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Abstract. In this paper, we present a novel technique for modeling,
checking, and enforcing temporal constraints in workflow processes con-
taining conditionally executed activities. Existing workflow time model-
ing proposals either do not discriminate between time constraints that
apply to disparate execution paths, or they treat every execution path
independently. Consequently, superfluous time constraint violations may
be detected at modeling time, even when each execution path does not
violate any constraints. In addition, scheduling conflicts during process
execution may not be detected for activities that are common to multiple
execution paths. Our approach addresses these problems by (partially)
unfolding the workflow graph associated with a process that contains
conditionally executed activities and, then, incorporating the temporal
constraints in the time calculations performed on the unfolded graph.

1 Introduction

Today, the most critical need in companies striving to become more competitive
is the ability to control the flow of information and work throughout the en-
terprise in a timely manner. Workflow management systems (WFMSs) improve
business processes by automating tasks, getting the right information to the
right place for a specific job function, and integrating information in the enter-
prise [GHS95,Law97,Wor94,Hol95]. However, existing WFMSs [LR94,InC,Flo]
offer limited support for modeling and managing time constraints associated
with processes and their activities [PEL97]. This support appears mainly in the
form of monitoring activity deadlines [Sch96]. However, the consistency of these
deadlines and the side effects of missing some of them are not addressed.

In process centered organizations, time management is essential for process
modeling and management. Many business processes have restrictions such as
limited duration of subprocesses, terms of delivery, dates of re-submission, or
activity deadlines. Typically, time violations increase the cost of a business pro-
cess because they lead to some form of exception handling [PR97b]. Therefore,
a WFMS should provide the necessary information about a process, its time
restrictions, and its actual time requirements to a process manager. In addition,
the process manager needs tools to anticipate time problems, proactively avoid
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time constraints violations, and make decisions about the relative priorities of
processes and timing constraints.

The notion of timed workflow graphs was introduced in [EPPR99], and it
was shown how the time information represented in these graphs can be used
at modeling, process instantiation, and execution times to manage workflow ex-
ecutions without time errors. In [EPR99], we introduced ezplicit temporal con-
straints and presented a technique for incorporating these constraints into timed
workflow graphs. However, the technique presented in [EPR99] treated tempo-
ral constraints associated with parallel and conditionally executed activities in
the same way. In this paper, we show that differentiating between these cases is
crucial in avoiding many superfluous constraint violations, and we present the
(partial) unfolding technique for handling them.

2 Workflows, Constraints, and Timed Graphs

In this section, we present the necessary definitions, assumptions, and methods
used in the remainder of the paper.

2.1 Workflows

A workflow is a collection of activities, agents, and dependencies between ac-
tivities. Activities correspond to individual steps in a business process, agents
(software systems or humans) are responsible for the enactment of activities, and
dependencies determine the execution sequence of activities and the data flow
between them. We assume that workflows are well structured. A well-structured
workflow consists of m sequential activities, 7} ...T,,. Each activity 7; is ei-
ther primitive, i.e., it cannot be decomposed any further, or composite. A com-
posite activity consists of n; parallel conditional or unconditional sub-activities
T;i',...,T;", each of which is either primitive or composite. Typically, well struc-
tured workflows are generated by workflow languages that provide the usual
control structures and adhere to a structured programming style of workflow
definitions, such as Panta Rhei [EGL97].

Workflows are represented by workflow graphs, where nodes represent activi-
ties and edges correspond to dependencies between activities. An and-split node
refers to an activity having several immediate successors, all of which are exe-
cuted in parallel. An and-join node refers to an activity that is executed after
all of its immediate predecessors finish execution. An or-split node refers to an
activity whose immediate successor is determined by evaluating some boolean
expression. An or-join node refers to an activity that joins all the branches after
an or-split. Finally, similar to [MO99], a workflow instance type refers to work-
flow instances that contain exactly the same activities, i.e., for each or-split node
in the workflow graph, the same successor node is chosen.



Activity Name

Activity
Duration

Best Case Best Case
Earliest Finish Time | Latest Finish Time

Worst Case Worst Case
Earliest Finish Time | Latest Finish Time

Fig. 1. Activity node of a timed workflow graph

2.2 Temporal Constraints

Time is expressed in some basic time units relative to a time origin, which is
usually the start of the workflow. In addition, each activity has a duration which,
for simplicity, is assumed to be deterministic. Activity durations and control
dependencies between activities determine the structural time constraints. These
constraints arise from the fact that an activity can only start when its predecessor
activities are finished. In addition, workflow designers may specify explicit time
constraints, i.e., temporal relations between start and end of (different) activities.
These constraints are derived from organizational rules, laws, commitments, and
so on (e.g., an appeal can be filed within 7 days after the verdict, a meeting
invitation has to be sent to all participants at least one week before the meeting).
In particular, the following explicit time constraints can be specified.

