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Abstract� In this paper� we present a novel technique for modeling�
checking� and enforcing temporal constraints in work�ow processes con�
taining conditionally executed activities� Existing work�ow time model�
ing proposals either do not discriminate between time constraints that
apply to disparate execution paths� or they treat every execution path
independently� Consequently� super�uous time constraint violations may
be detected at modeling time� even when each execution path does not
violate any constraints� In addition� scheduling con�icts during process
execution may not be detected for activities that are common to multiple
execution paths� Our approach addresses these problems by �partially�
unfolding the work�ow graph associated with a process that contains
conditionally executed activities and� then� incorporating the temporal
constraints in the time calculations performed on the unfolded graph�

� Introduction

Today� the most critical need in companies striving to become more competitive
is the ability to control the �ow of information and work throughout the en�
terprise in a timely manner� Work�ow management systems �WFMSs� improve
business processes by automating tasks� getting the right information to the
right place for a speci�c job function� and integrating information in the enter�
prise �GHS	
�Law	��Wor	��Hol	
� However� existing WFMSs �LR	��InC�Flo
o�er limited support for modeling and managing time constraints associated
with processes and their activities �PEL	�� This support appears mainly in the
form of monitoring activity deadlines �Sch	�� However� the consistency of these
deadlines and the side e�ects of missing some of them are not addressed�

In process centered organizations� time management is essential for process
modeling and management� Many business processes have restrictions such as
limited duration of subprocesses� terms of delivery� dates of re�submission� or
activity deadlines� Typically� time violations increase the cost of a business pro�
cess because they lead to some form of exception handling �PR	�b� Therefore�
a WFMS should provide the necessary information about a process� its time
restrictions� and its actual time requirements to a process manager� In addition�
the process manager needs tools to anticipate time problems� proactively avoid
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time constraints violations� and make decisions about the relative priorities of
processes and timing constraints�

The notion of timed work�ow graphs was introduced in �EPPR		� and it
was shown how the time information represented in these graphs can be used
at modeling� process instantiation� and execution times to manage work�ow ex�
ecutions without time errors� In �EPR		� we introduced explicit temporal con�

straints and presented a technique for incorporating these constraints into timed
work�ow graphs� However� the technique presented in �EPR		 treated tempo�
ral constraints associated with parallel and conditionally executed activities in
the same way� In this paper� we show that di�erentiating between these cases is
crucial in avoiding many super�uous constraint violations� and we present the
�partial� unfolding technique for handling them�

� Work�ows� Constraints� and Timed Graphs

In this section� we present the necessary de�nitions� assumptions� and methods
used in the remainder of the paper�

��� Work�ows

A work�ow is a collection of activities� agents� and dependencies between ac�
tivities� Activities correspond to individual steps in a business process� agents
�software systems or humans� are responsible for the enactment of activities� and
dependencies determine the execution sequence of activities and the data �ow
between them� We assume that work�ows are well structured� A well�structured
work�ow consists of m sequential activities� T� � � � Tm� Each activity Ti is ei�
ther primitive� i�e�� it cannot be decomposed any further� or composite� A com�
posite activity consists of ni parallel conditional or unconditional sub�activities
Ti

�� � � � � Ti
ni � each of which is either primitive or composite� Typically� well struc�

tured work�ows are generated by work�ow languages that provide the usual
control structures and adhere to a structured programming style of work�ow
de�nitions� such as Panta Rhei �EGL	��

Work�ows are represented by work�ow graphs � where nodes represent activi�
ties and edges correspond to dependencies between activities� An and�split node
refers to an activity having several immediate successors� all of which are exe�
cuted in parallel� An and�join node refers to an activity that is executed after
all of its immediate predecessors �nish execution� An or�split node refers to an
activity whose immediate successor is determined by evaluating some boolean
expression� An or�join node refers to an activity that joins all the branches after
an or�split� Finally� similar to �MO		� a work�ow instance type refers to work�
�ow instances that contain exactly the same activities� i�e�� for each or�split node
in the work�ow graph� the same successor node is chosen�
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��� Temporal Constraints

Time is expressed in some basic time units relative to a time origin� which is
usually the start of the work�ow� In addition� each activity has a duration which�
for simplicity� is assumed to be deterministic� Activity durations and control
dependencies between activities determine the structural time constraints � These
constraints arise from the fact that an activity can only start when its predecessor
activities are �nished� In addition� work�ow designers may specify explicit time

constraints� i�e�� temporal relations between start and end of �di�erent� activities�
These constraints are derived from organizational rules� laws� commitments� and
so on �e�g�� an appeal can be �led within � days after the verdict� a meeting
invitation has to be sent to all participants at least one week before the meeting��
In particular� the following explicit time constraints can be speci�ed�

