Equivalence Transfor mations on Statecharts

Heinz Frank and Johann Eder
Universitat Klagenfurt, Institut fir Informatik-Systeme
E-mail: {heinz, eder}@ifi.uni-klu.ac.at

Abstract

Satecharts are a popular representation technique for
conceptual models of the dynamics of a universe of dis-
course. However, designers are not supported in their work
with dynamic models as well as they are for working with
static models. WWe present a meta-model and a formalization
of the semantics of a statechart language. Important re-
sults are the definition of the equivalence of statecharts and
a sound and complete axiomatization of the equivalence.
Based on this we define a set of basic schema transforma-
tions which do not change the semantics of a model. These
transformations can be used to successively transform stat-
echarts to achieve design goals or to prepare them for im-
plementation.

1. Introduction

Conceptual modeling of a universe of discourse has two
dimensions: the structure of objects and their relationships
are represented in a static model (or object model) and the
behavior of the objects is documented in a dynamic model
([15, 2, 16, 3]). While the techniques for structural mod-
eling have a long tradition and are already quite elaborated,
conceptual modeling techniques for the dynamics of a mini-
world is not supported as well. Open issues are for example
the formalization of the semantics of dynamic models, gen-
eralization and inheritance of dynamic models ([12, 4, 17]),
and transformations of dynamic models. The aim of the
work reported here is to contribute to a better understanding
of dynamic models and to support the modeling process.

Statecharts, introduced by D. Harel ([9, 10, 11]) are a
popular method for designing the behaviour of objects. This
concept is used in various design methodologies e. g. OMT
([16]), OOD ([2]) or UML ([15]). Since the introduction of
statecharts many variants of statecharts have been proposed.
\on der Beeck ([18]) provides a detailed analysis of around
20 statecharts variants.

For designing static models, designers or analysts start
from an initial model and successively transform this model

to achieve design goals and meet quality criteria. In the end,
the model is in a form which is well suited for mapping to
a logical model and thus serves as a specification of the im-
plementation. This process is supported by a well under-
stood representation language and the provision of schema
transformations which maintain the semantics of the model
(i. g. [1]). In our opinion, a similar process should be made
available for the development of dynamic models.

Assumptions and scope

For this work we assume that the static part of the model
is already developed. For the representation of dynamic as-
pects we focus on the modeling of the dynamics of a single
type or class of the static model. We represent dynamic
models with statecharts. We consider these statecharts to
serve several purposes. First, they are a representation tech-
nique to capture the dynamics of objects in the universe of
discourse. Second, statecharts support the communication
between users, analysts, designers and implementors. Fi-
nally, statecharts are (partial) specifications for the imple-
mentation of an information system. In this paper we focus
more on the formal aspects of statecharts, i.e. their seman-
tics as partial specification of methods and not on the prag-
matics and style which is of great importance for communi-
cation purposes.

The major contributions of this paper are

o formalization of statecharts for conceptual modeling

e definition of the semantics of statecharts as partial
method specification

e definition of the equivalence of statecharts together
with a sound and complete axiomatization

¢ a complete set of basic schema transformations for de-
riving equivalent statecharts

The paper is organized as follows. In section 2 we in-
troduce the statechart language and a meta-model for state-
charts. The major concepts of statecharts are demonstrated
with an example from the domain of a library. In section 3
we discuss the equivalence of statecharts as equivalence of
method specifications. In section 4 we present a set of ba-
sic equivalence transformations for statecharts. In section 5

we draw some conclusions and discuss some applications of
this work. Space limitations force us to omit several proofs
in this paper. Interested readers are referred to [6] where
proofs for all the theorems in this paper are provided.

2. The statechart language

For the structural part of types we are using a very simple
data model (according to [5]). A type is a labeled set of type
attributes. E. g. type book = [title: string, pages: integer]
is a type where book is name of the type. Title and pages
are the attributes of the type. Attributes are typed with basic
types, such as string or using labels of user defined types.

For the representation of the behaviour of a type we are
using a statechart language ([9, 10, 11]). A statechart of a
type primarily consists of states, eventsand transitions. The
major elements of statecharts are shown in figure 1.

_ —state

transition event \
— -
book on book on
F 7
3: lending

J [reserve(/i/: false] \

~_
target state

state —

-
source state
guard ——

Figure 1. The basic elements of statecharts

A dtate is a condition or situation in the life time of an
object during which it satisfies some condition. An object
satisfying the condition of a state, is said to be in that state
([15]). We call this condition the range of a state.

A transition is a kind of relationship between two states
and is triggered by an event. A transition indicates that an
object which is in the first state (called source state) will
enter the second state (called target state) when the event
occurs and some specified condition (called the guard of
the transition) holds ([15]). At the end of a transition the
object is in the target state of the transition.

TheLibrary

We choose the domain of a library as an example. Sup-
pose the static model contains a type book with some at-
tributes, such as title, isbn, signatures . . .

