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Abstract. Multi-dimensional analysis is one of the most important ap-
plications of data warehouses, giving the possibility to aggregate and
compare data along dimensions relevant in the application domain. Typ-
ically time is one of the dimensions we �nd in data warehouses allowing
comparisons of di�erent periods. The instances of dimensions, however,
change over time { countries unite and separate, products emerge and
vanish, organizational structures evolve. In current data warehouse tech-
nology these changes cannot be represented adequately since all dimen-
sions are (implicitly) considered as orthogonal, putting heavy restrictions
on the validity of OLAP queries spanning several periods.
We propose an extension of the multi-dimensional data model employed
in data warehouses allowing to cope correctly with changes in dimension
data: a temporal multi-dimensional data model allows the registration
of temporal versions of dimension data. Mappings are provided to trans-
fer data between di�erent temporal versions and enable the system to
correctly answer queries spanning multiple periods and thus di�erent
versions of dimension data.
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1 Introduction and Motivation

Data warehouses or data marts are integrated materialized views over several
data sources which can be conventionally structured or semi-structured data and
are frequently heterogeneous. The most important usage of data warehouses is
On-Line Analytical Processing (OLAP) typically using a multi-dimensional view
of the data. OLAP tools then allow to aggregate and compare data along dimen-
sions relevant to the application domain. Typical dimensions found frequently in
business data warehouses are time, organizational structure (divisions, depart-
ments, etc.), space (cities, regions, countries) and product data.

This multi-dimensional view provides long term data that can be analyzed
along the time axis, whereas most OLTP systems only supply snapshots of data
at one point of time. Available OLAP systems are therefore prepared to deal
with changing values, e. g. , changing pro�t or turnover. Surprisingly, they are not
able to deal with modi�cations in dimensions, e. g. , if a new branch or division
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is established, although time is usually explicitly represented as a dimension in
data warehouses. Neither did this problem attract much research so far, rare
examples are [4, 15].

The reason for this disturbing property of current data warehouse technology
is the implicitly underlying assumptions that the dimensions are orthogonal.
Orthogonality with respect to the dimension time means the other dimensions
ought to be time-invariant. This silent assumptions inhibits the proper treatment
of changes in dimension data.

Naturally, it is vital for the correctness of results of OLAP queries that
modi�cations of dimension data is correctly taken into account. E.g. when the
economic �gures of European countries over the last 20 years are compared on a
country level, it is essential to be aware of the re-uni�cation of Germany, the sep-
aration of Czechoslovakia, etc. Business structures and even structures in public
administration are nowadays subject to highly dynamic changes. Comparisons
of data over several periods, computation of trends, computation of benchmark
values from data of previous periods have the necessity to correctly and ade-
quately treat changes in dimension data. Otherwise we face meaningless �gures
and wrong conclusions triggering bad decisions. From our experience we could
cite too much such cases.

A brief example: From March 2000 onwards a division A is split into two
divisions A1 and A2. If we want to analyze all months of the year 2000, we will,
for division A, only have the data for January and February, whereas from March
onwards we will only have the data for divisions A1 and A2. It is therefore taken
for granted that the user of the analysis is in possession of an adequate knowledge
of the domain and that he/she knows that the divisions A, A1 and A2 are related
and how they are related. We propose to represent such relationships in the data
warehouse and use this information for answering queries. In the example just
given we could de�ne that it is possible to represent the turnover of the division
A1 for the periods before March 2000 as a function turnover(A1; period) =
30% of turnover(A; period). We could also show that for all periods from March
2000 onwards the number of employees M# of the division A corresponds to
the function M#(A; period) = M#(A1; period) +M#(A2; period). Using such
functions, it is possible to assure that a successful analysis can be made even
though there might be changes in the structure.

The following extensions to a data warehousing system are therefore neces-
sary:

� Temporal extension: dimension data has to be time stamped in order to
represent their valid time.

� Structure versions: by providing time stamps for dimension data the need
arises that our system is able to cope with di�erent versions of structures.
We call such a version of structure structure version.

