has a successor that is the source of an upper-
bound constraint. These re-computations could be avoided by sacrificing
some flexibility in the timed graph. Recall that the timed graph specifies
ranges for activity completion times such that there exists a combination
of activity completion times that satisfies all timing constraints and in
which each completion time is within the range of its activity. Run-time
re-computation was required because once completion time for finished
activities has been observed, not all completion times within the ranges of
the remaining activities continue to be valid.

We define a schedule to be a (more restrictive) timed graph in which
any combination of activity completion times within [E,L] ranges satisfies
all timing constraints. In other words, given a schedule, no violations of
time constraints occur as long as each activity a finishes at time within
the interval [a.E,a.L]. Consequently, as long as activities finish within
their ranges, no timed graph re-computation is needed. Only when an
activity finishes outside its range the schedule for the remaining activities
must be recomputed.
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It follows directly from the schedule definition that, for every upper-
bound constraint ubc(s,d,d), s.E+d < d.L and for every lower-bound con-

straint Ibc(s,d,d), s.L+0 < d.E; the reverse is also true, i.e. the timed graph
that satisfies these properties is a schedule. From the way we compute E-
and L-values for the activities in a timed workflow graph, the E- and L-
values already qualify as schedules. Consequently, when every workflow
activity finishes execution at its E-value, there is no need to check for
time constraint violations. The same is true when activities finish execu-
tion at L-values. In the remainder of the section, we present two approa-
ches for computing less strict schedules. Both algorithms start with the
timed graph obtained at build- or instantiation-time. We should note that
these techniques correspond to, somehow, extreme schedules and addi-
tional work is required for generalizing them.

- Early scheduling: This technique maintains the computed E-values and
attempts to change the L-values so that s.E+0 =d.L and s.L.+0 <d.E
hold for all ubc(s,d,d) and Ibc(s,d,d), respectively, without violating any
constraints. For ubc(s,d,d) with s.E+d< d.L, we change d.L to be
s.E+9. For lbc(s,d,d) with s.L.+0 > d.E, we change s.L to be d.E-&.
Then, we recompute the timed activity graph and attempt to satisfy all
constraints;

- Late scheduling: This technique maintained the computed L-values and
attempts to change the E-values so that s.E+J =d.L and s.L+0 <d.E
hold for all ubc(s,d,d) and Ibc(s,d,d), respectively, without violating any
constraints. For ubc(s,d,d) with s.E+d< d.L, we change s.E to be
d.L+d. For Ibc(s,d,d) with s.L+d > d.E, we change d.E to be s.L+0.

Then, we recompute the timed activity graph and attempt to satisfy all
constraints.

The main advantage of schedule based executions is the reduction of
necessary time calculations at run-time which makes this strategy in par-
ticular valuable for production workflows with large numbers of instan-
ces. An additional advantage is the better predicatbility of workloads
which makes the planning of resources easier. In particular, we envision a
situation where a possible future workflow engine can interact with ca-
lendars of workflow participants, checking for the availability of work-
time and inserting possible (depending on conditionals) future tasks. The
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price for the reduction of recalculations of timed graphs is, however, a
decrease of flexibility.

7 Related Work

Although the area of time management has received a lot of attention in
areas such as project management, job-shop scheduling, and active data-
bases, currently available commercial workflow products provide little
support beyond simple monitoring of activity deadlines. On the other
hand, workflow research recently stared addressing time management
issues. In particular, an ontology of time for identifying time structures in
workflow management systems is developed in [19]. The authors repre-
sent time aspects within a workflow environment by using the Event
Condition Action (ECA) model found in active database management
systems, and they discuss special scheduling aspects and basic time-
failures, in particular, to reflect changes of the process. In contrast, our
goal is to capture time information at build-time, monitor process execu-
tion at run-time, and react to time failures without modifying the business
process model. In this, it is somewhat similar to scheduling in real-time
systems [1,17,24]. However, real-time systems use deadlines for schedu-
ling system components such as CPU and 1/0. We view scheduling and
internal deadline assignment and adjustment as complimentary mecha-
nisms.