� Lower bound constraint �lbc�s� d� ���� The time distance between source
event s and destination event d must be greater than or equal to ��

� Upper bound constraint �ubc�s� d� ���� The time distance between source
event s and destination event d must be smaller than or equal to ��

��	 Timed Work�ow Graphs

Our time constraint management techniques are based on the notion of a timed

work�ow graph� which extends the work�ow graph by augmenting each activity
node n with the following�� �Figure � shows the representation of such a node��

� n�Ebc� The earliest point in time n can �nish when the shortest path is
chosen to reach n�

� n�Ewc� The earliest point in time n can �nish when the longest path is chosen
to reach n�

� n�Lbc� The latest point in time n has to �nish in order to meet the overall
deadline via the shortest path�

� Since activity durations are assumed to be deterministic� start times for activities
are computed by subtracting their durations from their termination times�
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� n�Lwc� The latest point in time n has to �nish in order to meet the overall
deadline via the longest path�

Without explicit time constraints� the above values can be computed by ex�
tending the Critical Path Method �CPM� �Phi�� to handle conditional execution
paths �PEL	�� Table � shows the actual computations� where d�n� denotes the
execution duration of activity n� E�values are computed in a forward pass� with
the E�values of the starting work�ow activity being set to its duration� L�values
are computed in a backward pass� with the L�values of the last work�ow activity
equal to its E�values�

Figure � shows the timed work�ow graph we use in the rest of the paper�
In this graph� activity A is followed by an and�split� having I as the and�join�
and activity B is followed by an or�split� having G as the or�join� The values of
node I show the duration of the work�ow� i�e�� I�Ebc and I�Ewc indicate that

FORWARD best case �bc� worst case �wc�

sequence Ej � E� � d�j� Ej � E� � d�j�
and�join Ej � max�fE� � d�j�g� Ej � max�fE� � d�j�g�
or�join Ej � min�fE� � d�j�g� Ej � max�fE� � d�j�g�

� immediate predecessor � of j

REVERSE best case �bc� worst case �wc�

sequence Lj � L� � d��� Lj � L� � d���
and�split Lj � min�fL� � d�� �g� Lj � min�fL� � d�� �g�
or�split Lj � max�fL� � d���g� Lj � min�fL� � d�� �g�

� immediate successor � of j
Table �� Calculation instructions for timed work�ow graphs



the work�ow execution may take between �� and �� time units� G�Ebc indicates
that G may �nish after � time units �when E follows B�� while G�Ewc indicates
that no path from A to G should take more than �� time units� B�Lbc� tells us
that if B is �nished at time point ��� the work�ow may still be able to terminate
in time� From B�Lwc we learn that if B is �nished at time point �� we can meet
the overall deadline� irrespective of the conditionals�

� Incorporating Explicit Time Constraints

Once the timed work�ow graph is constructed� we can incorporate explicit time
constraints into it by using the algorithms shown in �EPR		� Lower bound con�
straints are incorporated during the construction of the timed work�ow graph�
they may increase E�values during the forward pass and decrease L�values dur�
ing the reverse pass� On the other hand� the incorporation of upper�bound con�
straints should check for constraint violations� for ubc�s� d� ��� s�E	� � d�E and
s�L 	 � � d�L� When a constraint is violated� the E� and L�values of s and d

are shifted in an attempt to satisfy the constraint� with the invariant that an
E�value is not greater than its corresponding L�value�

During the incorporation of explicit constraints the semantics of the E�values
change� the E�values mandate that activity terminations should not occur earlier
than them in order to meet the time constraints� Therefore� the E� and L�values
de�ne the time interval during which an activity has to terminate� This time
interval is referred to as the life�line of the activity�

However� �EPR		 does not discriminate between conditional and uncondi�
tional branches in the computation of worst case E� and L�values� While this
ensures that the execution of the work�ow will avoid violating temporal con�
straints when the incorporation algorithm succeeds� it is overly pessimistic� In
particular� there are cases where execution without constraint violation is pos�
sible and the incorporation algorithm does not succeed due to interference of
constraints on mutually exclusive conditional branches� as we show below�

In general� the following issues need to be addressed when we derive timed
graphs that violate explicit time constraints�

�� Checking individual constraints for violation may not be su�cient� As shown
in �EPR		� a set of time constraints may not be satis�able� even when each
individual constraint is satis�able� Consequently� the incorporation proce�
dure should consider all constraints together�

�� Checking work�ow instance types for constraint violation in isolation is not

su�cient� If two instance types only di�er after or�splits� their common ini�
tial activities should have the same E� and L�values� If we cannot �nd such
E� and L�values in all instance types to satisfy the constraints� then it may
not be possible to schedule the execution of this work�ow so that all time
constraints are met� For example� consider two instance types for the work�
�ow in Figure �� where one includes C and D and results in B�Ewc 
 ��
and B�Lwc 
 ��� and the other one includes E and results in B�Ewc 
 �
and B�Lwc 
 ��� Here� it is not possible to satisfy the time constraints for
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either instance since B is executed in both� and the scheduling information
for B� i�e�� valid interval for B to terminate� is contradictory�

�� Incorporating upper�bound constraints using best�case values may not be mean�

ingful� This can be seen by looking at the best�case values of C and G in
Figure �� The values of C do not really contribute to the values of G because
they are dominated by those of E and F � Therefore� checking an upper�
bound constraint between C and G for the best�case is not possible�

�� Checking violation of upper�bound constraints using worst�case values may

lead to unnecessary rejections when the work�ow has conditional branches�

This can be seen by examining the case where ubc�B�D� ��� and ubc�C�G� ���
need to be incorporated into the timed graph shown in Figure �� If we
incorporate ubc�B�D� ��� �rst� then D�Lwc becomes �� and� consequently�
ubc�C�G� ��� cannot be satis�ed� However� each of these constraints is indi�
vidually satis�able� as shown in Figure �� since the path containing C and
D does not in�uence the computation of the worst case E� and L�values of
nodes B and G�

� Unfolded Work�ow Graph

To address the time constraint incorporation problems� we construct the unfolded
timed work�ow graph� This graph contains exactly the same set of instance types
as the original graph� However� it does not contain or�joins and has several
termination nodes� one for each instance type� Once a work�ow graph is unfolded�
we are able to assign di�erent time information to activities in disparate instance
types after their separating split node� and share the same time information for
activities before this node� In this way� explicit temporal constraints that involve
activities in di�erent instance types no longer interfere and� thus� we may be able
to satisfy all of them�

Another advantage of unfolding a work�ow graph is that di�erent deadlines�
i�e�� worst case E� and L�values� may be assigned to activities belonging to dif�
ferent instance types� Consequently� di�erent deadlines for the �nal activities of
some instance types may be computed� As shown in �PR	�a� combining the dif�
ferent deadlines for disparate instance types with the probabilities of executing
such instance types is bene�cial�

Intuitively� the unfolded timed work�ow graph is derived from the original
work�ow graph by duplicating the graph at or�joins� Therefore� two instance
types share the same nodes before the very �rst or�split that distinguishes them
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and have di�erent nodes for activities thereafter� even for activities shared after
the or�join that merges these instances in the original graph� In practice� however�
the unfolding procedure is more complicated since all unconditionally executed
parallel branches should be closed with and�joins� We explain how this is done
below�


�� Unfolding Procedure

The procedure for generating an equivalent unfolded work�ow graph U for a
work�ow graph G is as follows� First� the start node of G is copied into U � Then
all nodes of G are visited in topological order� Copies of each node n of G� which
is not an and�join� are inserted into U as many times as there are copies of the
predecessors of n and the nodes are connected accordingly� such that each copy
of node n is connected with exactly one copy of a predecessor of n and vice
versa��

If n is an and�join node� then we place a copy of n in U for all valid pre�
decessor combinations� These combinations are computed by constructing all
combinations of copies of predecessor nodes of n in G� such that in each com�
bination there is exactly one copy of each of these predecessor nodes �i�e�� the
Cartesian product of the copies of the respective nodes�� Figure 
 shows the
unfolded graph for the work�ow graph shown in Figure ��

After the construction of the unfolded work�ow graph� the temporal con�
straints are mapped into this work�ow graph� The mapping is done in such a
way that if a constraint with source s and destination d exists in the original
graph G� then this constraint exists between all copies of s and d that belong to
the same instance type in the unfolded graph U � Once we are done mapping the
constraints� we can compute the timed work�ow graph based on the unfolded

� Copies of G�s or�join nodes have exactly one predecessor node in U and� thus� there
are not or�joins anymore�
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graph and then incorporate the temporal constraints using a variation of the
algorithms presented in �EPR		�

While the above procedure addresses the constraint incorporation problems
of Section �� it su�ers from the potential explosion of the number of �duplicate�
nodes in the unfolded graph� since it considers each instance type separately�
This is not desirable when discriminating between instance types is not necessary
because either there are no interfering constraints in these instance types or we
can check the satis�ability of such constraints without unfolding� To address this
problem� we developed the partial unfolding technique�


�� Partial Unfolding of Work�ow Graphs

Since constraints need not appear in every alternative path� we can unfold the
work�ow graph only where it is necessary to check constraints� We call such
partially unfolded graphs �hybrid graphs�� The procedure for partially unfolding
a work�ow graph G to a hybrid graph H begins by selecting a hot�node� with the
side e�ect that all instance types going through the hot�node are factored out�
or intuitively� the work�ow graph reachable from the hot�node is duplicated� In
principle� every node can be hot�node� For practical reasons� we require that a
hot�node is an immediate predecessor of an or�join� In the next section we will
show how hot�nodes are chosen� when a time constraint cannot be incorporated�
Once a hot�node is identi�ed� partial unfolding takes place as follows�

�� Copy the original graph G into H �
�� Insert an additional copy of all nodes reachable from the hot�node� together

with a copy of all edges between such nodes�
�� Remove the edge from the copy of the hot�node to it�s original successor and

include an edge to the created copy of the successor node�
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�� For all edges from a node n in G� which is not successor of the hot�node� to
an and�join node a in the succession of the hot�node� include a copy in H �

Based on this procedure� we only have to partially unfold the work�ow graph
shown in Figure � at nodeD in order to check the satis�ability of ubc�B�� D�� ���
and ubc�C�� G�� ���� Figure � shows the resulting partially unfolded graph�


�	 Computation of the Timed Graph

We �rst compute the timed graph using structural constraints and any explicit
lower�bound constraints� Then� we attempt to incorporate all upper�bound con�
straints� When an upper�bound constraint is violated� we determine whether its
source and destination nodes are connected via conditionally executed activities
or they belong to the same work�ow instance type� Here� we �rst determine the
hot�nodes� then we partially unfold the work�ow graph and� �nally� we attempt
the constraint incorporation procedure again�

For checking the satis�ability of time constraints� we extended the algorithm
in �EPR		 to the full nodes �best�worst case�� If a constraint ubc�s� d� �� cannot
be incorporated� the algorithm terminates with an error� In this case� we de�
termine a node s� as the �rst successor node of s that immediately precedes an
or�join and all paths from s to s� have the same number of or�joins and or�splits��
In the same way� we determine node d� for destination node d� If such nodes ex�
ist� we restart the incorporation procedure on the partially unfolded work�ow
graph that used these nodes as hot�nodes� Otherwise� either the path has been
unfolded already� or the nodes do not have multiple copies in the unfolded graph�

� Intuitively� we search for the or�join reached from s that joins the conditional branch
through s with its parallel branches and take the immediate predecessor of this or�
join as s��



If a constraint is violated and its source and destination nodes cannot be
used for unfolding� then we check whether there is an overlapping constraint
and perform the unfold for the source and destination nodes of this constraint�
An example for this procedure is given in the work�ow shown in Figure � and the
constraints ubc�B�D� ��� and ubc�C�G� ���� If ubc�B�D� ��� is incorporated �rst�
then ubc�C�G� ��� cannot be incorporated since D�Lwc is ��� Now we take D as
hot�node and partially unfold the work�ow graph� computing the timed hybrid
graph� and incorporating the constraints there� The result of this procedure is
the graph shown in Figure ��

The algorithms for incorporating explicit time constraints in timed work�ow
graphs with �partial� unfolding have been implemented in a prototype for an
extended work�ow design tool� The prototype accepts work�ow descriptions in
the work�ow de�nition language of the work�ow system Panta Rhei �EGL	��
extended with explicit time constraints� The algorithms for unfolding and par�
tially unfolding work�ow graphs as well as the algorithms for computing timed
work�ow graphs and incorporating explicit time constraints into these timed
graphs are de�ned on these process de�nitions�

� Related Work

Incorporating explicit time constraints into the modeling and management in�
frastructure of WFMSs has received very little attention from both work�ow
vendors and researchers� Among the work that is available in the literature� our
work is closely related to �EPR		�MO		� In particular� we extended �EPR		
to explicitly handle temporal constraints associated with conditionally executed
activities by unfolding the timed work�ow graph of a process� By doing so� we
are able to avoid many super�uous constraint violations�

In contrast to �MO		� we do not consider time constraints in isolation and
provide solutions for overlapping� interleaving� and interfering constraints� As we
demonstrated in �EPR		� a set of time constraints may be unsolvable �i�e�� there
is no work�ow instance that does not violate at least one time constraint� even
when every single constraint is solvable in isolation� In addition� our techniques
are pro�active in nature� and they attempt to modify the E� and L�values of
activities in order to make constraints satis�able�

� Conclusions

In this paper� we presented a new technique for modeling� checking� and enforcing
temporal constraints in work�ow processes containing conditionally executed
activities� Our technique discriminates between time constraints that apply to
disparate execution paths and� thus� it avoids the super�uous time constraint
violations detected by existing techniques that treat these paths similar to those
of unconditionally executed activities� In addition� our graph unfolding procedure
and the incorporation of explicit time constraints into the unfolded graph avoid



the problem of detecting scheduling con�icts when work�ow instances are treated
independently of each other�
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