� Transformation functions: Our system has to support functions to trans-
form data from one structure version into another.

This paper is structured in the following way: Chapter 2 de�nes a multidi-
mensional system and extends this de�nition to a temporal multidimensional
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Fig. 1. An example for a multidimensional cube

system. Chapter 3 de�nes the term structure version. Chapter 4 shows the vari-
ous modi�cations of dimension data that may occur, and describes the necessary
basic operations to modify dimension data. Chapter 5 details the functions neces-
sary in order to analyse data despite discontinuities of structure and introduces
the term of a transformation matrix. Chapter 6 shows how to answer queries
in such a system. Chapter 7 describes related work. In Chap. 8 we provide a
characterization of the further work and a summary.

2 Temporal Multidimensional Systems

A multidimensional view on data consists of a set of dimensions. These dimen-
sions de�ne an n-dimensional data cube [16, 12]. Usually, a data cube is de�ned
by a dimension Time, a dimension Facts and by several dimensions describing
the managerial structures such as divisions, products, or branches.

Figure 1 shows an example for a data cube with three dimensions \Facts",
\Time" and \Divisions". A dimension is a set of dimension members and their
hierarchical structure. For example \Pro�t", \Margin" and \Sales" are dimen-
sion members of the dimension \Products" and are in the hierarchical relation
Profit ! Margin ! Sales. The hierarchical structure of all dimensions de-
�nes all possible consolidation paths, i. e. , it de�nes all possible aggregation and
disaggregation paths.

A cell in such an n-dimensional data cube contains a value and is referenced
by a vector [11]. For example, the tagged cell with the value 4 in the cube shown
in Fig. 1 can be referenced by the vector � = (Sub Div: A;D4;Misc:)

Until now we have intuitively de�ned a multidimensional system, or a data
warehouse respectively. We will now extend this description to de�ne a tem-
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poral data warehouse that supports valid time relations. Therefore, we have to
introduce:

� Chronons: Usually one dimension describes the factor time and represents
the valid time in the system [4]. The �nest dimension member within this
dimension time de�nes the chronon Q. The time axis de�ned through the
dimension time is a series of chronons. A chronon is de�ned as \a non-
decomposable time interval of some �xed, minimal duration" [10].

� Time Intervals: Dimensions are a set of dimension members (=nodes) and
a set of hierarchical links between these dimension members (=edges) such
that the resulting graph is a tree representing the hierarchical structure of
the dimension members. In order to introduce valid time in such a system all
nodes and all edges must have a time interval [Ts; Te] representing the valid
time where Ts is the beginning of the valid time, Te is the end of the valid
time and Te � Ts. In P.Chamoni's and S. Stock's paper [4], only edges obtain
a time interval. However, an additional time interval for nodes is necessary
in order to deal with the modi�cation of attributes of dimension members.

So far we described a temporal multidimensional system intuitively. We will
now give a formal description of a temporal multidimensional system.

A temporal multidimensional system consists of:

i.) A number of dimensions N + 1.
ii.) A set of dimensions D = fD1, :::, DN ; Fg where F is the dimension de-

scribing the required facts and Di are all other dimensions including a time
dimension if required.

iii.) A number of dimension members M .
iv.) A set of dimension members DM = DMD1

[ :::[DMDN
[DMF = fDM1,

:::, DMMg where DMF is the set of all facts, DMDi
is the set of all dimen-

sion members which belong to dimension Di. A dimension member DMi is
de�ned as DMi =< DMid, Key, Di, UDA, [Ts; Te] >. DMid is a unique
identi�er for each dimension member that cannot be changed (similar to
Oid0s in object-oriented database systems). [Ts; Te] represents the valid time
of the dimension member. Di is the dimension identi�er to which the di-
mension member belongs. Key is a user de�ned key (e. g. , the number of a
product) which is unique within Di for each timepoint Ts � T � Te. UDA is
a set of user de�ned attributes (e. g. , the name and/or color of a product).

v.) A set of hierarchical assignments H = fH1; :::; HOg where Hi =< DMC
id ,

DMP
id, Level, [Ts; Te] >. DM

C
id is the identi�er of an dimension member,

DMP
id is the dimension member identi�er of the parent of DMC

id or ; if the
dimension member is a top-level dimension member. Level is a value 0:::L
where L is the number of layers and Level is the level of DMC

id. All \leaves"
(dimension members without successors) are at level 0. [Ts; Te] is the time
stamp representing the valid time for the relation between DMC

id and DM
P
id.

