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Abstract

The paper presents an approach to describe the seman-
tics of reusable software components by specifiably chosen
input-output tuples. The initial data basis for such tuples
are test cases. We discuss, how test cases can serve as de-
scriptors for software components. Further, it is shown how
an optimal search structure can be obtained from such tu-
ples by means of supervised learning.
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1. Introduction

Software development with reuse is seen as one of the
most important factors to bring our discipline from crafts-
manship to an industrial level. A basic starting point to
enable reuse is to accumulate valuable assets in software
repositories for later use. However, the larger these libraries
grow, the harder it is to search in them effectively [6, 1, 21].
Some of these difficulties stem from the lack of understand-
ing (1) on what assumptions the structure of the repository
is built, (2) how the components themselves are character-
ized, and (3) how to formulate effective queries conforming
to this characterization.

Restricting application domains certainly helps, but is
not a general solution to the problem, as within domains
the search for reusable components fitting someone’s needs
may also be substantial work. This applies especially for
situations where a repository contains several rather simi-
lar components. The problems mentioned boil down to the
general problem of simply but efficently describing the se-
mantics of software components. In the context of software
repositories, we can distinguish between
librarian sheltered repositories, where a well trained spe-
cialist, the librarian, is responsible for placing assets cor-

rectly into the repository and for helping users to retrieve
them, and
directly accessible repositories, where programmers are
allowed to interact directly with the repository system to
enter components and to retrieve them.

The librarian serves as interface between the structure
and content of the library and the consumers of its contents.
This is seen as an advantage of the librarian sheltered repos-
itory approach. As an expert for browsing, querying and re-
trieving the librarian interprets the vaguely expressed needs
of a searcher and delivers assets fulfilling those needs.

This approach has several drawbacks though. One is the
separation of software developers from the knowledge in
the library and that the developers rely heavily on the li-
brarian’s judgment. It is also not possible for the searcher
to take a quick glance at an asset and “play” around with
it to get a feeling of its functionality. In fact, it is highly
effective to let people browse through available assets and
encourage them to copy asset styles and patterns. Another
aspect is that working time of specialists like the librarian is
valuable and as a consequence their resources are limited.
Hence, it is not recommended to bother them too often, if
the requirements are too fuzzy. On the other hand, if the
librarian is not able to deliver the requested piece promptly,
the requester will get impatient and will not use the services
(and the assets) available again.

With directly accessible repositories, however, the pro-
grammers need intensive training to cope with indexing
structures, keywords, or more sophisticated querying mech-
anisms. To gain long term benefits from a repository, a re-
peated refreshing of all these abilities is also needed.

In both approaches, but specifically with directly acces-
sible repositories, the characterization of components is a
key success factor. In a conventionally organized repository,
assets are organized by descriptors more or less capturing
their semantics. These descriptors usually build some hier-
archy. Such descriptors may be simple keywords, features
[21], or elements from a more sophisticated approach like
the vector space model [12, 23].



To effectively traverse such hierarchies a clear interpreta-
tion of each split-point is required. However, when natural
language is used, a word’s semantics in general is context
dependent and subject to human interpretation. If every-
body generating or analyzing a description departs from an
identical frame of reference, no problem occurs. But this is
not the case if software development for reuse does not hap-
pen within the same context as software development with
reuse [15, 1]. This may lead either to misclassifications or
to an exploding number of descriptors. Domain specificity
helps with these problems but is not a general solution.

Human interpretation of natural language based descrip-
tors is error-prone. Much research effort has been spent
on finding alternatives to keyword based description tech-
niques (cf. [11] for a survey on software libraries and re-
trieval techniques). Due to their rigid semantics, formal
specifications suit very well for capturing the behavior of
software ([6, 25, 10, 13]). When searching for a certain as-
set, the query is formulated as a (partial) specification. The
retrieval process is then performed by conducting a formal
proof that a component’s specification fulfills at least the
needs expressed in the query.

Unfortunately, formal methods in general are not widely
accepted by developers. Thus, it is hard to push reuse con-
cepts and to introduce new formalism at the same time. If
developers are not comfortable with a technique or its ap-
plication within the software development process, all the
effort spent on building up a valuable repository vanishes.

