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Abstract

This paper presents the Parcel Dispatching System as an e�ective class�
room example for teaching �a� how to �nd the proper objects� �b� the
di�erence between analysis and design objects� �c� advanced concepts like
packaging and collaboration� and� �nally� to provide the students �d� with
a holistic view of object�orientation� The example is introduced as an
instance of the Holistic Nutshell Pattern representing a multi�dimensional
approach by interrelating object�oriented concepts�

� Introduction

Teaching introductory courses on object�orientation �and teaching in general� is
in most cases a bottom up process� Basic concepts are incrementally introduced
one after the other but in relative isolation to each other� The overall view of
the concepts and the relationships between them are introduced later� when
course time gets scarce� Hence� students are only faced with a very narrow view
of system development� After learning di�erent methods for modeling di�erent
object�oriented �OO� views of a system �static� functional� dynamic� and user�
interface view�� the OO�beginner is in most cases not in the position to grasp
the system in its entirety� In general� students at that learning stage are not able
to �get the big picture� and have problems in understanding that all developed
models are just di�erent abstractions of the same system seen from di�erent
vantage points� Lack of time forces instructors in many classroom situations to
present concepts but to talk about their integration only in a general manner
without going into any details� This leaves students alone in struggling with the
complexity of integration�

The Lay of the Land Pattern �	
 focuses on that issue� The goal of this
pedagogical pattern is to introduce a large� complex example early in the course�
even if the students only have basic knowledge� They should �get the big picture�
of the concepts and how they are related�

In many object�oriented analysis� and design methods there is also no clear

and explicit distinction between the analysis and the design phases� The tran�
sition from one phase to another is often blurred and there exists no simple
process model which describes the diverse working pieces step by step� Hence�



examples used in introductory courses should not only be instances of the Lay
of the Land Pattern� but should additionally include some development process
focus� These issues are subsumed within the Holistic Nutshell Pattern described
in section �

This paper is based on a three�dimensional perception of classroom exam�
ples focusing on the development process� the system models involved and the
prerequisite knowledge of the students �cf� section ��� As an example� the Parcel
Dispatching System is presented in section �� We used this example in introduc�
tory courses on OO Systems Analysis and Design� Some issues� why we think
that this example is an e�ective classroom example� are discussed in section 	�
Finally� some conclusions are drawn�

� Dimensions to classify Classroom Examples

When designing classroom examples� one should always have the context of the
example in mind� By context we mean application related issues and situational
issues how to apply the example in a course� The application context is covered
by this section� the situational one is described by the nutshell pattern in section
�

By example related issues we refer to the scope of the example� indicating
which models are involved� which development stages are covered and which
knowledge is required of the students� Hence our framework uses the following
three dimensions to classify examples�

� a development process dimension�

� a system�model dimension�

� and a prerequisite knowledge dimension�

The dimensions sketched above span a three�dimensional space �cf� �gure ��
in which classroom examples should be placed� These three dimensions are
discussed by the following sections�

Additionally� one should also mention that classroom examples are to be
realistic� This sounds trivial� but it isn�t� This requirement is not only a moti�
vational prerequisite but also a prerequisite to allow students not only to aim
for syntactical correctness but also to validate their models against their domain
understanding� Hence� the examples need to be real but not too complex� They
should allow to build correct initial abstractions that can be re�ned further
without relying too much on the students� domain knowledge�

��� Development process dimension

An example should always be designed with some development process focus
��
 in mind� The aim is not to teach the students about processes or process
models� but to show them that objects built at di�erent development stages
represent inherently di�erent things �
�

Objects within an analysis model are abstractions of real world objects� The
focus when modeling analysis objects is the real world or the problem domain�
Hence analysis objects are part of the problem space and represent the �problem
related� requirements for the system to be developed�
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Figure �� The multidimensional space covered by a classroom example

Objects within a design model are abstractions of the implementation to be
built� The focus here is the implementation� Hence design objects are part of
the solution space� Building a system design also means that the designer has
to consider the desired systems architecture� interfaces to existing systems and
possibly using design patterns or reusing existing objects� Hence design objects
represent the technical requirements for the system to be built�

One could easily imagine� that a one�to�one mapping from analysis objects
to design objects can not always be established� as they are built with a di�erent
focus in mind and represent di�erent things� Hence� students should be aware
that real world objects� analysis objects� design objects� and objects constitut�
ing the source code of the implemented system are identi�ed and treated in a
di�erent way�

When considering development processes like the Uni�ed Process ��
� this
awareness becomes more and more important because of the iterative nature of
the process and because of the parallel deployment of the development phases
�called Core Work�ows in the Uni�ed Process terminology��

Hence� when describing examples� the phases of the development process
covered should be stated�

��� Prerequisite knowledge dimension

This dimension states to which extent knowledge of object orientation is required
of the students� The range can be spanned from no knowledge at all to detailed�
advanced knowledge of several concepts�

Introductory examples in object�orientation will require no previous OO
knowledge at all but at least some programming skills in procedural languages
and�or knowledge of concepts like abstract data types� information hiding and
so on� For examples concluding an bottom up oriented course� the concepts
already known by the students and required by the example should be stated�
Hence the range of this dimension can be a very broad one�





��� System Model Dimension

When designing object�oriented systems according to methods like OMT ��
�
UML ��
 or others� one has to consider the di�erent models or views of the
system and the dependencies among them� In most object oriented methods a
static� dynamic and functional model exists�

For classroom examples it should be stated� which model�s� the example is
focusing on� If two or more models are involved� it is also important to know�
which relationships between the models are covered by the example� e�g� using
a functional model to identify and assign methods to classes in the static model�

� The Holistic Nutshell Pattern

The issues raised in section � are resumed within the Holistic Nutshell Pattern�
It is described using the format of the pedagogical patterns project ��� 	
�

NAME Holistic Nutshell �Holistic in the small�

PURPOSE During introductory courses� students should get the big picture
and gather the understanding that all development models are di�erent
snapshots of the same system� They should also get awareness of the
di�erence between the di�erent development phases� e�g� the di�erence
between analysis and design objects�

SOLUTION The aim of this pattern is to clarify the di�erence between various
system views� how to develop these views towards an OO�implementation�
and how to evolve the product with respect to the software life cycle� A
further side e�ect is to stabilize the ability to model and design in an
object�oriented manner� to evaluate design tradeo�s� and to introduce
advanced concepts like packaging and collaboration�

CONTEXT�USAGE This pattern is intended as a learning unit after the
introductory chapters to object�orientation� It should be applied in a con�
text of at least � units� Students form groups from  to 	 persons� The
�rst � units are dedicated to classical OO conceptual modeling under su�
pervision of the instructor� Then the students try to develop their designs
further and enrich them with the necessary technical details� The review
and re�ecting process are subjects of the last unit�

FORCES This educational pattern fosters a programming�in�the�large approach
as a classroom example� Students learn how to merge di�erent concep�
tual models �views� to a complete system model� and to develop a correct
implementation departing from that system model�

PREREQUISITE KNOWLEDGE Students must already be acquainted
with the basic concepts of object�oriented system modeling� Also basic
programming knowledge is of use� but �uency in OOP is not a necessary
precondition�

NOTES�RESTRICTIONS If students are used to a unidirectional� instruc�
tor focused lecture style with small spoon�fed increments� this example
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does not �t� Because of the self experiencing factor of this pattern� stu�
dents get often stuck with problems concerning detailed questions� The
instructor is then responsible for creating the whole picture� the holistic
view with the students�

RELATED PATTERNS This pattern can be regarded as an extension to
the Lay of the Land Pattern�

EXAMPLE INSTANCES The Parcel Dispatching System described later is
an instance of this pattern�

� The Parcel Dispatching System

In this section� the Parcel Dispatching System example is presented in the for�
mat suggested by the OOPSLA��� Workshop �Quest for e�ective classroom
examples�� It is used at Klagenfurt University during the Systems Analysis and
Design courses of the Computer Science curriculum� It has also been used for
introducing OO methods to practitioners�

��� The Parcel Dispatching System Example

NAME Parcel Dispatching System

PURPOSE To demonstrate design issues� The di�erence between analysis
and design objects can also be easily shown� The problem statement is
intentionally not extremely object�oriented� but it is easy to �nd proper
objects�

PREREQUISITE KNOWLEDGE Basic OO�modeling and conventional pro�
gramming knowledge�

DESIGN The following problem statement describes the behavior of the dis�
patching system �see also �g� � for an schematic overview� we want to
develop� The aim of this system is to control the diverse active parts�
to maintain a history of the activities of the system and to detect occur�
ring anomalies and react in a consistent manner� In the discussion of the
system we focus on the controlling part only�

Incoming parcels circulate continuously on a conveyer belt� Be�
side the belt is a slot located� If this slot is free� the next circu�
lating parcel drops into the slot and a scanner reads the label on
the parcel� The label contains information about the destination
and the type of delivery which can be normal or express�

After this information is gathered� a robot fetches the parcel
and puts it in an appropriate compartment onto a shelf on a
rack� Every destination has two shelves assigned� one for the
normal deliveries and one for express deliveries�

Shelves are emptied by a distributor �a mechanism responsible
for one or more shelves�� If an express parcel is put on an
express shelf� the assigned distributor immediately takes the
parcel from the shelf and takes it to further processing� Normal

	



shelves are �lled by the robot until they run out of capacity� In
that case� the robot�s arm stops and the distributor opens the
locked gate of the shelf and empties it completely� After positive
acknowledgment from the distributor� the conveyer belt starts
over and the robot resumes�

No Ex

D

The parcel dispatching system

Conveyer Belt R

Figure �� The system overview� The conveyer belt holds some parcels� A
parcel is scanned by the integrated scanning mechanism �symbolized by the
eye� in the dispatching slot while the robot �R� puts a parcel in its place
on the shelf� Meanwhile� the distributor �D� empties a shelf�

RESOURCES The problem statement� analysis and design models for the
Parcel Dispatching System� as well as sketched implementation can be
found at
http���rurutu�isys�e�uni�klu�ac�at�pedpattern�

NOTES�RESTRICTIONS This example is an instance of the Holistic Nut�
shell Pattern�

One special issue is the problem of the incompleteness of the problem
statement� Particularly� the starvation problem inherent in this example
is normally detected in the design phase when event traces are modeled� or
already earlier during analysis� This should be discussed with the students
to show them the need for process back tracking and for iterations in the
process model�

��� Developing the System

The following section highlights some issues� problems or hints arising when
solving the example in a classroom situation�

����� Analysis

From the problem statement given above we conclude that the main focus of
the analysis should be on static and dynamic aspects� This is justi�ed due to
the fact that the only �ow we know up to now is concerned with parcels� which
are not undergoing any transformation� but are assigned to di�erent locations
within the dispatching system�
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Static Model We identi�ed twelve di�erent analysis classes which are listed
in table �� This identi�cation can be performed by applying techniques like
CRC �Class Responsibility Cards� ��
�

Class Superclass Attribute

Robot
Arm
Scanner
ConveyerBelt
Parcel destination
ExpressParcel Parcel
NormalParcel Parcel
Distributor
Rack
Shelf destination

capacity
currNum

ExpressShelf Shelf
NormalShelf Shelf

Table �� Identi�ed classes during analysis

The �rst sketch of the static analysis model is shown in �gure � An interest�
ing observation is the fact that the object parcel� which is obviously important
in the analysis phase� can statically not be associated to any other object� Be�
cause the requirements do not state the need for knowing the current location
of a parcel� the information at what point in time a parcel was at what location
in the system is not modeled�

The cardinalities are chosen according to the assumption of the weakest
precondition� Therefore the scope of the analysis model is not restricted unless
more information is available�

Dynamic Model We used scenario technique as a way to understand the
behavior of the most important objects� The students are ordered to sketch
some communication examples and create event traces for visualizing them�
The event trace of �g� � is an example for the normal operation of the system�

After the object is created and initial values for the destination�
type and capacity are entered� it is operationally ready as long as
capacity is available� Now it could accept the message takeParcel�
One of the reactions to this message is to increment the internal
currNum�counter� which holds the number of the parcels stored in
the shelf� If the the maximum capacity is reached� the parcel turns
to the state full and a message is sent to the robot�s arm to stop all
operations� After the request of the robot to start emptying the shelf�
the dispatcher is informed� The dispatcher must unlock the gate of
the shelf and the parcels can be taken� For each piece the dispatcher
takes� the internal counter of the shelf object is decremented� Next
the dispatcher is responsible to lock the gate and after informing the
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Figure � The static analysis model of the system�

robot to resume its work� the shelf object is able to accept further
parcels�

�
A rough sketch for the most important objects is produced� For example� in

�gure 	 one can see the dynamics of the object shelf�

Functional Model The functional model is aimed to reveal the overall func�
tionality expected from the system on the basis of data �ows� Since we identi�ed
only little data processing in this system� the data �ow model of the system is
very simple� We identi�ed the three processes of queuing� assorting� and dis�
tributing a parcel� Although a parcel is handed over to these processes� no
computational transformation is performed on it� For this reason no further
re�nement of the data�ow model is necessary� but the identi�ed process steps
must be detectable in the future system� Hence� the data �ow model is seen as
a speci�cation part and serves as basis for testing and verifying the system later
on�

����� Design

Before starting the detailed design development process� we discuss the impact of
various design criteria on the resulting design models� On the basis of the given
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Figure �� Event trace of normal case of operation�

example we discuss design criteria like extensibility� reusability� maintainability�
or performance and possible tradeo�s among them�

E�g�� when stressing the importance of reusability� every object must be de�
signed to be self�containing and independent as much as possible from other
system parts� This induces the consequence that� in our example� a central
controlling object is responsible for most of the system�s steering and exception
handling� If the contrary� performance is one important goal� such communi�
cation overhead may not be acceptable and each object performs a substantial
part of the system�s logics�

Following that line of discussion� students will become aware of the e�ects
of diverse design criteria� In our opinion it is important to discuss such design
variants to stress the point that there is not �THE� �nal design� The resulting
design model is in fact a product of a multi�dimensional optimization process
and therefore many reasonable solutions may exist�

Static Design Model For our classroom example we chose understandabil�
ity and reusability as high priority design criteria� As a direct consequence
we introduced the design objects Controller and SystemObject� The controller
is in charge for containing the speci�c application logic� which depends on the
speci�c system we want to model� All other functional parts are hidden in the
diverse remaining analysis entities� In doing so� we made a sharp distinction
between domain objects� which have a structure and behavior not changing
rapidly over time� and the application logic� which is the behavior of the whole
system according to the functionality demanded by the user�

Furthermore� some of the identi�ed objects have to be deleted� although they
play an important part in the domain� The main criteria for deleting objects is a
negative answer to the question� Does the object provide structural� behavioral�
or informational use for the to system�

�



robot informed dispatcher informed

emptying

currNum--
getParcel()[currNum>0]

full

takeParcel() [NOT isFull()]

capacious

/currNum++

[isFull()]

startEmptying()

/Dispatcher.empty(self)

unlock()

lock()

new(d c)/currNum := 0

/Arm.stop()

/Arm.resume()

Figure 	� Dynamics of the shelf object�

Parcel

Parcel

Parcel

Assorting

Queueing

Parcel

Distributing

Figure �� The data �ow model of the dispatching system�

Robot and rack are not considered further� because they have no meaning
in the context of parcel dispatching� The scanner itself is not important� but we
recognized that the method scan is indeed part of the arm�s functionality� The
discussion� why we omit the object Parcel can be much more stimulating� But as
we only have to know how many parcels of which type are within the system �in
the shelves� detailed information about what parcel �its object identity� is when
at a certain location� is not required� So we decide to delete the parcel structure�
Furthermore� as the express shelf object is an extension to the normal shelf� the
normal shelf object is recognized as shelf and its structural representation is
assumed by the superclass Shelf�

As a direct side e�ect of the deletion of the classes Robot and Rack the
association from Robot to ConveyerBelt is now reassigned from ConveyerBelt

to Arm�
Figure � summarizes the changes that occurred during the evolution from
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Figure �� Evolving the static analysis model to the static design one�

the analysis to the design model� The resulting static design with respect to the
given design criteria is shown in �gure �� Some of the methods in the objects of
the design model are only understandable when considering the dynamics �see
section ������ and statics in parallel�

Dynamic Design Model Thinking about scenarios� the students may recog�
nize a situation where a parcel of type normal arrives and is put to its compart�
ment correctly� But if no more parcels for that destination will arrive� this shelf
is never emptied� which is normally not intended� Our analysis model allows
such behavior� leading to the discussion of incomplete requirements and how to
rework the analysis and design models developed so far�

With the students we discuss how to prevent parcel starvation� Shelves
should be emptied by a periodical emptying action� analyzing the last access to
all shelves� But the question arises� Which object should be responsible for this
work� During the discussion of this problem �and bringing further aspects of
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Figure �� The static Design Model resulting from the revised Analysis Model

exception handling into the design space�� the existence of a controller object is
justi�ed once more� Alternatively it is also conceivable to shift the responsibility
for periodical emptying to the object Distributor or to the object Shelf�

To foster our main design goal �reusability� we decided to put the responsi�
bility for periodical emptying to the shelf object itself� To enable this approach�
an attribute lastAccess is attached to the object Shelf� This variable is needed
for calculating the storage period of each parcel in its compartment� Addition�
ally� the interval determining the period after which emptying is started must
be speci�ed� We do so in adding a parameter eInt to the new �method of the
shelf object for initializing the internal attribute emptIntervall� The resulting
behavior is modeled in �g� ��

� Pursued Issues

The following issues show� why in our opinion� the Parcel Dispatching System
is an e�ective classroom example for introductory courses�

��� The World is not that OO one always believes

From the modeling perspective� our example is di�erent from �classical intro�
ductory� examples� like those used in ��� �
 and other books� In those examples�
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Figure �� The state chart modeling the dynamics of the object Shelf�

the static model can �easily� be derived by reading the problem statement� but
this is not always the case in real world problem analysis�

Taking a closer look at our example one can see that there is some potential
for students to think more deeply about the problem �eld and conceive serveral
reasonable alternate solutions�

For example� one could identify an object Parcel� Further analysis of this
object will possibly lead to two further decompositions of this object into an
Express Parcel and a Normal Parcel� But after further reconsideration of these
objects and of the problem statement� one should come to the conclusion that
Parcel is not an object of the system� but data to be processed resp� a message
to be passed�

��� Analysis Objects vs� Design Objects

As stated in section �� the development process dimension is also considered
when designing classroom examples� We pay attention to this issue� when dis�
cussing di�erent design solutions departing from the analysis model of our exam�
ple� The basis for this discussion is an understanding of several design criteria
and strategies� For criteria one could think of reusability� maintainability� per�
formance� the use of several design patterns etc� Some of these criteria are
indi�erent� complimentary� or contradictory to other criteria� These discussions
should not be pursued in depth� but students should gain an awareness that
analysis objects need not necessarily be identical to design objects� They may
be changed or replaced by other concepts�

Within our example� there are several points of discussion� The Controller
�see the resources mentioned in section ���� object for example� is an object
not appearing in the analysis model� It covers� among others� the functionality
of a shelf to stop the conveyer belt and the robots arm if its capacity limit is
reached� Hence� within the design model� the Shelf object is changed and an
additional design object �the Controller�� responsible for exception handling� is
introduced�

Following other design criteria� like responsibility driven design ��
� there
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would be no Controller object�

��� Further Design and Implementation Issues

When extending the scope of the example on the development process dimension
to the implementation� several further issues like packaging or collaborations can
be discussed with the students�

��� Three Dimensions

� As described in the previous sections� the example covers the analysis as
well as the design phase of the development process� hence it satis�es at
least two phases of the process dimension� It can easily be extended to
the implementation level as well�

� The example contains a static� dynamic and functional view� Therefore
the lecturer can easily shift the focus on the system models dimension if
needed�

� Concerning the prerequisite knowledge dimension� the example contains
various parts�issues demanding knowledge at di�erent levels from the stu�
dents�

Basic knowledge in object�orientation is su�cient to identify most of the
classes� Taking the Parcel class into account� a discussion about class vs�
value can be pursued to strengthen these basic skills� Also identifying
further abstraction concepts like aggregation or generalization �e�g� Shelf
or Robot� can be performed by beginners�

Medium knowledge is required for issues like determining the systems
boundary during analysis �e�g� is the Scanner part of the system or not��

Detailed knowledge and some experience in OO development is necessary
for tasks like �nding and assigning methods to classes� This is due to the
fact� that this task can only be accomplished by continuously integrating
the di�erent views of the system� Another issue is that incomplete require�
ments forces the students to iterate the whole development process more
than one time raising issues like con�guration and version management�

The Parcel Dispatching System� when placed within our framework �cf� �g�
ure �� would result in a three�dimensional �gure� We refer to such examples
as three�dimensional classroom examples� We claim that e�ective holistic class�
room examples should cover the three dimensions of our framework� Which of
them are speci�cally stressed is at the instructors discretion�

� Conclusions

In this paper the Holistic Nutshell pattern was presented� Designing classroom
examples by following this pattern leads to three�dimensional examples� We
claim that teaching OO in three dimensions is one way to provide the learner
with a holistic view of object�oriented system development�
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An instance of this pattern� the Parcel Dispatching System� was presented as
a classroom example for introductory courses in object�orientation� It is a three�
dimensional example� as it covers several phases of the development process as
well as several system models� It requires basic knowledge of the learner�
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