No dimension member may be its own parent/child and cycles within H are
not admissible.
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Fig. 2. A Dimension Divisions with time stamps

vi.) A function cval : (DMD1
; :::; DMDN

; DMF )! value which uniquely assigns
a value to each vector (DMD1

, :::, DMDN
, DMF ) where (DMD1

, :::, DMDN
,

DMF ) 2 DMD1
� :::�DMDN

�DMF . Therefore, a cube (or n-cube) C is
de�ned by this function cval. The domain of this cube dom(C) is the set of
all cell references. The range of this cube ran(C) are all cell values.

3 Structure Versions

Temporal projection and temporal selection as de�ned in the Consensus Glossary
of Temporal Database Concepts [10] allows us to create what we call a Structure
Version (SV) out of a temporal data warehouse.

Intuitively, we can say that a structure version is a view on a multidimensional
structure that is valid for a given time interval [Ts; Te]. All dimension members
and all hierarchical relations within this multidimensional structure are also valid
for the given time interval. In other words: within one structure version there
cannot exist di�erent versions of a dimension member or a hierarchical relation.
Vice versa each modi�cation of a dimension member or a hierarchical relation
leads to a new structure version, if a structure version for the given time interval
does not already exist.

Formally, each structure version is a 4-tuple < SVid, T , fDMD1;SVid , :::,
DMDN ;SVid , DMF;SVidg,HSVid > where SVid is a unique identi�er and T repre-
sent the valid time of that structure version as a time interval [Ts; Te].DMDi;SVid

(DMDi;SVid � DMDi
) is a set of all dimension members which belong to dimen-

sion Di and which are valid at each timepoint P with Ts � P � Te. DMF;SVid

(DMF;SVid � DMF ) is the set of all facts which are valid at each timepoint P
with Ts � P � Te. HSVid (HSVid � H) is a set of hierarchical assignments valid
at each timepoint P with Ts � P � Te.

On a conceptual level (of course not on an implementation level) we can say
that for each structure version SV there exists a corresponding cube. This cube
has the same valid time interval as SV .

Figure 2 shows an example for the consolidation tree of the dimension \Di-
visions" including time intervals. Each node and each edge in this �gure has a
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time interval [Ts; Te]. In this example an attribute of \SubDiv:D" was modi�ed
at M4, a new subdivision \SubDiv:E" was introduced at M4 and Div:C was
a subdivision of Div:B from M1 until M3 (pictured by the dotted line). Two
structure versions can be identi�ed in this example:

i.) < SV1; [M1;M3]; ffDivisions,Div:A,Div:B,Div:C, SubDiv:Dg, fSalesgg;
fDiv:A! Divisions; SubDiv:D! Div:A; :::g >

ii.) < SV2; [M4;1]; ffDivisions,Div:A,Div:B,Div:C, SubDiv:D, SubDiv:Eg,
fSalesgg, fDiv:A ! Divisions; SubDiv:D ! Div:A; SubDiv:E ! Div:A,
:::g >.

In this example we have two di�erent structure versions SV1 and SV2. SV1
and all given dimension members (Divisions,Div:A,Div:B, :::) and hierarchical
assignments (Div:A! Divisions; :::) are valid fromM1 toM3. SV2 and all given
dimension members and hierarchical assignments are valid from M4 to 1, i. e. ,
until now.