The behaviour of books is shown in figure 2. Two major
steps are necessary for the administration of books before
they can be placed into the library, the book registration and
the book preparation. The book registration is responsible
for recording new books. For this purpose the reference
to the book catalogue must be known. In the next step a
signature is given to the book. The book preparation first
describes a book with the subject and afterwards with some
keywords.

After finishing the administration books are placed into
the library, where they can be borrowed. Books, which are

tl: new
o new
book

t2: catalogue
book
administration

book book
registration preparation
book in book
catalogue signed

- reqi t4: make
t3: reglsterl i keywords

book book
registered prepared
T T

15: place

book on
stock

’ [reserved = false]
book not book
on stock t10: lose lost

book book in text
borrowed book collection

t9: return [reserved = true]
t11: reserve [reserved = false]

16: lose

Figure 2. The behaviour of a book

necessary for a lecture are given in a special place called
text book collection. Nobody is allowed to borrow books
from the text book collection. If a book should be placed
into the text book collection but is borrowed by anyone else
it can be reserved. Reserved books may not be borrowed by
anyone but are placed into the text book collection immedi-
ately after they are returned by the borrower.

Books, which are out of stock (i. e. books which are
borrowed or in the text book collection) are returned to the
library, if they are not reserved. We also consider that books
might get lost.

In the next sections the example and the meta model
(shown in figure 3) will be used to discuss the formaliza-
tion of the statechart language more detailed.

2.1. States

The static model spans an object space, which is defined
as the set of all possible extensions of the static model. A
state in a statechart of a type T' is a subset of possible object
instances of 7', it is a subspace of the object space of the
type. Intensionally, a state is defined by a predicate for ob-
jects of the given type. Extensionally, a state is considered
as the set of all possible objects which fulfill this predicate.

To make statecharts more readable and to avoid com-
binatorical explosion of nodes and arcs, state hierarchies
have been introduced. According to Harels definition ([11])
we distinguish between OR-states, AND-states and basic
states. OR-states have substates which are related to each
other by “exclusive-or”, i. e. an object of a type can only
be in one substate of an OR-state at any time. AND-states
have orthogonal components which are “and” related. An
object, that is in an AND-state is also in all substates of the

statechart

Name
Range()

1 4

state source states transition event

Label
Name Guard Name
target states f 5 cicondition Attributes

Range() Sync

O PreC()
1+

structured state

I—P\

OR-state AND-state

has substates 1+

- triggers
basic state 99

Condition

Figure 3. A meta-model for statecharts

AND-state. Basic states are the states at the bottom of a
state hierarchy, they do not have substates. The states at the
highest level of a statechart, that are states without a parent
state, are called root states.

We use 7QL + + ([13],[14]) as specification language
for these conditions (the range of states, pre- and postcon-
ditions and guards of transitions). This language allows the
definition of logical conditions, which objects have to sat-
isfy. E. g. the range of the state solvent of a type bank in
T QL + + would be this.assets > 0. To be an object of
this type in this state the value of its attribute assets must
be greater than zero.

The notation S.Range() is used for denoting the range
of the state .S. While the range of basic states must be given
by the designer, the range of the structured states (AND-
states and OR-states) is computed.

Definition 2.1 The range of a state S is defined as

e S.Condition, if S is a basic state.

e the disjunction of the ranges of all the substates of S,
if S is an OR-state.

e the conjunction of the ranges of all the substates of S,
if S is an AND-state. |

Example (Fig. 2): Some of the conditions of the basic states of the
library example are shown in table 1. The range of the OR-state
book not on stock is defined as the disjunction of its substates
book borrowed and book in text book collection. The range of
the AND-state book administration is definded as the conjunc-
tion of its substates book registration and book prepararation,
which are OR-states.

The ranges of states allow the definition of relationship
between states. These relationships are used for the defini-
tion of the correctness of states according to Harels defini-
tion ([11]) in a more formal way.

Definition 2.2 Let Z (o) be a predicate returning ¢rue if the
object o satisfies the range of the state Z. Let P(T") be the

book on stock
book borrowed

this.position = in library

this.position = borrowed A (this.reserved =
true V this.reserved = false)

this.position = in text book collection
A this.reserved = false

this.position = lost

book in text book
collection
book lost

Table 1. Conditions of the basic states

set of all possible instances of the type 7'. Then two states
7, and Z, of the statechart of the type T are called

equivalent, if
orthogonal, if

Yo € P(T) : Z1(0) <> Z>(0)

Zy, Z, are OR-states with equiva-

lent ranges and Vz € Z;.Substates,

Vz' € Zy.Substates — Jo € P(T) :

z(0) A\ 2'(0)

digoint, if Yo e P(T): - (Z1(0o) N Zx(0)) |
Two OR-states Z; and Z- are orthogonal if their ranges

are equivalent and each substate z of Z; overlaps with each

substate z’ of Z, (and vice versa).