The formal nature of software requires some rigid de-
scription though. To overcome the (emotional) bottle-
neck described, we have to consider an alternative for fine
grained search. Nevertheless such approaches have to be
free from the need for human interpretation, while allowing
software developers to retrieve components without exten-
sive training in an intuitive manner.

This paper deals with component retrieval for reuse. The
context of the work reported here is shown in figure 1. We
do assume that we depart from a large domain specific uni-
verse of components. With informal descriptions [3] and
with generalized signature filtering [5] a coarse grain set of
potential match components is identified. This set is further
filtered according to semantic descriptions based on specific
input-output tuples (data points) yielding a single (or very
few) candidate component(s).

In this paper we focus specifically on fine grained search.
The basic idea is to exploit test cases as initial knowledge
source for representing the functionality of components.
The idea of considering test cases as partial specifications is
also exploited in system analysis and system design [20, 2].
Augmented test cases (data points) are then classified by us-
ing a decision tree algorithm. The resulting hierarchical in-
dexing structure supports interactive searching and brows-
ing without the need for extensive user training.

Coarse grain
candidate setcomponents

domain specific candidate set

informal description

signature

Universe of reusable components

data points

Figure 1. Query refinement for high precision

This paper is structured as follows: First we describe the
requirements for data points to adequately describe the se-
mantics of a repository’s components. Next we check to
which extent these data points satisfy the criteria needed
for applying decision tree algorithms. The approach is then
demonstrated by two examples from different domains.

2. Data Points as Software Descriptors

2.1. Basic Principle

We depart from the work of behavior sampling [19, 8],
where retrieval of components is based on the inherent prop-
erty of software which distinguishes software from other
types of information: its executability. In behavior sam-
pling, a query is formulated as a set of input-output exam-
ples, representing the main characteristics of the function-
ality searched for. The repository system then selects all
components with respect to the interface signature induced
by the examples. The next step is to execute these compo-
nents on the input specified by the examples. If the output
of the executed asset matches with the specified output of
the examples, this asset is added to the candidate-set.

The basic idea of behavior sampling is very promising,
because the searcher is only concerned with the behavior
of a component and must not bother with the interpreta-
tion of keywords or the structural aspects of the repository.
Its main drawback, though, is that components need to be
executed during the retrieval process. Thus, browsing the
repository becomes inherently difficult. Furthermore, build-
ing and maintaining an execution engine for all components
might outweigh the benefits of the library.

We strive to overcome these drawbacks by shifting exe-
cution from the time of retrieval to the time of storing com-
ponents [14]. Based on the claim that reusable components
have to be of superior quality one can assume that they are
carefully tested. These test cases represent a substantial
cross section of a component’s functionality and could serve
as a special form of description. Following the approach of
behavior sampling we consider this data as execution his-
tory to be exploited instead of executing the component ev-
ery time a query is entered.



Let us mention here one important thing. Behavior sam-
pling tries to describe components according to their be-
havior based on input-output relations. Therefore, it is suf-
ficient to have input-output pairs available, which are able
to distinguish between various components. Testing on the
other side is concerned with analyzing input-output tuples
to state the quality of one component. This leads to the con-
clusion that indeed testing is not enough to determine the
unique behavior of reusable components. But a portion of
the test data of similar components (in the sense of signa-
tures) can be sufficient to distinguish between components.

2.2. How to search

Obviously, it is impossible for a searcher to have a pre-
sentiment of the queries covered by the test data. Never-
theless, the searcher has to be in a position to formulate
adequate queries or to conduct an efficient dialog with the
system. But how can this dialog be guided in a behavior
driven search mechanism? We do so by taking the initia-
tive and offering the searcher examples, changing the search
process to a browsing one. In doing so, the searcher judges
the importance of an example presented. If the offered be-
havior is covering the functionality searched for, the search
is continued. If not, the searcher tracks back to the selec-
tion point of a previous decision and evaluates it once more.
So the search is guided by browsing through the stored be-
havior and therefore the tuples presented should be highly
discriminative and easily interpretable. To offer good exam-
ples to the searcher, the whole set of the test data must be
analyzed and structured according to the available compo-
nents. This task is accomplished by automatic classification
performed by an supervised learning mechanism.