4 Structural Changes

After having formally de�ned the concept of a temporal data warehouse, we will
now present the three basic operations INSERT, UPDATE and DELETE to modify
the structure of a temporal data warehouse.

The given chronon Q de�nes the granularity of data in the data warehouse
regarding the dimension time. Hence, we would not gain any additional infor-
mation from considering structural changes within one chronon. Therefore, we
only have to capture structural changes with the granularity de�ned through the
chronon.

Furthermore we de�ne a data warehouse (DWH) as a non-empty, �nite set
of structure versions DWH = fSV1; :::; SVng. As described above each structure
version SVi is a 4-tuple < SVid; T;DMSVid ;HSVid >. For this data warehouse we
de�ne that it must be a consecutive sequence of tuples< SVid; Ti;DMSVid ;HSVid >

where Ti = [Ti;s; Ti;e] in such a way that Ti;s = T(i�1);e +Q.
Dimension data can be modi�ed with the three basic operations INSERT,

DELETE and UPDATE. These operations are de�ned as follows:

Insert: The operation INSERT inserts a new dimension member and is de�ned as
INSERT(DM, Ts).DM is the new dimension member and is a tuple < Key,
Di, UDA, DM

P
id >. Ts de�nes that DM is valid for the time interval [Ts;1].

A unique DMid is assigned to the new element. Key, Di, UDA and DMP
id

are de�ned as described in Sect. 2.
Update: The operation UPDATE updates an existing dimension member and is

de�ned as UPDATE(Key,Di, DM 0, Ts). Key and Di de�ne the dimension
member to be updated. DM 0 is a tuple < Key;UDA; DMP

id >. This tuple
de�nes the new value(s).
An UPDATE operation translates into two actions: Modify the existing dimen-
sion member, setting the ending time to Ts�Q, and insert a new dimension
member, setting the valid time time interval to [Ts;1].
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Delete: The operation DELETE is de�ned as DELETE(DM, Te). This opera-
tion translates into an update operation which sets the ending time of the
dimension member DM to Te. DM is de�ned as a tuple < Key;Di >.

If no structure version exists that starts with the timestamp of the corre-
sponding INSERT, UPDATE or DELETE operation a new structure version is gener-
ated.

Using these basic operations we can modify the structural dimensions of the
multidimensional cube. We distinguish the following modi�cations:

i.) SPLIT: One dimension member splits into n dimension members. E. g. , Fig.
3 shows a split operation between the structure versions SV2 and SV3 where
a division \Div.A" splits up into two division \Div.A1" and \Div.A2". We
would need one delete operation (\Div.A") and two inserts (\Div.A1" and
\Div.A2") to cope with this.

ii.) MERGE: n dimension members are merged into one dimension member. A
merge is the opposite of a split, i. e. a split in one direction of time is always
a merge in the opposite direction of time. Consider for the example given
above that these modi�cations occur at the timepoint T . For each analysis
that requires data from a timepoint before T for the structure version which
is valid at timepoint T we would call these modi�cations \split". For each
analysis that requires data from timepoint T for a structure version valid
before timepoint T these modi�cations would be called \merge".

iii.) CHANGE: An attribute of a dimension member changes, for example if the
product number (Key) or the name of a department (user de�ned attribute)
changes. Such a modi�cation can be done by using the update operation.

iv.) MOVE: Modify the hierarchical position of a dimension member, e. g. , if a
product P no longer belongs to product group GA but to product group GB .
This can be done by changing the DMP

id (parent ID) of the corresponding
dimension member with an update operation.

v.) NEW-MEMBER: Insert a new dimension member, e. g. , if a new product
becomes part of the product spectrum. This modi�cation can be done by
using an insert operation.
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vi.) DELETE-MEMBER: Delete a dimension member, e. g. , if a branch dis-
bands. Just as a merge and a split are related depending on the direction
of time, this is also applicable for the new-member and delete-member rela-
tion. In opposite to a new-member operation there is a relation between the
deleted dimension member and the following structure version. Consider for
the structure given in Fig. 1 that we delete the dimension member \Subdivi-
sion B" at timepoint T . If for the structure version valid at timepoint T we
would request data from a timepoint before T we still could get valid data
by simply subtracting the data for \Subdivision B" from \Division E".