Definition 2.3 The states of a statechart are correct, if

1. all root states are disjoint,
2. all substates of an OR-state are disjoint
3. all substates of an AND-state are orthogonal. O

Example (Fig. 2): The substates of the OR-state book not on
stock must have disjoint ranges, i. e. no object can satisfy both
conditions at the same time (compare table 1). The substates of the
AND-state book administration must be OR-states with equiv-
alent ranges. Furthermore, it must be possible for an object to
satisfy e. g. the ranges of the states book registered and book
signed at the same time.

As a consequence of definition 2.3 the substates of an
AND-state must be OR-states, as all substates of an AND-
state must be orthogonal (definition 2.2). Therefore, basic
states can only be direct substates of an OR-state.

2.2. Eventsand Transitions

An event is an incident directed to an object with the aim
to change the state of the object. An event is set off ex-
plicitly and triggers a transition which changes the state of
an object. In dynamic modeling events and transitions rep-
resent (partial) specifications of the methods for the object
type. If an event is set off, an object is transfered to a new
state. The model defines which conditions (preconditions)
an object has to fulfill in order to be able to react to an event
and which conditions (postconditions) an object satisfies af-
ter the state change.

Sync defines whether the transition is synchronizing.
Synchronizing transitions always lead from and/or to a state

t6: lose this.position = lost

t8: borrow (this.position = borrowed A this.reserved =
false) V (this.position = in text book collection
A this.reserved = false)

t10: lose this.position = lost

t11: reserve | this.position = borrowed A this.reserved = true

Table 2. The postconditions of the transitions

aggregation (as for instance the transition t2 triggered by the
event catalogue). Synchronizing transition may have more
than one source (or target) state.

To cause a state change the object must be in the source
state of the transition (that means satisfying the range of
the source state) and the object must satisfy the condition
of the guard of the transition. Therefore, the precondition
of a transition is defined as the conjunction of the range of
the source states and the guard of the transition. We use
t.PreC() for the precondition of a transition ¢.

After the application of a transition the object satisfies
the range of its target state and its postcondition. Therefore,
the postcondition of a transition must imply the range of its
target state.

Example (Fig. 2): The precondition of the transition t9 is defined
as the conjunction of the range of the state book borrowed and its
guard this.reserved = true resulting in this.position = borrowed
A this.reserved = true. Some of the postconditions, given by the
designer, are shown in table 2

Definition 2.4 Transitions are correct, it they have source
and target states according to the following conditions:

1. Non-synchronizing transitions triggered by transform-
ing events have exactly one source and one target state.

2. Synchronizing transitions could have several source
and target states. If there are several source states, they
must be part of the same state aggregation. If there are
several target states, they must be part of the same state
aggregation too.

3. Transitions triggered by object producing events do not
have source states.

4. Transitions triggered by object destroying events do
not have target states, their postcondition must be true.

5. The postcondition of a transitions has to imply the
range of each of its target states. |

2.3. Correct Statecharts

Statecharts have a range too, which is defined as:

Definition 2.5 The range of a statechart is the disjunction
of the ranges of all root states of the statechart. |

Based upon the ranges of states and the correctness of
transitions and states we define a correct statechart. In our
following considerations we assume correct statecharts.

Definition 2.6 A statechart is called correct if (1) all states
are correct according to definition 2.3, and (2) all transitions
are correct according to definition 2.4. |

3. Equivalence of dynamic models

We would like to support designers to work with state-
charts in a similar way as they already can do with static
models. In particular, our goal is to support the transfor-
mation of statecharts without changing the semantics. For
this purpose we need a clear definition when statecharts are
equivalent. Our definition is based on the consideration that
statecharts are equivalent, if they provide the same partial
specification for the development of methods. Therefore,
the equivalence of correct statecharts (M; = M) bases
on equivalent model ranges and equivalent events. We will
first define the equivalence in a model-theoretic way and
then present a sound and complete axiomatization which
will then be used to prove that schema transformations pre-
serve the semantics of the schema.

The specification of an event is a set of condition pairs of
the form {(Prey, Posty),...,(Pre,, Post,)}. One pair
(Pre;, Post;) indicates that an object which satisfies the
condition Pre; (we say Pre;(o) is true, if the object o sat-
isfies the condition Pre;) after the application of the event
(actually of the corresponding transition triggered by the
event) satisfies the condition Post;. We take the pre- and
postconditions of the transitions triggered by the event e in
order to calculate the specification of the event:

Definition 3.1 The specification of the event e is defined as
e.Spec = {(t.PreC(), t.Postcondition) |t € e.triggers}
|

The specification of an event is computed by collecting
all the pre- and postconditions of the corresponding transi-
tions of the event (listed in etriggers). In our consideratons
the specification of an event e is named e.Spec().

Example (Fig. 2): The specification of the event lose of figure 2,
p. 2, is defined as: lose.Spec() = {(t6.PreC(), t6.Postcondi-
tion),(t10.PreC(), t10.Postcondition)}

The semantics of a statechart M is defined as the range
of the statechart and the set of its event specifications.