— Lower bound constraint (lbc(s,d,d)): The time distance between source
event s and destination event d must be greater than or equal to 4.

— Upper bound constraint (ubc(s,d, d)): The time distance between source
event s and destination event d must be smaller than or equal to §.

2.3 Timed Workflow Graphs

Our time constraint management techniques are based on the notion of a timed
workflow graph, which extends the workflow graph by augmenting each activity
node n with the following!. (Figure 1 shows the representation of such a node.)

— n.E%: The earliest point in time n can finish when the shortest path is
chosen to reach n;

— n.E"¢: The earliest point in time n can finish when the longest path is chosen
to reach n;

— n.L%: The latest point in time n has to finish in order to meet the overall
deadline via the shortest path;

! Since activity durations are assumed to be deterministic, start times for activities
are computed by subtracting their durations from their termination times.
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Fig. 2. Example timed workflow graph

— n.L"¢: The latest point in time n has to finish in order to meet the overall
deadline via the longest path.

Without explicit time constraints, the above values can be computed by ex-
tending the Critical Path Method (CPM) [Phi86] to handle conditional execution
paths [PEL97]. Table 1 shows the actual computations, where d(n) denotes the
execution duration of activity n. E-values are computed in a forward pass, with
the E-values of the starting workflow activity being set to its duration. L-values
are computed in a backward pass, with the L-values of the last workflow activity
equal to its E-values.

Figure 2 shows the timed workflow graph we use in the rest of the paper.
In this graph, activity A is followed by an and-split, having I as the and-join,
and activity B is followed by an or-split, having G as the or-join. The values of
node I show the duration of the workflow, i.e., I.E* and I.E"° indicate that

|FORWARD||best case (bc) |w0rst case (wc) |
sequence E; = E- +4d(j) E; = E- +d(j)
and-join E; = max({E- +d(j)})|E; = max({E- +d(j)})
or-join E; =min({E: +d(j)}) |E; = max({E- +d(j)})
V immediate predecessor 7 of j

|REVERSE ||best case (bc) |w0rst case (wc) |
sequence L; =L, —d(r) L; =L, —d(r)
and-split L; = min({L, —d(7)}) |L; = min({L, — d(7)})
or-split L; = max({L; —d(7)})|L; = min({L, — d(7)})

V immediate successor 7 of j
Table 1. Calculation instructions for timed workflow graphs




the workflow execution may take between 36 and 58 time units. G.E"® indicates
that G may finish after 5 time units (when E follows B), while G.E¥¢ indicates
that no path from A to G should take more than 53 time units. B.L", tells us
that if B is finished at time point 50, the workflow may still be able to terminate
in time. From B.L™¢ we learn that if B is finished at time point 2, we can meet
the overall deadline, irrespective of the conditionals.

3 Incorporating Explicit Time Constraints

Once the timed workflow graph is constructed, we can incorporate explicit time
constraints into it by using the algorithms shown in [EPR99]. Lower bound con-
straints are incorporated during the construction of the timed workflow graph;
they may increase E-values during the forward pass and decrease L-values dur-
ing the reverse pass. On the other hand, the incorporation of upper-bound con-
straints should check for constraint violations; for ubc(s, d,d), s.E+d < d.E and
s.L + 6 < d.L. When a constraint is violated, the E- and L-values of s and d
are shifted in an attempt to satisfy the constraint, with the invariant that an
E-value is not greater than its corresponding L-value.

During the incorporation of explicit constraints the semantics of the E-values
change: the E-values mandate that activity terminations should not occur earlier
than them in order to meet the time constraints. Therefore, the E- and L-values
define the time interval during which an activity has to terminate. This time
interval is referred to as the life-line of the activity.

However, [EPR99] does not discriminate between conditional and uncondi-
tional branches in the computation of worst case E- and L-values. While this
ensures that the execution of the workflow will avoid violating temporal con-
straints when the incorporation algorithm succeeds, it is overly pessimistic. In
particular, there are cases where execution without constraint violation is pos-
sible and the incorporation algorithm does not succeed due to interference of
constraints on mutually exclusive conditional branches, as we show below.

In general, the following issues need to be addressed when we derive timed
graphs that violate explicit time constraints.

1. Checking individual constraints for violation may not be sufficient. As shown
in [EPR99], a set of time constraints may not be satisfiable, even when each
individual constraint is satisfiable. Consequently, the incorporation proce-
dure should consider all constraints together.