5 Mappings between Structure Versions

We will now extend the temporal model of a data warehouse presented in chapter
2 with the de�nition of mapping functions between structure versions.

A structure version is a view on a temporal data warehouse valid for a given
time period [Ts; Te]. We distinguish between the structure of a structure ver-
sion (the set of all valid dimension members of the structure version together
with their hierarchies) and the data of a structure version (the cube de�ned by
mapping the structure to the value domain).

For answering queries on the data warehouse the user always has to de�ne
which structure version should be used. The data returned by the query can,
however, originate in several (di�erent) temporal versions of the cube. There-
fore, it is necessary to provide transformation functions mapping data from one
structure version to a di�erent structure version.

In the rest of the paper we make the following assumptions: Relations be-
tween di�erent structure versions depend on the contemplated fact. For sake of
simplicity and understandability we only consider the cube for a single fact. Fur-
thermore, the cell values of upper-level dimension members are always computed
from their subordinate lower level dimension members. Therefore, without loss
of generality, we do not consider the upper levels here and assume that the di-
mensions are 
at. Or, in other terms: before we transform the data we select the
cube of the dimension members at level-0 and transform only this subset of cell
values and compute the upper-levels of the resulting cube bottom-up as usual.

5.1 De�nition of Inter-Structure Relationships

Mapping functions are employed to map data (cell values) for particular numeric
facts and a particular dimension member from one structure version into another
using a weighting factor (a \percentage").

Therefore, we provide an operation MapF which is de�ned as MapF (SVj ,
SVk, DMid, DM

0

id, fM
1
id, :::, M

n
idg; w) where:

� SVj and SVk are di�erent structure versions.
� DMid and DM

0

id are unique IDs for dimension members for which DMid 2
SVj and DM

0

id 2 SVk is true. DMid and DM
0

id must be dimension members
of the same dimension.
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� fM1
id; :::;M

n
idg is a non-empty, �nite set of fact IDs and 9f : f 2 F ^ fid =

M i
id.

� w is the weighting factor to map data from one structure version into another.

We implicitly introduce a mapping function for each dimension member
which does not change from one structure version into another with a weighting
factor w = 1.

Mapping functions may be applied to map data between contiguous (e. g. ,
SV1 $ SV2) or non contiguous (e. g. , SV1 $ SV3) structure versions. Two
structure versions SVi and SVk are contiguous if Ts;i = Te;k + Q or if Ts;k =
Te;i +Q.

For a split or a merge operation we need several mapping functions. e. g. , if
department A splits up into A1, A2 and A3 we would need three functions to map
data from A to An and three functions to map data from An to A. We do not
restrict the user regarding the weighting factor w. This means that the sum of
all weighting factors for all functions A! An (split) does not have to be 1, i. e. ,
100%. Vice versa not all weighting factors of the functions A1 ! A; :::; An ! A

(merge) need to be 1. This allows to represent the e�ects of structural changes
like: Product \Personal Computer" is not longer sold as is but separated as
\Monitor" and \Desktop". The combined price for both products is higher than
the price for the \Personal Computer" was.

The example given in Fig. 3 shows several structural changes in a dimension
\Divisions", e. g. , \Subdiv.C" was renamed to \Subdiv.X " from SV1 to SV2,
\Div.A" split up into \Div.A1" and \Div.A2" from SV2 to SV3 and so on. This
example would result in the following mapping functions for the fact \Turnover":

1.) MapF (SV1; SV2; Div:C;Div:X; fTurnoverg; 1)
2.) MapF (SV2; SV1; Div:X;Div:C; fTurnoverg; 1)
3.) MapF (SV2; SV3; Div:A;Div:A1; fTurnoverg; 0:3)
4.) MapF (SV2; SV3; Div:A;Div:A2; fTurnoverg; 0:7)
5.) MapF (SV3; SV2; Div:A1; Div:A; fTurnoverg; 1)
6.) MapF (SV3; SV2; Div:A2; Div:A; fTurnoverg; 1)
7.) and so on...