Definition 3.2 The semantics of a statechart M is defined as
(M.Range(), {(ei, e;.Spec()) | e; € M.Events}). O

Example (Fig. 2): The semantics of the statechart Mq of fig-
ure 2, p. 2, is defined as (M1.Range(), {(new, new.Spec()),
(lose, lose.Spec()), ...}), which is (M1.Range(), {(new,
{(t1.PreC(), t1.Postcondition)}), (lose, {(t6.PreC(), t6.Post-
condition), (t10.PreC(), t10.Postcondition}), ... }).

Definition 3.3 The predicate e.Post(o) of an event e and
an object o is defined as e.Post(o) := \/{Post|3Pre :
(Pre, Post) € e.Spec() A Pre(o)} whereby \/ 0 =
false, \/[{Post} = Post and \/{Post; ...Post,} =
Posty V ... V Post, O

The predicate Post(o) is defined as the disjunction of
all postconditions of conditional pairs (Pre, Post) from
e.Spec() for which the object o satisfies the precondition
(Pre(0)). E.Post(0) is false, if the object o doesn’t sat-
isfy any of the preconditions of the event specification of
€.

Now two event specifications are equivalent, if Post ap-
plied to both specifications for all objects in P(T") returns
equivalent conditions. In other words two events are equiv-
alent, if each possible object satisfies the same condition
after the events occurred.

Definition 3.4 The event specifications of the two events e,
and e, are equivalent (e;.Spec() = eq.Spec()), if Vo €
P(T) : e;.Post(o) <> ey.Post(o) a

As there might be several (different) events with equiv-
alent specifications we have to take the name of the events
into account when we define the equivalence of events.

Definition 3.5 Two events e; and e are equivalent (e; =
e»), if they have the same name and equivalent event speci-
fications. |

The following theorem states that the equivalence of
events is well defined, i. e. it is an equivalence relation.

Theorem 3.1 The equivalence = of events is reflexive, sym-
metrical and transitive, hence an equivalence relation. O

We define the equivalence of statecharts (M; = M)
based upon the range of the statecharts and the equivalence
of their events, and show, that it is well defined (i. e. it is an
equivalence relation).

Definition 3.6 Two correct statecharts My, M, are equiva-
lent (M, = Ms), if their ranges are equivalent and for all
events of M, there exists an equivalent event in M5, and
for all events of M5, there is an equivalent event in Af;. O

Theorem 3.2 The equivalence of correct statecharts is re-
flexive, symmetrical and transitive, hence an equivalence re-
lation. O

To examine whether two statecharts are equivalent ac-
cording to this definition seems to be quite cumbersome.
We would like to have a set of transformation on event spec-
ifications which are easier to apply. We are interested which
changes of event specifications are possible without leaving
an equivalence class.

We define the relation = (say:derive) for event specifica-
tions. It means the left part of the relation = can be changed
to the right part and vice versa.

Definition 3.7 Let S, S1, S and S3 be event specifications.
Let additionally Pre, Pre,, Pres, Pre; and Pre; as well
as Post, Posty, Posts, Post; and Post; be Pre- and Post-
conditions (7 QL + + terms). Then:

(1) SU {(Prey, Post), (Prey, Post)} E;
S U{(Prey V Presy, Post)}
(

(2) SU {(Pre, Posty), (Pre, Posts)} =1
S U {(Pre, Post; V Posts)}

(3) {(false, Post)} =, 0
@) {(Pre, false)} E1 0

(5) {(Pre;, Post;)} E1 {(Prej, Postj)}
if Pre; <+ Pre; A Post; <> Post;

(6) (Sl = Sz) A (Sg =1 53) — 51 =253 O

According to the definitions 3.7(1) and (2) we may sum-
marize event specifications with equivalent postconditions
through disjunction of their preconditions as well as event
specifications with equivalent preconditions through dis-
junction of their postconditions. The definitions 3.7(3) and
(4) allow us to remove event specifications whose pre- or
postconditions result in false. The definition 3.7(5) states
that pairs of event specifications following to the relation =
are equivalent if their pre- and postconditions are equivalent
terms (in our work equivalent 7 QL + + terms). In defini-
tion 3.7(6) the transitivity of the relation = is determined.

Example (Fig. 2): Consider the specification of the event lose
which are based on the transitions t6 and t10 (shown on page 4).
As the postconditions of the transitions are equivalent (compare
table 2, p. 4) we may combine the specification by the disjunction
of the preconditions:

{(t6.PreC(), t6.Postcondition), (t10.PreC(), t10.Postcon-
dition)} = {(t6.PreC() V t10.PreC(), t10.Postcondition)}

Theorem 3.3Let Sy, Sa, T' be event specifications. Then
(1)51 ESl and(2)51 ES;—)(Sl UT)E(SzuT) O

We define that a statechart M, is derived from a state-
chart M, (M, = M), if all event specifications of M are
derived from M7 and vice versa.