2. Checking workflow instance types for constraint violation in isolation is not
sufficient. If two instance types only differ after or-splits, their common ini-
tial activities should have the same E- and L-values. If we cannot find such
E- and L-values in all instance types to satisfy the constraints, then it may
not be possible to schedule the execution of this workflow so that all time
constraints are met. For example, consider two instance types for the work-
flow in Figure 2, where one includes C' and D and results in B.E"¢ = 20
and B.L"¢ = 40, and the other one includes E and results in B.E"® =5
and B.LY¢ = 15. Here, it is not possible to satisfy the time constraints for
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Fig. 3. Path with ube(B, D, 20) and ubc(C, G, 15)

either instance since B is executed in both, and the scheduling information
for B, i.e., valid interval for B to terminate, is contradictory.

3. Incorporating upper-bound constraints using best-case values may not be mean-
ingful. This can be seen by looking at the best-case values of C' and G in
Figure 2. The values of C' do not really contribute to the values of G because
they are dominated by those of F and F. Therefore, checking an upper-
bound constraint between C' and G for the best-case is not possible.

4. Checking violation of upper-bound constraints using worst-case values may
lead to unnecessary rejections when the workflow has conditional branches.
This can be seen by examining the case where ubc(B, D, 20) and ubc(C, G, 15)
need to be incorporated into the timed graph shown in Figure 2. If we
incorporate ubc(B, D, 20) first, then D.L*¢ becomes 22 and, consequently,
ubc(C, G, 15) cannot be satisfied. However, each of these constraints is indi-
vidually satisfiable, as shown in Figure 3, since the path containing C' and
D does not influence the computation of the worst case E- and L-values of
nodes B and G.

4 Unfolded Workflow Graph

To address the time constraint incorporation problems, we construct the unfolded
timed workflow graph. This graph contains exactly the same set of instance types
as the original graph. However, it does not contain or-joins and has several
termination nodes, one for each instance type. Once a workflow graph is unfolded,
we are able to assign different time information to activities in disparate instance
types after their separating split node, and share the same time information for
activities before this node. In this way, explicit temporal constraints that involve
activities in different instance types no longer interfere and, thus, we may be able
to satisfy all of them.

Another advantage of unfolding a workflow graph is that different deadlines,
i.e., worst case E- and L-values, may be assigned to activities belonging to dif-
ferent instance types. Consequently, different deadlines for the final activities of
some instance types may be computed. As shown in [PR97a], combining the dif-
ferent deadlines for disparate instance types with the probabilities of executing
such instance types is beneficial.

Intuitively, the unfolded timed workflow graph is derived from the original
workflow graph by duplicating the graph at or-joins. Therefore, two instance
types share the same nodes before the very first or-split that distinguishes them



Fig. 4. Aggregated workflow graph

and have different nodes for activities thereafter, even for activities shared after
the or-join that merges these instances in the original graph. In practice, however,
the unfolding procedure is more complicated since all unconditionally executed
parallel branches should be closed with and-joins. We explain how this is done
below.

4.1 Unfolding Procedure

The procedure for generating an equivalent unfolded workflow graph U for a
workflow graph G is as follows. First, the start node of G is copied into U. Then
all nodes of GG are visited in topological order. Copies of each node n of G, which
is not an and-join, are inserted into U as many times as there are copies of the
predecessors of n and the nodes are connected accordingly, such that each copy
of node n is connected with exactly one copy of a predecessor of n and vice
versaZ.

If n is an and-join node, then we place a copy of n in U for all valid pre-
decessor combinations. These combinations are computed by constructing all
combinations of copies of predecessor nodes of n in GG, such that in each com-
bination there is exactly one copy of each of these predecessor nodes (i.e., the
Cartesian product of the copies of the respective nodes). Figure 5 shows the
unfolded graph for the workflow graph shown in Figure 4.

After the construction of the unfolded workflow graph, the temporal con-
straints are mapped into this workflow graph. The mapping is done in such a
way that if a constraint with source s and destination d exists in the original
graph (G, then this constraint exists between all copies of s and d that belong to
the same instance type in the unfolded graph U. Once we are done mapping the
constraints, we can compute the timed workflow graph based on the unfolded

2 Copies of G’s or-join nodes have exactly one predecessor node in U and, thus, there
are not or-joins anymore.



Fig. 5. Unfolded workflow graph

graph and then incorporate the temporal constraints using a variation of the
algorithms presented in [EPR99].

While the above procedure addresses the constraint incorporation problems
of Section 3, it suffers from the potential explosion of the number of “duplicate”
nodes in the unfolded graph, since it considers each instance type separately.
This is not desirable when discriminating between instance types is not necessary
because either there are no interfering constraints in these instance types or we
can check the satisfiability of such constraints without unfolding. To address this
problem, we developed the partial unfolding technique.