This set of functions for instance de�nes that for the fact \Turnover" the
division A1 in SV3 corresponds to 30% of the division A in SV2 (see function
3.). Or vice versa that the division A in SV2 is equal to the sum of A1 and A2

in SV3 (see functions 5. and 6.).

5.2 Transformation Matrices

On a conceptual level we can represent each multidimensional cube and the rela-
tionships between dimension members of di�erent structure versions as matrices.

Let SVi be a structure version with N dimensions. Each dimension DN con-
sists of a set DML0

N which represents all Level-0 dimension members of that
dimension. We can represent this structure version as a DML0

1 �DML0
2 � : : :�
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DML0
N matrix. For example a structure version for a 1-dimensional cube results

in a vector whereas a structure version for a 3-dimensional cube results in a
matrix which elements are vectors.

Let SV1 and SV2 be two structure versions. We de�ne a transformation ma-
trix TSV1;SV2;Di;F for each dimension Di and each fact F . Where T (di; dj) is
a number representing the weighting factor for mapping a fact F of dimension
member di of structure version SV1 to a fact of dimension member dj of structure
version SV2.

These transformation matrices are merely another way of representing the
information contained in the MapF Relation described above. We want to em-
phasize that the construction of these matrices is a conceptual view on the trans-
formation. Any meaningful implementation will take into account that these
matrices are usually extremely sparse and will not implement the matrices in a
naive way.

Example: Consider a cube C representing the structure de�ned through a
structure version SV1 with the dimensions A = fa1; a2; a3g and B = fb1; b2; b3g
(ai and bj are dimension members). We represent the cell values for a speci�c
fact in this cube as a matrix. Therefore, a value in this matrix represents a cell
value in the given 2-dimensional cube.

C =

0
@
a1 a2 a3

b1 3 7 5
b2 10 8 6
b3 20 13 5

1
A

As mentioned above we need one transformation matrix for each dimension
Di to map data from structure version SV1 into structure version SV2. In the
following example we split the dimension member a1 into a11 and a12 and we
merge b1 and b2 into b12. The functions between SV1 and SV2 for a fact \Fact"
are de�ned by the following operations:

1.) MapF (SV1; SV2; a1; a11; Fact; 0:3)
2.) MapF (SV1; SV2; a1; a12; Fact; 0:7)
3.) MapF (SV1; SV2; b1; b12; Fact; 1)
4.) MapF (SV1; SV2; b2; b12; Fact; 1)

To represent these functions we de�ne two transformation matrices. TA for
dimension A, and TB for dimension B:

TA =

0
@
a11 a12 a2 a3

a1 0:3 0:7 0 0
a2 0 0 1 0
a3 0 0 0 1

1
A

TB =

� b1 b2 b3

b12 1 1 0
b3 0 0 1

�
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5.3 Transformation of Warehouse Data

The goal of the transformation is to map the warehouse data (cube) of a certain
structure version SV1 to the structure of a di�erent structure version SV2.

We �rst de�ne a function to transform the cube in one dimension:
fSV1;SV2;D;F transforms the values of fact F of structure version SV1 to the

structure version SV2 in the dimension D as follows:

fSV1;SV2;D;F (CD=j) = C 0

D=i with (1)

C 0

D=i =
X

j2DMD;SV1

TSV1;SV2;D;F (i; j) �CD=j for all i 2 DMD;SV2

where C is a cube with the dimension members of SV1 in dimension D and
C 0 is the transformed cube where all values in the cube have been transformed
to the members of the dimension D in the structure version SV2 according to
the transformation matrix T . CD=j is the (n-1) dimensional sub-cube of an n-
dimensional cube associated with the member j in dimension D.