Definition 3.8 Let M; and M, be statecharts. M, = M2 if
the ranges of M; and M, are equivalent and for all events
e of M, there is an event ¢’ in Ms with e = ¢’ and for all
events e of M, there is an event ¢’ in M, with e = ¢’ O

The operations, defined by the relation = were developed
in order to express the same relation as =. Therefore, = is a
sound and complete axiomatization of the equivalence rela-
tion for event specification. This is expressed in the follow-
ing theorems (for the proofs we refer to [6]).

Theorem 3.4 Let S; and S, be event specifications. From
S1 E .S, follows S; = Ss. O

Theorem 3.5Let S; and S, be event specifications. From
S1 =5, follows S1 285, O

An immediate consequence of these theorems is that the
relation = is a sound and complete axiomatization of the
equivalence of statecharts too.

Theorem 3.6 Let M; and M5 be correct statecharts. Then
M1£M2<—)M15M2. O

Now we are able to check whether two statecharts are
equivalent by checking if the event specifications of one
statechart can be derived from the event specifications of
the other statechart. Furthermore, the definitions and the-
orems in this section provide a formal basis for discussing
equivalence transformations of statecharts.

4. Schema transfor mations

Schema transformations are operations on a statechart
M, resulting in a different statechart M,. Each schema
transformation deals with a certain aspect of the statechart
(e. g combines states or shifts transitions within a state hier-
archie). In the following we present a set of 23 basic schema
transformations which do not change the semantics of the
statechart according to the definition of equivalence given
above. Due to the transitivity of the equivalence of dynamic
models complex transformations can be established on this
basic set of transformations. In our approach the trans-
formations are treated as meta-methods of the meta-model
(e. g. as meta-methods for states). Due to space limitations
we are not able to discuss them all in detail and omit the
formal proofs. Again interested readers are refered to [6].

4.1. Shifting transitions within a state generaliza-
tion

(1) UpSg(Z2) shifts a transition with the source state Z to the
parent state of Z. The parent state of Z must be an OR-state

The source state Z of the transition is replaced by the
parent state of Z. However, as the parent state of Z is
an OR-state with a “wider” range than the substate Z, the
guard of the transition must replaced by the precondition of
the transition to guarantee that the transition can only be ap-
plied to objects that comply with the original precondition.

Example: Suppose we would like to shift the transition t9 to the
OR-state (figure 2, p. 2) . 19.UpSg(book borrowed) changes the
source state of the transition to book not on stock. The guard
of the transition must be changed to book borrowed.Range()
Areserved = true. The result of the transformation is shown
in figure 4(a)

(2) UpTg(Z) shifts a transition with the target state Z to the
parent state of Z. The parent state of Z must be an OR-state.

The target states Z of the transition is replaced by the
superstate of Z. Pre- and Postconditions of the transitions
remain unchanged.

Example: t9.UpTg(book in text book collection) changes the
target state of the transition to the OR-state book not on stock.

book not
on stock gg%‘inn&t t9(2): return [book borrowed.Range()

book book in text

AND reserved = true]
L borrowed] [book co\lection1
book book in text
borrowed book collection
[|

I

9: return [book borrowed.Range() AND
reserved = true]

t9(1): return [book borrowed.Range()
AND reserved = true]

a) t9.UpSg (book borrwed) b) t9.DownSg (book not on stock)

Figure 4. Shifting a transition

(3) DownSg(~) shifts a transition having the OR-state Z as
source state to all substates of Z.

For each substate of Z the transition must be copied
and the source states are adopted. The original transition
is deleted. Afterwards some of the new transitions may
have preconditions resulting in false. However, according
to definition 3.7, such transitions can be deleted. Later we
present the schema transformation Cllean for that purpose.

Example: Consider the example in the previous part where we
shifted the transition t9 to the OR-state using t9.UpSg(book
borrowed) (figure 4(a)). Now we would like to shift the tran-
sition back to its original source state using the transformation
t9.DownSg (book not on stock). For each substate the transi-
tions is copied and the source states are changed. The result is
shown shown in figure 4(b).

Let’s analyze the preconditions of the new transitions.
t9(1).PreC() results in the conjunction of the range of the
source states and the guard, that is book borrowed.Range()
A book borrowed.Range() Areserved = true which is
obviously equivalent to the precondition of the transition from the
example in figure 2. The precondition of t9(2) results in book
in text book collection.Range() A book borrowed.Range()
Areserved = true. However, as in a correct statechart the
ranges of the substates of an OR-state must be disjoint (compare
definition 2.6), this precondition results in false. The transition
t9(2) can be deleted (compare definition 3.7).

(4) DownTg(Z) shifts a transition having the OR-state Z as
target state to all substates of Z.