The following section describes the conceptual organi-
zation of the repository. Since test cases generally are not
well suited to serve this purpose the next two sections dis-
cuss some preconditions which must be fulfilled to allow
automatic classification. These preconditions then affect the
technical infrastructure of the repository as well as the test
environment and the components themselves.

2.3. Repository Structure

The index structure of the repository must reflect the spe-
cial needs arising from a case based description. Following
the ideas of [24] we cluster the repository into partitions
with respect to the signatures of all reusable components.
Thus, a partition �p contains assets which conform with
the signature p only. However, to allow a higher level of re-
call we use generalized signatures by extending the ideas of
[17] and [24]. A generalized signature describes the coarse
structure of a signature, respecting application semantics,
but neglecting implementation details [15].

Starting point is an analysis of the data types of a signa-
ture, their qualification (the name of the parameter, the lo-
cal position within the signature and the passing mode IN,
OUT or INOUT) and their relation to other already known
types. On the basis of type equality relations we analyze
concrete signatures of procedural code and reduce them to
function types [5]. These function types are flat represen-
tations of signatures in the sense that structures are disin-
tegrated. Function types then are ordered in a lattice-like
structure to allow for relational queries against the structure.

Up to now, occurring ambiguities have been resolved by
a human expert according to the special needs stemming
from the repository structure. This is similar to the proposal
of [4], where it is a developer’s or a librarian’s duty to an-
notate signatures with an abstract annotation for describing
special properties. In our approach, every time a new gen-
eralized signature is added to the index, it must be judged
to use an existing one or to build a new one. The following
example demonstrates this process with a simple signature
built on basic types.

Example: If it is not important to distinguish between
the C-data types long and double, these types are
considered as substitutable. E.g. a C-function double
fx1(long y) and a C-function long fx2(double
z), might be in the same partition because both conform to
the same generalized signature �number � number�. �

On the basis of generalized signatures the repository is
divided into partitions: for every signature �p there exists
an attached partition. An entry to a partition is then a com-
ponent package containing one or more components (if they
behave identically) and all the test data necessary to distin-
guish the behavior of one component from all other compo-
nent packages in that partition.

2.4. Choosing Data Points

Data points serve as descriptors for reusable software
components. The main source for data points are test cases,
which are available for free from the quality assurance pro-
cess. But testing is primarily not performed to describe the
behavior of software but to reveal faults and to raise the
level of confidence in a component’s quality. To be value-
able for component description, a test suite should be able to
discriminate cj from the universe of all other possible func-
tionalities in �p. During the testing process, a vast amount
of test data is generated. For the classification itself, only
a narrow, but well chosen cross section of that data is suf-
ficient. Hence, within the large set of given examples (test
cases) useful ones are likely to be found, i. e. characteristic
input-output tuples. Characteristic tuples strive for stimu-
lating unique behavior such that on entering equal input for
different components, they calculate different output [14].



However, one has to acknowledge that data points re-
sulting from quality assurance are defined with focus on a
specific component. Discrimination against the universe of
all possible functions in �p is rather an illusionary vision.
Here, we have to consider the component in the specific
context of other assets in �p and full discrimination must
be guaranteed. To do so, additional data points for dis-
crimination are needed. To obtain this automatically, we
want to make sure that the components in the classification
database have been executed with all inputs of that partition
�p. (Note: �p contains assets with equal signatures). We
refer to this property as initial completeness of the classifi-
cation base. Initial completeness is also important for the
classification algorithm we will describe later on.
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Figure 2. A description of a library’s partition

In figure 2 a sketch of the structure of a partition �p is
shown. Here n components c���j��n are indexed, all of them
executed with all given m inputs i���k��m. The result ok�j �
cj�ik� of each test is entered into the corresponding place
in the matrix. Hence, the pair �ik� ok�j� is an example of the
behavior of cj . Column j contains the set of output values
computed by cj . The matrix obtained serves as fine grained
description of the sub-universe of components satisfying a
particular signature.