In [20,21], the authors studied the problem of how the deadline of a
real-time activity is automatically translated to deadlines for all sequential
and parallel subtasks constituting the activity. Each subtask deadline is
assigned just before the subtask is submitted for execution, and the algo-
rithms for deadline assignment assume that the earliest deadline first
scheduling policy is used. While our work has similarities with the above
work, there are several important differences. In particular, we treat alter-
native, conditional, and optional activities. Also, we offer techniques for
building the timed graph at process build-time and using the graph for
arriving at a process deadline. Finally, our work supports the assignment
of external deadlines to individual activities as well as to the entire
process.

In [26,27,28], the authors propose the use of static data (e.g. escalation
costs), statistical data (e.g. average activity execution time and probability
of executing a conditional activity), and run-time information (e.g. agent
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worklist length) to adjust activity deadlines and estimate the remaining
execution time of workflow instances. However, this work can be used
only at run-time and, furthermore, it does not address explicit time con-
straints.

In [2], the author proposes the integration of workflow systems with
project management tools to provide the functionality necessary for time
management. However, these project management tools do not allow the
modeling of explicit time constraints and, therefore, they do not provide
any means for their resolution.

In [30], the authors present an extension to the net-diagram technique
PERT to compute internal activity deadlines in the presence of sequential,
alternative, and concurrent executions of activities. Using this technique,
business analysts provide estimates of the best, worst, and median execu-
tion times for activities, and the B-distribution is used to compute activity
execution times as well as shortest and longest process execution times.
Having done that, time constraints are checked at build-time and escala-
tions are monitored at run-time. Our work extends this work by handling
both structural and explicit time constraints at process build and instan-
tiation-times, and enforcing these constraints at run-time.

In [12,31], the notion of explicit time constraints is introduced. Ne-
vertheless, this work focused more on the formulation of time constraints,
the enforcement of time constraints at run-time and the escalation of time
failures within workflow transactions [7]. Our work follows the work
described in [12,31] and extends it with the incorporation of explicit time
constraints into workflow schedules.

This paper extends the time modeling and management technique pre-
sented in [10]. In particular, we extend the expressiveness of the
workflow model by augmenting it with procedures for dealing with con-
ditional executions. Consequently, we had to extend the computation of
timed graphs and the incorporation algorithm for explicit time constraints
to the increased expressiveness and complexity of conditional constructs.

In [5], the authors describe some of the time-related functionality of
the ADEPTn. workflow management system. As part of the time func-
tionality, minimal and maximal durations may be specified for each
workflow activity. In addition, time dependencies between workflow
activities may be defined. These dependencies are the same as the lower-
and upper-bound constraints we presented in this paper, and they are mo-
deled using an additional edge that links the activities involved in such
constraints. At build-time, the existence of a valid time schedule is chek-
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ked (i.e. an assignment of absolute start and finish times so that all con-
straints are satisfied). Start and finish times for activities are calculated at
run-time using the Floyd-Warshall algorithm, and users are notified when
deadlines are going to be missed.

Finally, the work presented in [25] is close to our work. However, the-
re are important differences between the two. In contrast to [25], we do
not consider time constraints in isolation and provide solutions for over-
lapping, interleaving, and interfering constraints. As we demonstrated in
[10], a set of time constraints may be unsolvable (i.e. there is no instance
of a workflow that does not violate at least one time constraint) even
when every single constraint is solvable in isolation. In addition, our
techniques are pro-active in nature, and they attempt to modify the E-
and L-values of activities to make constraints satisfiable.

8 Conclusions

Even though currently available workflow management systems
(WFMSs) offer sophisticated modeling tools for specifying and analyzing
workflow processes, their time management support is still rudimentary.
Existing time management functionality mainly addresses process simu-
lations (to identify process bottlenecks, analyze execution durations, etc.),
assignment of deadlines to activities, and triggering of process-specific
exception-handling activities (referred to as escalations) when deadlines
are missed during process execution. In this paper, we addressed the cru-
cial role of time management in the life-cycle of workflow processes. In
particular, we described how structural (i.e. execution order dependent)
and explicit (i.e. fixed-date, periodic, upper- and lower-bound) time con-
straints can be modeled during process definition, validated during mo-
deling and instantiation-times and, finally, monitored and managed du-
ring execution time.
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