For each substate of Z the transition must be copied and
the target states adopted. The postconditions of a copied
transition must replaced by the conjunction of the original
postcondition and the range of its new target state. If after-
wards the postcondition of a transition results in false, it
can be deleted (compare definition 3.7). The original tran-
sition is deleted

4.2. Shifting transitions within a state aggregation

(5) UpSa(Z7) shifts a transition having Z as source state to
the parent state of Z. The parent state of Z must be an
AND-state.

(6) UpTa(Z) shifts a transition having Z as target state to
the parent state of Z.The parent state of Z must be an AND-
state.

Both transformations are very simple, the source (target)
state Z of the transition is replaced by the parent state of
Z. According to the definition of a correct statechart (defi-
nition 2.6) the substates of an AND-state must be OR-states
with equivalent ranges. Due to the definition 2.1 the ranges
of the AND-state and its substates are equivalent too.

However, after shifting a synchronizing transition to an
AND-state the AND-state may appear several times in the
source (target) states of the transition. Such redundant
stored source or target states can be removed.

Example: We shift the transition t5 from figure 2 first to the OR-
state (t5.UpSg(book registered)) and t5.UpSg(book in sub-
ject catalogue)) and then to the AND-state (transformations
t5.UpSa(book registration) and t5.UpSa(book preparation)).
Afterwards the AND-state book administration appears twice in
the source states of t5. We remove one and change t5 to a non-
synchronizing transition.

(7) DownSa(Z) shifts a transition having the parent state of
Z as source state to Z. The parent state of Z must be an
AND-state.

(8) DownTa(Z) shifts a transition having the parent state of
Z as target state to Z. The parent state of Z must be an
AND-state.

Both transformations simply replace the parent state of
Z in the source (target) states of the transition by Z.

(9) DownSas(Z) transforms the transition to a synchroniz-
ing one and adds Z as further source states of the transition.
The parent state of Z must be an AND-state and source state
of the transition.

(10) DownTas(Z) transforms the transition to a synchroniz-

ing one and adds Z as further target states of the transition.
The parent state of Z must be an AND-state and target state
of the transition.

Example: We shifted the transition t5 to the AND-state book ad-
ministration as described above. Now we would like to shift
the transition back to the original source states. First we use
t5.DownSas(book registration), which adds book registration
as a new source state and transforms t5 to a synchronizing transi-
tion. With t5.DownSa(book preparation) the AND-state book
administration in the source states is replaced by the state book
preparation. Afterwards we may shift t5 down from the OR-
states to the substates using the transformation DownSyg.

4.3. Combining and splitting transitions

(11) ComSe(ty, 2, t) combines two transitions ¢, and
triggered by the same event to a transition ¢ if the precon-
ditions of ¢; and ¢ are equivalent and both have the same
source and target states.

(12) ComTe(ty, t2, t) combines two transitions ¢; and to
triggered by the same event to a transition ¢ if the postcon-
ditions of ¢; and ¢, are equivalent and both have the same
source and target states.

(13) SplitSe(t, Py, P>, ty,t2) splits the transition ¢ into the
transitions ¢; and ¢». The parameters P, and P, are precon-
ditions, their disjunction must be equivalent to the precon-
dition of t.

(14) SplitTe(t, Py, P», t1,t2) splits the transition ¢ into the
transitions ¢; and ¢,. The parameters P, and P, are post-
conditions, their disjunction must be equivalent to the post-
condition of .

These transformations are defined according to the rela-
tion = (compare definition 3.7, p. 5).

4.4. Combining and splitting states

(15) Combine(Z1, Z», Z) combines two basic states Z; and
Z> resulting in a new basic state Z.

If the states Z; and Z are not root states, they must be-
long to the same parent state. The condition of Z is the dis-
junction of the ranges of Z; and Z. Inall transition having
Zy or Z» as source or target state Z; or Z, are replaced by
the state Z. If Z; or Z, are source states of a transition the
guard is replaced by the precondition of the transition. The
combination of states results in a new state with a “wider”
range, nevertheless we want that the transitions can only be
applied to object satisfying the original precondition of the
transitions.

Example: We combine the states book borrowed and book in text
book collection to a state book on loan using the transformation
Combine (book borrowed, book in text book collection, book
on loan). The result of this transformation is shown in figure 5.

(16) Split(Z, By, Bo, Z1, Z>) splits a basic state Z into two
basic states Z; and Zs.

The parameters By and B, are conditions. They must
be disjoint and their disjunction must be equivalent to the
range of Z. If Z is part of a state aggregation B; and B,
must not violate the orthogonality constraint. Otherwise the
transformation is rejected. The condition of Z; equals to
B, those of Z, to Bs.