2.5. Repository Maintenance

Repositories are not built only once and don’t stay un-
touched forever. They are intended to be a long term invest-
ment and therefore content and structure must be adapted to
reflect changing needs. During the life time of the reposi-
tory new components are added repeatedly and likewise as-
sets are removed. These operations erode the existing clus-
tering and indexing structure. If a component is added, the
available inputs of that partition must be analyzed concern-
ing the ability to generate discriminating behavior. If no
discriminating power for the added components is found on
the basis of the available test data, new classification cases
must be entered. Otherwise, as a result either ambiguous
or incomplete descriptions and consequently classifications
with a small degree of discrimination are produced. This

situation is sketched in Figure 3. Here, three added com-
ponents do not completely fit into the data point space of
the existing partition. As a consequence, new classification
cases (indicated by the hatched area) have to be added to the
data base. This leads to the following questions: (1) How
can we retest the initial components on the new input and
(2) how can we ensure that new components are tested with
respect to the existing input in the repository.
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Figure 3. Maintenance of partition

After adding new assets to a keyword based repository
systems , a reindexing process updates the search paths. In
our case this is not sufficient, since every component added
not only enriches the description set with new tuples, but
adds new descriptor tuples to already existing components!
This effect may invalidate the existing indexing structure.
As a consequence, simple reindexing after adding the new
test cases is not sufficient. First, all missing tuples for al-
ready existing components must be generated, and second,
test data of the fresh components must be completed. If
these steps are performed, reindexing (reclassification) is
easy and generates a correct indexing structure.

The whole process of generating correct descriptions for
all components within that particular partition must be re-
peated from time to time and then a reindexing has to be
maintained. This impacts the testing process itself, such
that from a tester’s perspective unnecessary tests for reuse
purposes have to be conducted. To support the maintenance
of the repository, test environments and test beds are an in-
tegral part of the reuse package. If the expected rate of com-
ponent fluctuation is low, the knowledge for future reindex-
ing can be obtained by storing a larger amount of data points
as necessary initially.

2.6. Black Box Test Strategies

Functional domain partition testing [16, 18] is the tech-
nique to generate test cases on the basis of the component’s
purpose. According to the operational profile, tests are de-
signed to split the input domain into different “use cases”
(equivalence classes). The borders of such input partitions



are promising areas when looking for different behavioral
variants included in the requirement, but not fully covered
by the implementation. Functional domain testing is labo-
rious, since it requires to have a complete specification at
hand. Also the potential for automated tests is low.

Random testing, on the other hand, does not bother about
requirements driven input selection. Here, inputs are gener-
ated randomly according to a meaningful distribution. Only
a large number of test cases provides a sufficient test cover-
age. Test case generation is obviously easy (if building the
test oracle is as well).

For classification purposes, domain partition testing and
random testing on their own do not bring full benefit:

Domain partition testing: As domain partition testing
is concerned with determining test tuples revealing com-
ponent behavior, such characteristic pairs seem to be ade-
quate for indexing and classification. Quite often, they have
the nice property that human requesters can easily judge
whether a particular input-output pair is adequate for the
functionality s/he is looking for. But as classification is con-
cerned with comparing features of a candidate with the fea-
tures of other ones, we are also interested in inputs causing
congruent output if executed on different components. We
refer to such inputs as commonality points.

Indeed, it is often the case that components with the same
generalized signature belong to the same application do-
main and therefore significant common input data can be
found for them. E.g. in the realm of mathematical func-
tions, such a commonality point might be the input ’0’. But
in general, the property of having equivalent signatures does
not indicate the semantic proximity, making it difficult to
find commonality points.

Thus, there is an inherent difference between testing dur-
ing the conventional software development process and us-
ing test values as data points for classification. The fo-
cus in classification is discrimination between concrete like
components whereas the focus during testing is discrimi-
nation against the unspecific set of solutions not satisfying
the specification at hand. Hence, data points resulting from
domain partition testing (or whatever was considered as ad-
equate testing strategy) has to be supplemented by further
data points (see Section 2.4). We propose to generate those
by means of random testing.

Random Testing: Algorithms for automatic classifica-
tion demand for a sufficient number of data points. This aim
cannot be achieved by strictly following domain partition-
ing as criterion for data point selection. It can be reached
easily by random testing though.

