
The Nutshell Pattern

A holistic Approach to Object�Orientation

Helfried Pirker� Heinz Pozewaunig� Roland T� Mittermeir
Universit�t Klagenfurt

Institut f�r Informatik�Systeme
Universit�tsstra�e �	��
� ��� Klagenfurt� Austria

�helfried� hepo� mittermeir��i��uni�klu�ac�at

Abstract

This paper presents the Parcel Dispatching System as an e�ective class�
room example for teaching �a� how to �nd the proper objects� �b� the
di�erence between analysis and design objects� �c� advanced concepts like
packaging and collaboration� and� �nally� to provide the students �d� with
a holistic view of object�orientation� The example is introduced as an
instance of the Holistic Nutshell Pattern representing a multi�dimensional
approach by interrelating object�oriented concepts�

� Introduction

Teaching introductory courses on object�orientation �and teaching in general� is
in most cases a bottom up process� Basic concepts are incrementally introduced
one after the other but in relative isolation to each other� The overall view of
the concepts and the relationships between them are introduced later� when
course time gets scarce� Hence� students are only faced with a very narrow view
of system development� After learning di�erent methods for modeling di�erent
object�oriented �OO� views of a system �static� functional� dynamic� and user�
interface view�� the OO�beginner is in most cases not in the position to grasp
the system in its entirety� In general� students at that learning stage are not able
to �get the big picture� and have problems in understanding that all developed
models are just di�erent abstractions of the same system seen from di�erent
vantage points� Lack of time forces instructors in many classroom situations to
present concepts but to talk about their integration only in a general manner
without going into any details� This leaves students alone in struggling with the
complexity of integration�

The Lay of the Land Pattern �	
 focuses on that issue� The goal of this
pedagogical pattern is to introduce a large� complex example early in the course�
even if the students only have basic knowledge� They should �get the big picture�
of the concepts and how they are related�

In many object�oriented analysis� and design methods there is also no clear

and explicit distinction between the analysis and the design phases� The tran�
sition from one phase to another is often blurred and there exists no simple
process model which describes the diverse working pieces step by step� Hence�

examples used in introductory courses should not only be instances of the Lay
of the Land Pattern� but should additionally include some development process
focus� These issues are subsumed within the Holistic Nutshell Pattern described
in section �

This paper is based on a three�dimensional perception of classroom exam�
ples focusing on the development process� the system models involved and the
prerequisite knowledge of the students �cf� section ��� As an example� the Parcel
Dispatching System is presented in section �� We used this example in introduc�
tory courses on OO Systems Analysis and Design� Some issues� why we think
that this example is an e�ective classroom example� are discussed in section 	�
Finally� some conclusions are drawn�

� Dimensions to classify Classroom Examples

When designing classroom examples� one should always have the context of the
example in mind� By context we mean application related issues and situational
issues how to apply the example in a course� The application context is covered
by this section� the situational one is described by the nutshell pattern in section
�

By example related issues we refer to the scope of the example� indicating
which models are involved� which development stages are covered and which
knowledge is required of the students� Hence our framework uses the following
three dimensions to classify examples�

� a development process dimension�

� a system�model dimension�

� and a prerequisite knowledge dimension�

The dimensions sketched above span a three�dimensional space �cf� �gure ��
in which classroom examples should be placed� These three dimensions are
discussed by the following sections�

Additionally� one should also mention that classroom examples are to be
realistic� This sounds trivial� but it isn�t� This requirement is not only a moti�
vational prerequisite but also a prerequisite to allow students not only to aim
for syntactical correctness but also to validate their models against their domain
understanding� Hence� the examples need to be real but not too complex� They
should allow to build correct initial abstractions that can be re�ned further
without relying too much on the students� domain knowledge�

��� Development process dimension

An example should always be designed with some development process focus
��
 in mind� The aim is not to teach the students about processes or process
models� but to show them that objects built at di�erent development stages
represent inherently di�erent things �
�

Objects within an analysis model are abstractions of real world objects� The
focus when modeling analysis objects is the real world or the problem domain�
Hence analysis objects are part of the problem space and represent the �problem
related� requirements for the system to be developed�

�

Process

Basic

Implementation

Analysis

Design

Static

Dynamic

Functional

User Interface

Advanced

Prerequisite Knowledge

Involved System Models

Figure �� The multidimensional space covered by a classroom example

Objects within a design model are abstractions of the implementation to be
built� The focus here is the implementation� Hence design objects are part of
the solution space� Building a system design also means that the designer has
to consider the desired systems architecture� interfaces to existing systems and
possibly using design patterns or reusing existing objects� Hence design objects
represent the technical requirements for the system to be built�

One could easily imagine� that a one�to�one mapping from analysis objects
to design objects can not always be established� as they are built with a di�erent
focus in mind and represent di�erent things� Hence� students should be aware
that real world objects� analysis objects� design objects� and objects constitut�
ing the source code of the implemented system are identi�ed and treated in a
di�erent way�

When considering development processes like the Uni�ed Process ��
� this
awareness becomes more and more important because of the iterative nature of
the process and because of the parallel deployment of the development phases
�called Core Work�ows in the Uni�ed Process terminology��

Hence� when describing examples� the phases of the development process
covered should be stated�

��� Prerequisite knowledge dimension

This dimension states to which extent knowledge of object orientation is required
of the students� The range can be spanned from no knowledge at all to detailed�
advanced knowledge of several concepts�

Introductory examples in object�orientation will require no previous OO
knowledge at all but at least some programming skills in procedural languages
and�or knowledge of concepts like abstract data types� information hiding and
so on� For examples concluding an bottom up oriented course� the concepts
already known by the students and required by the example should be stated�
Hence the range of this dimension can be a very broad one�

��� System Model Dimension

When designing object�oriented systems according to methods like OMT ��
�
UML ��
 or others� one has to consider the di�erent models or views of the
system and the dependencies among them� In most object oriented methods a
static� dynamic and functional model exists�

For classroom examples it should be stated� which model�s� the example is
focusing on� If two or more models are involved� it is also important to know�
which relationships between the models are covered by the example� e�g� using
a functional model to identify and assign methods to classes in the static model�

� The Holistic Nutshell Pattern

The issues raised in section � are resumed within the Holistic Nutshell Pattern�
It is described using the format of the pedagogical patterns project ��� 	
�

NAME Holistic Nutshell �Holistic in the small�

PURPOSE During introductory courses� students should get the big picture
and gather the understanding that all development models are di�erent
snapshots of the same system� They should also get awareness of the
di�erence between the di�erent development phases� e�g� the di�erence
between analysis and design objects�

SOLUTION The aim of this pattern is to clarify the di�erence between various
system views� how to develop these views towards an OO�implementation�
and how to evolve the product with respect to the software life cycle� A
further side e�ect is to stabilize the ability to model and design in an
object�oriented manner� to evaluate design tradeo�s� and to introduce
advanced concepts like packaging and collaboration�

CONTEXT�USAGE This pattern is intended as a learning unit after the
introductory chapters to object�orientation� It should be applied in a con�
text of at least � units� Students form groups from to 	 persons� The
�rst � units are dedicated to classical OO conceptual modeling under su�
pervision of the instructor� Then the students try to develop their designs
further and enrich them with the necessary technical details� The review
and re�ecting process are subjects of the last unit�

FORCES This educational pattern fosters a programming�in�the�large approach
as a classroom example� Students learn how to merge di�erent concep�
tual models �views� to a complete system model� and to develop a correct
implementation departing from that system model�

PREREQUISITE KNOWLEDGE Students must already be acquainted
with the basic concepts of object�oriented system modeling� Also basic
programming knowledge is of use� but �uency in OOP is not a necessary
precondition�

NOTES�RESTRICTIONS If students are used to a unidirectional� instruc�
tor focused lecture style with small spoon�fed increments� this example

�

does not �t� Because of the self experiencing factor of this pattern� stu�
dents get often stuck with problems concerning detailed questions� The
instructor is then responsible for creating the whole picture� the holistic
view with the students�

RELATED PATTERNS This pattern can be regarded as an extension to
the Lay of the Land Pattern�

EXAMPLE INSTANCES The Parcel Dispatching System described later is
an instance of this pattern�

� The Parcel Dispatching System

In this section� the Parcel Dispatching System example is presented in the for�
mat suggested by the OOPSLA��� Workshop �Quest for e�ective classroom
examples�� It is used at Klagenfurt University during the Systems Analysis and
Design courses of the Computer Science curriculum� It has also been used for
introducing OO methods to practitioners�

��� The Parcel Dispatching System Example

NAME Parcel Dispatching System

PURPOSE To demonstrate design issues� The di�erence between analysis
and design objects can also be easily shown� The problem statement is
intentionally not extremely object�oriented� but it is easy to �nd proper
objects�

PREREQUISITE KNOWLEDGE Basic OO�modeling and conventional pro�
gramming knowledge�

DESIGN The following problem statement describes the behavior of the dis�
patching system �see also �g� � for an schematic overview� we want to
develop� The aim of this system is to control the diverse active parts�
to maintain a history of the activities of the system and to detect occur�
ring anomalies and react in a consistent manner� In the discussion of the
system we focus on the controlling part only�

Incoming parcels circulate continuously on a conveyer belt� Be�
side the belt is a slot located� If this slot is free� the next circu�
lating parcel drops into the slot and a scanner reads the label on
the parcel� The label contains information about the destination
and the type of delivery which can be normal or express�

After this information is gathered� a robot fetches the parcel
and puts it in an appropriate compartment onto a shelf on a
rack� Every destination has two shelves assigned� one for the
normal deliveries and one for express deliveries�

Shelves are emptied by a distributor �a mechanism responsible
for one or more shelves�� If an express parcel is put on an
express shelf� the assigned distributor immediately takes the
parcel from the shelf and takes it to further processing� Normal

	

shelves are �lled by the robot until they run out of capacity� In
that case� the robot�s arm stops and the distributor opens the
locked gate of the shelf and empties it completely� After positive
acknowledgment from the distributor� the conveyer belt starts
over and the robot resumes�

No Ex

D

The parcel dispatching system

Conveyer Belt R

Figure �� The system overview� The conveyer belt holds some parcels� A
parcel is scanned by the integrated scanning mechanism �symbolized by the
eye� in the dispatching slot while the robot �R� puts a parcel in its place
on the shelf� Meanwhile� the distributor �D� empties a shelf�

RESOURCES The problem statement� analysis and design models for the
Parcel Dispatching System� as well as sketched implementation can be
found at
http���rurutu�isys�e�uni�klu�ac�at�pedpattern�

NOTES�RESTRICTIONS This example is an instance of the Holistic Nut�
shell Pattern�

One special issue is the problem of the incompleteness of the problem
statement� Particularly� the starvation problem inherent in this example
is normally detected in the design phase when event traces are modeled� or
already earlier during analysis� This should be discussed with the students
to show them the need for process back tracking and for iterations in the
process model�

��� Developing the System

The following section highlights some issues� problems or hints arising when
solving the example in a classroom situation�

����� Analysis

From the problem statement given above we conclude that the main focus of
the analysis should be on static and dynamic aspects� This is justi�ed due to
the fact that the only �ow we know up to now is concerned with parcels� which
are not undergoing any transformation� but are assigned to di�erent locations
within the dispatching system�

�

Static Model We identi�ed twelve di�erent analysis classes which are listed
in table �� This identi�cation can be performed by applying techniques like
CRC �Class Responsibility Cards� ��
�

Class Superclass Attribute

Robot
Arm
Scanner
ConveyerBelt
Parcel destination
ExpressParcel Parcel
NormalParcel Parcel
Distributor
Rack
Shelf destination

capacity
currNum

ExpressShelf Shelf
NormalShelf Shelf

Table �� Identi�ed classes during analysis

The �rst sketch of the static analysis model is shown in �gure � An interest�
ing observation is the fact that the object parcel� which is obviously important
in the analysis phase� can statically not be associated to any other object� Be�
cause the requirements do not state the need for knowing the current location
of a parcel� the information at what point in time a parcel was at what location
in the system is not modeled�

The cardinalities are chosen according to the assumption of the weakest
precondition� Therefore the scope of the analysis model is not restricted unless
more information is available�

Dynamic Model We used scenario technique as a way to understand the
behavior of the most important objects� The students are ordered to sketch
some communication examples and create event traces for visualizing them�
The event trace of �g� � is an example for the normal operation of the system�

After the object is created and initial values for the destination�
type and capacity are entered� it is operationally ready as long as
capacity is available� Now it could accept the message takeParcel�
One of the reactions to this message is to increment the internal
currNum�counter� which holds the number of the parcels stored in
the shelf� If the the maximum capacity is reached� the parcel turns
to the state full and a message is sent to the robot�s arm to stop all
operations� After the request of the robot to start emptying the shelf�
the dispatcher is informed� The dispatcher must unlock the gate of
the shelf and the parcels can be taken� For each piece the dispatcher
takes� the internal counter of the shelf object is decremented� Next
the dispatcher is responsible to lock the gate and after informing the