If Z is not a root state Z must not be source or target
state of transitions. Otherwise (Z is a root state) each tran-
sition having Z as source state is duplicated. In the source
states of the original transition Z is replaced by Z; in the

book not

on stock t9: return [book borrowed.Range() and

reserved = true]

book on loan

t11: reserve [book borrowed.Range() and
reserved = false]

Figure 5. Splitting a state

duplicated one Z is replaced by Z». If Z is a target state
the transition must be duplicated too and the target states
are adopted. Furthermore the postcondition of the original
transition is replaced by the conjunction of its postcondi-
tion with the range of its new target state (analogous to the
duplicated transition).

The restriction that a state Z, which is part of a state
hierarchie, must not be a source or target state of a transition
is not very extensive. Suppose have combined two states as
shown in the example of figure 5. As the new state is source
and target state of transitions we are not able to split the state
into the original states. However, we may use a combination
of schema transformations to shift the transitions from the
substates to the parent state and split the state afterwards.

4.5. Generating and Decomposing state gener aliza-
tions

(17) Geng(Z, ... Z;,G) produces a state generalization
based upon the states Z; . .. Z; with the new OR-state G.

The states Z; ... Z; must be root states or substates of
the same OR-state. The transformation introduces a new
OR-state G with the substates Z; ... Z;. Transitions remain
unchanged by the schema transformation.

(18) Decg(G) decomposes a state generalization with the
OR-state G. The OR-state must not be a substate of an
AND-state. GG must not be source or target state of tran-
sitions.

Example: In our example of figure 2 we can decompose the state
generalization with the OR-state book not on stock. However,
as this state is a source and target state of transitions we first have
to shift down the transitions from the OR-state. Then we may de-
compose the state generalization simply by removing the OR-state
with the transformation Decg(book not on stock). In a second
step we may generalize the (now) root states book borrowed and
book in text book collection using Geng(book borrowed, book
in text book collection, G).

4.6. Generating and Decomposing state aggrega-
tions

(19) Gena(Z,n, A) builds a state aggregation with the
AND-state A based upon the basic state Z .

Beyond the AND-state A, n OR-states G ... G,, as sub-
states of A are created. Each OR-state GG; has exactly one

basic substate Z;. The condition of a substate Z; equals to
the range of Z. According to the definition of the range of
a state (compare definition 2.1) the ranges of A4, G; and Z;
are equivalent.

In all transitions having Z as source or target state Z is

replaced by A. Afterwards Z is deleted.
(20) Deca(A, Z) decomposes a state aggregation with the
AND-state A resulting in the basic state Z. All substates
of A must have exactly one basic substate. None of the
states of the state aggregation except the AND-state A must
be source or target state of transitions.

The condition of Z equals to the range of A. Inall transi-
tions having A as source or target state A is replaced by Z.
Afterwards A and all other substates of the state aggregation
are deleted.

Example: Consider the AND-state book administration which
should be decomposed. As there are states within this state ag-
gregation which are source or target states of transitions we first
shift them to the AND-state. E. g. the transition place is shifted
to the AND-state as described in section 4.2. Afterwards the state
aggregation is replaced by an equivalent basic state Z using the
schema transformation Deca(book administration, Z). In a sec-
ond step we would like to reintroduce the state aggregation again.
We use Gena(Z, 2, book administration) resulting in a new
state aggregation consisting of the AND-state and two OR-states
as substates. Each OR-state has exaclty one basic substate (let’s
call them Z; and Z,). These basic states could be split in two
states. For instance we split Z; into two states using the trans-
formation Split(Z1, book in catalogue.Range(), book regis-
tered.Range(), book in catalogue, book registered). Analo-
gous we may split Z,. Then the transitions can be shifted down
from the AND-state to the original states.

4.7. Deleting and combining transitions

(21) DelEx deletes transitions whose pre- or postconditions
resultin false (compare definition 3.7).

(22) ComEx combines transitions triggered by the same
event having equal source states (target states) and equiv-
alent postconditions (preconditions) by the disjunction of
their pre (postconditions) (compare definition 3.7).

Based on this schema transformations we define the
combined schema transformation Clean, which deletes and
combines transitions of a statechart after a schema transfor-
mation has been applied.

4.8. Properties of the schematransfor mations

The main property of the presented schema transforma-
tion is that they are equivalence transformation (for the
proofs we refer to [6]) which results in the theorem:

Theorem 4.11f a correct statechart M, is transformed by
applying one of the basic schema transformations into a
statechart M, then M, = M. O

For each schema transformation there exists an inverse
schema transformation, which, however, may be a combi-
nation of transformations. For instance shifting a transitions
from an OR-state produces several new transitions. For the
inverse each of them must be shifted back to the OR-state
and combined to one transition afterwards.

Finally, we can prove that the presented set of schema
transformations is complete. This means that if two state-
charts are equivalent, there is a sequence of basic schema
transformations to transform one schema into the other. A
consequence of this property is that the schema transforma-
tions we introduced suffice to derive any equivalent schema.
This property is expressed in the following theorem:

Theorem 4.21f two correct statecharts M; and M, are
equivalent, than there exists a sequence of schema trans-
formations to transform A/, into M, and vice versa. O

5. Conclusion

We presented a formalization of a model for represent-
ing the dynamic behavior of objects. We present a meta-
model and define the (abstract) semantics of statecharts as
partial specification of methods. This allows the definition
of the equivalence of statecharts. The main contribution
of this work is the development of a complete set of ba-
sic schema transformation which maintain the semantics.
The presented set of transformations suffices to derive any
equivalent dynamic model from a given one.