A serious matter in relying on randomized input is the
fact that the resulting classification structure (not the clas-
sification itself) is hard to understand. As an example, if

you want to determine the behavior of a sine function you
are not interested in purely randomly generated input, but
in specific values, such as �� �

�
� �
�
� �� � � � to recognize the

functionality immediately.
For the reasons given above we combine both ap-

proaches: (1) The specific values obtained from domain
partition testing are usually easy to interpret. Hence, they
enable the reuser to use some of his/her application domain
knowledge, thus helping to understand the classification.
(2) Random testing lacks this feature but generates auto-
matically sufficient data to enable automatic classification.

3. Analyzing data points

This section describes the process of building a classi-
fication structure on the basis of knowledge represented as
data points. Here the technique of supervised learning is ap-
propriate for solving the problem, because all classes (com-
ponents) are known in advance. First, the necessary pre-
conditions are stated and then we check whether they are
fulfilled in the domain of data point analysis. Section 3.2
presents a short introduction to the algorithm we are using
to classify the components.

3.1. Prerequisites for Supervised Learning

Due to the nature of repository classification we decided
to adopt decision trees for analyzing classification data. De-
cision trees have the advantages that (1) their intuitive repre-
sentation helps to understand the result, (2) the construction
process demands the fact base, but no further parameters
from the application domain are necessary, and (3) the error
rate of a classification result is less or equal compared to all
other classification mechanisms [7].

According to [22] the following properties must hold for
a problem field to be suitable for decision tree algorithms.
We briefly describe them and discuss if they are satisfied for
repository classification based on data point descriptors.

Property-value problem description: The problem must
be described by a fixed number of attributes of discrete or
continuous nature.
Classification data analysis: How can we view test data
in terms of attribute-value pairs? For every component we
know the output value on every input available within the
partition. Hence, we can look at the input values as prop-
erties of a component and the computed output as a value
of this property. During initialization the number of input
values is fixed because of the requirement of initial com-
pleteness (stated in section 2.4).

Predefined Classes: All classes (categories) must be
known in advance.



Classification data analysis: A class is an abstraction from
individuals characterized by common properties. In our
case, these properties are input-output values characteriz-
ing components. Therefore, a class in the field of machine
learning is equivalent to the term reusable component.

Discrete Classes: Classes must be disjunct.
Classification data analysis: As we see from the previ-
ous paragraph, (functionally identical) components build a
class, which leads to classes with one member only. The
proposition is therefore automatically fulfilled.

Sufficient Data: The algorithm depends heavily on a rel-
evant amount of data to filter out coincidences.
Classification data analysis: This is accomplished by com-
bining domain partition testing with random testing, as de-
scribed in section 2.6.

Boolean decisions: All decisions are based on relational
operations resting on attribute values. Deeper structures (as
expressions in predicate logic) cannot be handled.
Classification data analysis: Also this precondition is ful-
filled, since every attribute must be instantiated with a value
and no structural relations between the properties are given.

As in our domain of test data analysis all preconditions
are satisfied, we present in the next section the main char-
acteristics of the C5-decision tree algorithm we are using to
analyze the set of data points.

3.2. C5 – Decision trees

The C5- (or See5) Algorithm of Quinlan [22] learns in-
ductively hierarchical rules for determining classes from a
set of attributed examples. It works recursively on the train-
ing set T of examples of classes T � fC�� C�� � � � � Ckg. In
every step three possibilities may occur:

(1) The set of examples T is empty. C5 then generates a
tree leaf, labeled with null.

(2) All examples in T belong to one class Cj . C5 then
generates a leaf, labeled with Cj

(3) The examples in T belong to more than one class.
C5 selects the most informative attribute am and generates
a node labeled with that attribute am. For every value vmi of
am (discrete type) or for a binary split (continuous type) C5
generates an edge labeled with vmi (discrete) or two edges
� am, � am (continuous). The algorithm then determines
the subset tj � T such that the attribute am contains value
vmi (discrete case), (� am, � am in the continuous case).
C5 builds a decision tree with tj n famg and puts this struc-
ture to an edge labeled vmi, respectively �� am, � am�.

C5 is able to classify classes described by continuous
and discrete data. For continuous classes the most informa-
tive input is chosen to ensure a binary split of the class set

allowing a simple navigation in the classification hierarchy
based on boolean decisions (see section 4.1 for details).