4.2 Partial Unfolding of Workflow Graphs

Since constraints need not appear in every alternative path, we can unfold the
workflow graph only where it is necessary to check constraints. We call such
partially unfolded graphs “hybrid graphs”. The procedure for partially unfolding
a workflow graph G to a hybrid graph H begins by selecting a hot-node, with the
side effect that all instance types going through the hot-node are factored out,
or intuitively, the workflow graph reachable from the hot-node is duplicated. In
principle, every node can be hot-node. For practical reasons, we require that a
hot-node is an immediate predecessor of an or-join. In the next section we will
show how hot-nodes are chosen, when a time constraint cannot be incorporated.
Once a hot-node is identified, partial unfolding takes place as follows:

1. Copy the original graph G into H;

2. Insert an additional copy of all nodes reachable from the hot-node, together
with a copy of all edges between such nodes;

3. Remove the edge from the copy of the hot-node to it’s original successor and
include an edge to the created copy of the successor node;
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Fig. 6. Partially unfolded graph with ubc(B1, D1,20) and ubc(C1, G2, 15)

4. For all edges from a node n in G, which is not successor of the hot-node, to
an and-join node a in the succession of the hot-node, include a copy in H;

Based on this procedure, we only have to partially unfold the workflow graph
shown in Figure 2 at node D in order to check the satisfiability of ubc(B1, D1, 20)
and ubc(C1,G2,15). Figure 6 shows the resulting partially unfolded graph.

4.3 Computation of the Timed Graph

We first compute the timed graph using structural constraints and any explicit
lower-bound constraints. Then, we attempt to incorporate all upper-bound con-
straints. When an upper-bound constraint is violated, we determine whether its
source and destination nodes are connected via conditionally executed activities
or they belong to the same workflow instance type. Here, we first determine the
hot-nodes, then we partially unfold the workflow graph and, finally, we attempt
the constraint incorporation procedure again.

For checking the satisfiability of time constraints, we extended the algorithm
in [EPR99] to the full nodes (best/worst case). If a constraint ubc(s, d,d) cannot
be incorporated, the algorithm terminates with an error. In this case, we de-
termine a node s’ as the first successor node of s that immediately precedes an
or-join and all paths from s to s’ have the same number of or-joins and or-splits?.
In the same way, we determine node d' for destination node d. If such nodes ex-
ist, we restart the incorporation procedure on the partially unfolded workflow
graph that used these nodes as hot-nodes. Otherwise, either the path has been
unfolded already, or the nodes do not have multiple copies in the unfolded graph.

% Intuitively, we search for the or-join reached from s that joins the conditional branch
through s with its parallel branches and take the immediate predecessor of this or-
.. ,
join as s'.



If a constraint is violated and its source and destination nodes cannot be
used for unfolding, then we check whether there is an overlapping constraint
and perform the unfold for the source and destination nodes of this constraint.
An example for this procedure is given in the workflow shown in Figure 2 and the
constraints ubc(B, D, 20) and ube(C, G, 15). If ube(B, D, 20) is incorporated first,
then ube(C, G, 15) cannot be incorporated since D.LY¢ is 22. Now we take D as
hot-node and partially unfold the workflow graph, computing the timed hybrid
graph, and incorporating the constraints there. The result of this procedure is
the graph shown in Figure 6.

The algorithms for incorporating explicit time constraints in timed workflow
graphs with (partial) unfolding have been implemented in a prototype for an
extended workflow design tool. The prototype accepts workflow descriptions in
the workflow definition language of the workflow system Panta Rhei [EGL9I7],
extended with explicit time constraints. The algorithms for unfolding and par-
tially unfolding workflow graphs as well as the algorithms for computing timed
workflow graphs and incorporating explicit time constraints into these timed
graphs are defined on these process definitions.

5 Related Work

Incorporating explicit time constraints into the modeling and management in-
frastructure of WFMSs has received very little attention from both workflow
vendors and researchers. Among the work that is available in the literature, our
work is closely related to [EPR99,MO99]. In particular, we extended [EPR99]
to explicitly handle temporal constraints associated with conditionally executed
activities by unfolding the timed workflow graph of a process. By doing so, we
are able to avoid many superfluous constraint violations.

In contrast to [MO99], we do not consider time constraints in isolation and
provide solutions for overlapping, interleaving, and interfering constraints. As we
demonstrated in [EPR99], a set of time constraints may be unsolvable (i.e., there
is no workflow instance that does not violate at least one time constraint) even
when every single constraint is solvable in isolation. In addition, our techniques
are pro-active in nature, and they attempt to modify the E- and L-values of
activities in order to make constraints satisfiable.

6 Conclusions

In this paper, we presented a new technique for modeling, checking, and enforcing
temporal constraints in workflow processes containing conditionally executed
activities. Our technique discriminates between time constraints that apply to
disparate execution paths and, thus, it avoids the superfluous time constraint
violations detected by existing techniques that treat these paths similar to those
of unconditionally executed activities. In addition, our graph unfolding procedure
and the incorporation of explicit time constraints into the unfolded graph avoid



the problem of detecting scheduling conflicts when workflow instances are treated
independently of each other.
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