It is easy to see, that transforming a cube in dimension Dx �rst, and then
in dimension Dy yields the same result as the transformation in the reverse
sequence:

fDy
(fDx

(C)) = C 0 with (2)

= 8i; k : C 0

Dx=i;Dy=k

=
X
j

TDx
(i; j) �

X
l

TDy
(k; l) � CDy=l;Dx=j

=
X
l

TDy
(k; l) �

X
j

TDx
(i; j) � CDy=l;Dx=j

= fDx
(fDy

(C))

The transformation of a fact F in a cube C from structure version SV1 to
structure version SV2 is now de�ned as a sequence of functions successively
transforming the cube in all dimensions Di:

fSV1;SV2;F = fSV1;SV2;D1;F (fSV1;SV2;D2;F (: : : fSV1;SV2;Dn;F (CSV1 ) : : :)) (3)

As seen from the observation above the result does not depend on the se-
quence of transformation used. Again, we emphasize that this is the speci�cation
of a transformation function, and the actual implementation will eÆciently make
use of the sparseness of the involved matrices, etc.

Example: By using the de�ned transformation functions we are now able to
transform data from SV1 into SV2. The cube C and the transformation matrices
TA and TB are given in the example in Sect. 5.2.
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C 0 = fSV1;SV2;DA;F (fSV1;SV2;DB ;F (C))

=

� a11 a12 a2 a3

b12 3:9 9:1 15 11
b3 6 14 13 5

�

The matrix C 0 represents the cube with the structure de�ned through struc-
ture version SV2 and the values of structure version SV1.

6 Queries

When a user issues a query within such a system, he/she has to de�ne a timepoint
Tq. This timepoint speci�es a certain base structure version where Ts � Tq � Te
and [Ts; Te] de�nes the valid time interval of the base structure version.

This base structure version determines which structure has to be used for
the analysis. In most cases this will be the current structure version. However,
in some cases it will be of interest to use an \older" structure version. Suppose
the structure versions given in Fig. 3 are valid for the following time periods and
the chronon is a month:

Table 1. Valid time periods

Version Ts Te

SV1 Jan. 1998 Mar. 1998
SV2 Apr. 1998 Jan. 1999
SV3 Feb. 1999 Dec. 1999
SV4 Jan. 2000 1

We might assume the user chooses SV4 as his or her base structure version
and requests data for March 2000 and March 1999 for his analysis. In this case
the system needs functions to map data which is valid for the structure version
SV3 into the structure version SV4.

The same analysis however could also be made with SV3 as base structure
version. For this query the system needs functions to map data from SV4 to SV3.

We distinguish the following cases when answering queries:

(1) One structure version: A query which has to access only one structure
version can be easily answered. There is no need to consider functions.

(2) Two contiguous structure versions: In this case the system has to exam-
ine for all required dimension members and all required facts whether or not
there exists a mapping function MapF (SV1; SV2; DMid1; DMid2; fF 1

id; :::,
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Fig. 4.Mapping functions between several structure versions (arrows are de�ned map-
ping functions)

Fn
idg, w). If no mapping function of this type exists, the result of the query

is 'not de�ned' for the correlative cells. If such a function exists, the query
can be answered.

(3) Two non-contiguous structure versions: The system has to examine for
all required dimension members and all required facts whether or not there
exists a mapping function MapF (SV1, SV2, Did1, Did2, fF 1

id; :::; F
n
idg, w). If

no mapping function exists, the transitive closure of all mapping functions
has to be examined. In the case that there does not even exist a function in
the transitive closure, the result of the query is 'not de�ned' for the correl-
ative cells. If a function exists, the query can be answered.

(4) More then two structure versions: As always two schemes are consid-
ered, this case can be solved in analogy to case (3), i. e. , case (2). If for the
example given in Fig. 4, data from SV1 has to be mapped to the structure
version SV3, this can be done by considering the functions SV1 ! SV2 and
SV2 ! SV3.