Furthermore, C5 offers some nice features, especially the
ability to set the minimum number of cases supporting the
classification. In our context this is always ’1’, since for ev-
ery component the quality of data points ensures, that only
one attribute-value vector supports the classification.

4. Classification Examples

In this section we present two examples. The first one
classifies components in the domain of simple numerical
calculations (continous output). The second one presents
the classification of string predicates (discrete output).

4.1. A segment NUMBER � NUMBER

Here we analyze 32 Modula-3 functions with similar sig-
natures from different packages. The 29 functions from
the Math-package require one input parameter of type
LONGREAL and return LONGREALs. The functions from
the package Pts need a REAL as input and yield REAL as
output. The SwapInt-function reverts the byte sequence
of an arbitrary integer, INTEGER � INTEGER. Hence,
we choose NUMBER � NUMBER as generalized signature
for the partition. All functions are listed in figure 4.

1 Math.exp 12 Math.atan 23 Math.erf
2 Math.expm1 13 Math.sinh 24 Math.erfc
3 Math.log 14 Math.cosh 25 Math.gamma
4 Math.log10 15 Math.tanh 26 Math.j0
5 Math.log1p 16 Math.asinh 27 Math.j1
6 Math.sqrt 17 Math.acosh 28 Math.y0
7 Math.cos 18 Math.atanh 29 Math.y1
8 Math.sin 19 Math.ceil 30 Swap.SwapInt
9 Math.tan 20 Math.floor 31 Pts.FromMM

10 Math.acos 21 Math.rint 32 Pts.ToMM
11 Math.asin 22 Math.fabs

Figure 4. The �NUMBER�NUMBER MODULA-3 segment

The functions are tested with 128 test cases. This proved
to be a sufficient number for a partition populated with 32
functions due to the C5’s information gain based selection
of discriminating attributes. Normally, such a small number
of tests tends to be very fragile with respect to the discrim-
ination. But we designed our test bed to allow for repeated
generation of test data, leading to the given high quality data
points. Albeit, if continuous retesting cannot be established,
the number of test cases must be significantly higher.

Figure 5 shows a small fraction of the test data. Some
symbolic values such as �, �� or error which are also
possible outputs are useful knowledge about component be-
havior and, therefore, they are included in the output space.



Input exp gamma sin � � �

60.45364 23.13051 0.82726 0.00000005 � � �

759.54846 3.88E-56 -493.23063 -0.93741400 � � �

214.51063 0.00E+00 -5529.82350 -0.84772226 � � �

-107.50820 0.00E+00 -4608.86150 0.96978008 � � �

254.84983 0.00E+00 -4406.58105 0.66219540 � � �

-600.62990 4.26E+213 2554.85263 0.97112202 � � �

-220.66893 1.80E+308 4373.35105 0.98276884 � � �

-410.21593 2.12E+54 477.48241 -0.54213460 � � �

21.82793 1.80E+308 4346.32660 -0.44554438 � � �

-881.66637 1.44E-23 -157.53114 -0.72567260 � � �

.

.

.

.

.

.

.

.

.

.

.
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Figure 5. An excerpt from the partition

759.5484572962105 <= -0.937414:
:...254.84982608860264 <= -779:
: :...759.5484572962105 > -Inf:
: : :...-881.6663687430487 <= -1.896022e+09: Swap.SwapInt
: : : -881.6663687430487 > -1.896022e+09:
: : : :...-655.1335755461366 <= 1.570796: Math.floor
: : : -655.1335755461366 > 1.570796: Math.gamma
: : 759.5484572962105 <= -Inf:
: : :...-881.6663687430487 > -Inf: Math.sinh
: : -881.6663687430487 <= -Inf:
: : :...480.9568861754783 <= 0.1272288:
: : :...-655.1335755461366 <= -2.122066e+08: Math.y1
: : : -655.1335755461366 > -2.122066e+08: Math.y0
: : 480.9568861754783 > 0.1272288:
: : :...-655.1335755461366 <= -19.62465: Math.log
: : -655.1335755461366 > -19.62465: Math.log10
: 254.84982608860264 > -779:
: :...254.84982608860264 <= -1.569512:
: :...-364.17556593942084 <= 31.45787:
: : :...117.79561660815057 <= 1.487655: Math.atan
: : : 117.79561660815057 > 1.487655: Math.asinh
: : -364.17556593942084 > 31.45787:
: : :...-655.1335755461366 <= 5.477226e-05: Math.rint
: : -655.1335755461366 > 5.477226e-05: Math.ceil
: 254.84982608860264 > -1.569512:
: :...759.5484572962105 > -1: Math.sin
: 759.5484572962105 <= -1:
: :...117.79561660815057 > 81377.4: Math.expm1
: 117.79561660815057 <= 81377.4:
: :...786.8151975714864 <= 0.9962721: Math.tanh
: 786.8151975714864 > 0.9962721: Math.erf
759.5484572962105 > -0.937414:
:...-655.1335755461366 <= 3.385138e-09:

:

Figure 6. Unformatted classification

These tests are used as case base for the C5 algorithm. To
minimize classification errors we set the certainty factor to
100 percent. The resulting certainty factor depends heavily
on the quality of the test data. Especially, if mandatory do-
main tests are members of the case base which overlap, the
classification precision to a large extent could suffer from
that. If the mandatory values could not be omitted, less clas-
sification precision results. We suggest to strive for domain
tests which do not interfere.

A part of the raw text output of the classification is given
in figure 6. Every decision node is labeled with an in-
put. Hence, here the output space is continuous, a rela-
tional operator divides the output space into two sections.
As an example, consider the root of the tree, labeled with
759.548457. This value determines the input to all func-
tions. If the function’s output o � -0.937414, these
functions are grouped on the left side of the tree, all others
are on the right side.

How does this indexing structure support the search for
a component? If a software developer builds a product and
becomes aware that an important functionality may be in

the repository, s/he has already an imagination about the
behavior. After choosing a signature from the available
ones, the repository system selects a fitting partition. The
search is performed in an interactive manner as a “multiple
choice test”: The input and the corresponding outputs are
presented as a question: “On that given input, which one
of these outputs is correct with respect to your demand?”
According to the searcher’s knowledge (or intuition), s/he
decides which one of the suggested answers is correct and
heads for the next question. After some iterations of re-
peated questions and answers, the correct component, resp.
the lack of such component is recognized.

One search example is shown in figure 7. Here the
searcher looks for a piece of code which allows her/him
to reverse the order of bytes. On the input 759 (since the
searcher knows about the representation of bytes as the dec-
imal places are omitted and the rounding of floating num-
bers) s/he selects the most plausible answer, the path where
the output o � ��. After answering four questions, the
searcher has reached the leaf, even if she/he has not known
the exact behavior of the searched functionality.

SwapInt

254.849826

759.548457

-881.66637

759.548457

-655.13357

o <= -Info > -Inf

o > -779o<= -779

o <= -0.937414 o > -0.937414

o <= -1.896e+09 o > -1.896e+09

Figure 7. Partial NUMBER� NUMBER decision tree

4.2. String predicates

The next small example is located in the domain of string
predicates, were two strings are taken and relational proper-
ties are checked and returned as boolean.

In figure 8 seven C-functions from the ANSI-C standard
library are shown. They all are tested carefully and from the
pool of test data the presented data points are selected. The
input is grouped by brackets, the parameters are separated
by semicolon. The output is either true or false. Please note,
that the last two input pairs (a;a) and (123;123) are
redundant, as the same output behavior for all components
in that segment is generated (;) also. From that example
it is easy to see, that good test cases for checking functional
domain borders may not be good data points for discrimi-
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(a;b) F F F F T F F
(;a) T T F F T F T
(a;ba) T F F F T F T
(abc;xy) F F F F T T F
(;) T T T F F F F
(a;a) T T T F F F F
(123;123) T T T F F F F

Figure 8. A string predicate partition

nating between different components.
The resulting decision tree is shown in figure 9. If the

searcher is looking for a function to check the equality
of two strings, first the example (;a) is presented. The
searcher decides that the empty string is not equal "a" and
so s/he chooses the tree branch "(;a)" = F. The next
question is easy to answer: "(;)" = T leading immedi-
ately to the sought function isEqual.