There are several applications for the presented method-
ology. It serves as sound basis for design tools. It enables
analysts and designers to start from an initial model and im-
prove the quality of the model step by step. We can provide
automatic support to achieve certain presentation character-
istics of model. A model can be transformed to inspect it
from different points of view. In particular a model suit-
able for conceptual comprehension can be transformed to a
model better suited for implementation similar to the trans-
formation of static conceptual models to logical models.

Our main application and motivation for the develop-
ment of the model was to support automatic integration of
partial models. This is the extension of the view integra-
tion approach in conceptual modeling to also incorporate
dynamic models ([7, 8]).

References

[1] C. Batini, S. Ceri, and S. B. Navathe. Conceptual Database
Design: An Entity-Relationship Approach. The Ben-
jamin/Cummings Publishing Company, Inc, 1992.

[2] G. Booch. Object-Oriented Design with Applications. Ben-
jamin Cummings, 1991.

[3] D. Coleman, P. Arnold, S. Bodoff, C.Dollin, H. Gilchrist,
F. Hayes, and P. Jeremaes. Object-Oriented Development:

The Fusion Method. Prentice Hall Object-Oriented Series.
Prentice-Hall, Inc, 1994.

[4] D. G. Firesmith. The inheritance of state models. Report
on Object Analysis and Design (ROAD), 2(6):13 — 15, Mar.
1996.

[5] A. Formica, H. Groger, and M. Missikoff. Object-oriented
database schema analysis and inheritance processing: A
graph-theoretic approach. Data- and Knowledge Engineer-
ing, 24:157-181, 1997.

[6] H. Frank and J. Eder. A meta-model for dynamic mod-
els. Technical report, Institut fir Informatik, Univer-
sitat Klagenfurt, Mar. 1997. http://www.ifi.uni-klu.ac.at/cgi-
bin/show_an_abst?1997-05-FrEd.

[7] H. Frank and J. Eder. Integration of statecharts. In M. Halper,
editor, Third IFCIS International Conference on Coopera-
tive Information Systems (Coopl S98), pages 364 — 372. IEEE
Computer Society, Aug. 1998.

[8] H. Frank and J. Eder. Towards an automatic integration of
statecharts. In J. Akoka, M. Bouzeghoub, I. Comyn-Wattiau,
and E. Metais, editors, Conceptual Modeling - ER' 99, pages
430 — 444. Springer Verlag, Nov. 1999. (LNCS 1728).

[9] D. Harel. Statecharts: A visual formalism for complex sys-
tems. Science of Computer Programming, 8:231 — 274, 1987.

[10] D. Harel. On visual formalisms. Communications of the
ACM, 31(5):514 - 530, May 1988.

[11] D. Harel and A. Naamad. The statemate semantics of stat-
echarts. ACM Transactions on Software Engineering and
Methodology, 5(4):293 — 333, Oct. 1996.

[12] G. Kappel and M. Schrefl. Inheritance of object behaviour
- consistent extension of object life cycles. In J. Eder and
L. A. Kalinichenko, editors, Proceedings of the Second In-
ternational East/West Database Workshop, pages 289 — 300.
Springer, Sept. 1994.

[13] H. Lam and M. Missikoff. On semantic verification of object-
oriented database schemas. In Proceedings of Int. Workshop
on New Generation Information Technology and Systems -
NGITS pages 22 — 29, June 1993.

[14] M. Missikoff and M. Toaiti. Mosaico: an environment
for specification and rapid prototyping of object-oriented
database applications. EDBT Summer School on Object-
Oriented Database Applications, Sept. 1993.

[15] Rational Software et.al. Unified modeling language (uml)
version 1.1. http://www.rational.com/uml, Sept. 1997.

[16]J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, and
W. Lorensen. Object-Oriented Modeling and Design. Pren-
tice Hall International, Inc, 1991.

[17] M. Schrefl and M. Stumptner. Behaviour consistent refine-
ment of object life cycles. In D. W. Embley and R. C. Gold-
stein, editors, Conceptual Modeling - ER' 97: Proceedings of
the 16th International Conference on Conceptual Modeling,
Lecture Notes in Computer Science 1313, pages 155 — 168.
Springer, Nov. 1997.

[18] M. von der Beeck. A comparison of statecharts variants. In
L. de Roever and J. Vytopil, editors, Formal Techniques in
Real-Time and Fault-Tolerant Systems, volume 863 of Lec-
ture Notesin Computer Science, pages 128 — 148, New York,
1994. Springer-Verlag.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