For each query stated, the systems checks which structure versions are nec-
essary to answer the query. E. g. , if the user de�nes SV4 as his base structure
version and the valid time intervals are de�ned as shown in Tab. 1, the struc-
ture versions SV4, SV2 and SV1 are necessary to answer the query \return costs
for all divisions for January 1999 and January 1998". For each fact the system
examines whether there exist a function to map data from SV1 to SV4 and from
SV2 to SV4.

As shown in Fig. 4 functions can map data between contiguous or non con-
tiguous structure versions. To enable the user to track changes within schemes
step by step, there have to be at least functions between all successive structure
versions. E.g. for the structure versions de�ned in Tab. 1, the following functions
have to be de�ned: SV1 $ SV2, SV2 $ SV3 and SV3 $ SV4. Additionally, func-
tions for non contiguous structure versions can be de�ned or derived to optimize
performance.

7 Related Work

In contrast to temporal databases, which have been well studied, e. g. , [3, 7, 8],
few approaches are known in literature for temporal data warehouses, e. g. , [4,
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15]. The same applies for schema evolution of databases, e. g. , [13, 5] vs. schema
evolution of data warehouses, e. g. , [2].

[4] present which extensions are necessary in order to extend a data ware-
house to cover temporal aspects, in particular they keep track of the history of
hierarchical assignements. In contrast to this approach we deal also with modi�-
cations of dimension members and provide relations between dimension members
which are necessary to relieve the user from his/her duty to know the relation
between two dimension members.

[2, 1] deal with schema evolution and schema versioning for data warehouse
systems. They show how changes of the conceptual schema can be automatically
transfered into the logical and internal schema. However, these papers do not
deal with the inevitable consequences arising out of these scheme evolutions like
misinterpretations of analyzes.

C.Hurtado, A.Mendelzon and A.Vaisman [9] have proposed a formal de-
scription of \complex operators" to delete, insert and/or update dimensions at a
structural and at an instance level. However, they do not cope with the problem
regarding the availability of data and they do not deal with the fact that several
versions of dimensions may be valid for di�erent time intervals, i. e. a temporal
data warehouse or a temporal multidimensional system respectively.

[14] have proposed a formal de�nition of a temporal OLAP system and a
temporal query language, called TOLAP. However, they do not support trans-
formation of data between structural versions and their system is not able to
cope with changes in the time and fact dimensions.

Another approach to deal with changes within dimension data was proposed
in a white paper by SAP America [15]. They extend their schema with time
stamps to enable the user to analyze data for di�erent scenarios. However,
this approach is limited to some basic operations on dimension data (e. g. , in-
sert/delete a dimension member; change the \parent" of dimension member)
and does not deal with weighting factors.

8 Conclusion

We presented a novel approach for representing changes in dimension data of
multi-dimensional data warehouses, by introducing temporal extension, structure-
versioning and transformation functions. This representation can then be used
to pose queries (analysis) against the structure valid at a given point in time
and correctly admit data from other periods into the computation of the result.

This e�ort is necessary as changes in these data have the combined charac-
teristics of temporal databases and schema evolution, as these dimension data
serve in multi-dimensional systems as data as well as schema elements. Our ap-
proach thus overcomes the implicit orthogonality assumption underlying multi-
dimensional data warehouses.

The transformation function we propose here can only be seen as a �rst step
and will be elaborated in the future. The simple transformation matrices however
proved themselves surprisingly powerful. We were able to represent several cases
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of structural changes with these data (at least approximatively). Changes which
can be covered by our model comprise:

� Changes in the organizational structure of enterprises, and of the regional
structure of distribution systems.

� Changes of Units, like actually the changes from ATS to EURO.
� Changes in product portfolios.
� Changes in the way economic �gures like unemployment rate, consumer price
index, etc. are computed.

We also expect that the model we prosed here improves the correctness of
interpretation of answers to OLAP queries and relieves the user from the need to
have detailed knowledge about the change history of dimension data. In particu-
lar, our approach provides for multi-period comparisons of facts which currently
requires stability in dimension data.
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