(;a) = T:
:...(;) = T:
: :...(a;ba) = T: isSubstring
: : (a;ba) = F: isPrefix
: (;) = F:
: :...(a;b) = T: isSmaller
: (a;b) = F: isShorter
(;a) = F:
:...(;) = T: isEqual

(;) = F:
:...(abc;xy) = T: isLonger

(abc;xy) = F: isGreater

Figure 9. String predicate decision tree

The string predicate example shows that also a complex
signature (2 input values) can be handled. The classification
is not affected by complex signatures, neither on the input
side nor on the output side.

5. Discussion

In our approach we classify reusable components ac-
cording to their functional behavior expressed by input-
output values. On the basis of discriminating data points
components can be found without the need for knowing
syntactical details. A similar approach can be found in
the Squeak-Smalltalk system [9], where the method finder
allows to declare examples and the system provides the
searcher with the methods demonstrating the behavior. One
disadvantage of the Squeak method finder is, that if the
searcher does not know certain conventions such as param-

eter naming and parameter ordering, the system can not de-
termine the correct method, although the examples might
be correct. With data point browsing the searcher is con-
fronted with given examples and syntactical details are left
to the system.

Large reusable components containing a rich set of func-
tionality in general have a complex signature. Even in this
case, data point classification is a feasible description tech-
nique. But due to the specific interface of such components
the number of component packages in a partition is not very
high. In such cases, the effort to maintain data points may
outweigh the benefits. Particularly this occurs, if the pre-
filtering done by signature matching narrows the candidate
set in a sufficient manner. Then the searcher is able to iden-
tify the component searched for by looking at conventional
descriptors only.

If components do not behave deterministically, no char-
acteristic data points can be found at first sight. Examples of
such “nondeterministic” components are on one hand meth-
ods of objects, where we rather treat the class in its entirety
than its individual methods. On the other hand, functions
with memory (such as random number generators) are to be
considered.

In both cases nondeterminism is due to internal hidden
states, which are used to calculate the functionality needed.
We suggest two different approaches to handle the problem
of internal state vectors:

(1) The internal input to the componenent is made ex-
plicit by extending the signature. Then the state vector is
part of the function type and data transformations as input-
output tuples are observable.

(2) If it is not feasable to reveal the internal structure
and the read-write operations to internal state vectors, we
analyze the long term behavior of the component in taking
the execution trace into account.

An execution trace is the complete history of input-
output tuples. Internal states figure only in so far, as the
trace has to depart from a legal initial state (e.g. seed of a
random function, initialization of an object) and proceed up
to the current action. However, one has to ensure that re-
indexing operations must not conflict with the sequence of
the trace. Thus, the complete trace has to be represented in
a node. This does not preclude efficient internal representa-
tions of nodes though (prefix-trees).

We have to admit though, that purely indeterministic be-
havior will be difficult to handle if the reuser has not cer-
tain clues about the component needed. In our future work
we are therefore rather focussing on the description of con-
ventional state bearing objects (classes) and on the balance
between easily interpretable data points relative to highly
discriminative data points that do not ring a bell with the
user browsing the repository.



6. Conclusion

Splitting repositories of reusable components according
to signatures leads to relatively small partitions. Each parti-
tion holds components of equal signature, but different se-
mantics. Within this “closed world”, the semantics of com-
ponents can be fully described by means of input-output
data tuples.

The tuples used for classifying reusable components can
be defined for classification purposes only. However, both
for reasons of economy as well as to support ease of inter-
pretation it seems wise to have some of these data tuples
taken from conventional test data suits. To fully discrimi-
nate amongst the components pertaining to a given signa-
ture partition these data points need to be augmented by au-
tomatically generated data. These additional classification
data points are generated by means of random testing.

Using an AI-classification algorithm, balanced and flat
browsing structures can be obtained, so that users identify
components based on their behavior. Thus browsing need
not fully rely on conventional textual descriptions and still
does not need deep knowledge about the repository or its
organization. It is just based on the users domain knowl-
edge and on mapping that domain knowledge onto intu-
itively meaningful data representing partial specifications of
reusable components.
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