�

Rack

Express Normal

Distributor

destination

Shelf

capacity
currNum

2..2*n

1..1

Responsibility

0..n 0..1

NormalExpress

Parcel

destination

ConveyerBelt

0..1

attached

1..1

1..1

1..nRobot

ScannerArm

1..1

1..1

0..1

0..n

Figure � The static analysis model of the system�

robot to resume its work� the shelf object is able to accept further
parcels�

�
A rough sketch for the most important objects is produced� For example� in

�gure 	 one can see the dynamics of the object shelf�

Functional Model The functional model is aimed to reveal the overall func�
tionality expected from the system on the basis of data �ows� Since we identi�ed
only little data processing in this system� the data �ow model of the system is
very simple� We identi�ed the three processes of queuing� assorting� and dis�
tributing a parcel� Although a parcel is handed over to these processes� no
computational transformation is performed on it� For this reason no further
re�nement of the data�ow model is necessary� but the identi�ed process steps
must be detectable in the future system� Hence� the data �ow model is seen as
a speci�cation part and serves as basis for testing and verifying the system later
on�

����� Design

Before starting the detailed design development process� we discuss the impact of
various design criteria on the resulting design models� On the basis of the given

�

getParcel()

getParcel()

takeParcel(d t)

isFull()->F

takeParcel(d t)

isFull()->T

stop()

startEmptying()

empty()

unlock()

lock()

resume()

Shelf Arm Distributor

Figure �� Event trace of normal case of operation�

example we discuss design criteria like extensibility� reusability� maintainability�
or performance and possible tradeo�s among them�

E�g�� when stressing the importance of reusability� every object must be de�
signed to be self�containing and independent as much as possible from other
system parts� This induces the consequence that� in our example� a central
controlling object is responsible for most of the system�s steering and exception
handling� If the contrary� performance is one important goal� such communi�
cation overhead may not be acceptable and each object performs a substantial
part of the system�s logics�

Following that line of discussion� students will become aware of the e�ects
of diverse design criteria� In our opinion it is important to discuss such design
variants to stress the point that there is not �THE� �nal design� The resulting
design model is in fact a product of a multi�dimensional optimization process
and therefore many reasonable solutions may exist�

Static Design Model For our classroom example we chose understandabil�
ity and reusability as high priority design criteria� As a direct consequence
we introduced the design objects Controller and SystemObject� The controller
is in charge for containing the speci�c application logic� which depends on the
speci�c system we want to model� All other functional parts are hidden in the
diverse remaining analysis entities� In doing so� we made a sharp distinction
between domain objects� which have a structure and behavior not changing
rapidly over time� and the application logic� which is the behavior of the whole
system according to the functionality demanded by the user�

Furthermore� some of the identi�ed objects have to be deleted� although they
play an important part in the domain� The main criteria for deleting objects is a
negative answer to the question� Does the object provide structural� behavioral�
or informational use for the to system�

�

robot informed dispatcher informed

emptying

currNum--
getParcel()[currNum>0]

full

takeParcel() [NOT isFull()]

capacious

/currNum++

[isFull()]

startEmptying()

/Dispatcher.empty(self)

unlock()

lock()

new(d c)/currNum := 0

/Arm.stop()

/Arm.resume()

Figure 	� Dynamics of the shelf object�

Parcel

Parcel

Parcel

Assorting

Queueing

Parcel

Distributing

Figure �� The data �ow model of the dispatching system�

Robot and rack are not considered further� because they have no meaning
in the context of parcel dispatching� The scanner itself is not important� but we
recognized that the method scan is indeed part of the arm�s functionality� The
discussion� why we omit the object Parcel can be much more stimulating� But as
we only have to know how many parcels of which type are within the system �in
the shelves� detailed information about what parcel �its object identity� is when
at a certain location� is not required� So we decide to delete the parcel structure�
Furthermore� as the express shelf object is an extension to the normal shelf� the
normal shelf object is recognized as shelf and its structural representation is
assumed by the superclass Shelf�

As a direct side e�ect of the deletion of the classes Robot and Rack the
association from Robot to ConveyerBelt is now reassigned from ConveyerBelt

to Arm�
Figure � summarizes the changes that occurred during the evolution from

��

NormalExpress

Parcel

destination

deleted construct

added construct

changed constructExpress Normal

Distributor Rack

SystemObject

state

getState()
reset()
start()
stop

Controller controls

0..n 0..1

ConveyerBelt

Arm

0..n

Scanner

Robot

1..1

1..11..1

1..1

1..n 0..1

0..1

0..n

attached

Shelf

capacity
currNum

Responsibility

0..n 0..1 destination
2..2*n

1..1

0..1

Figure �� Evolving the static analysis model to the static design one�

the analysis to the design model� The resulting static design with respect to the
given design criteria is shown in �gure �� Some of the methods in the objects of
the design model are only understandable when considering the dynamics �see
section ������ and statics in parallel�

Dynamic Design Model Thinking about scenarios� the students may recog�
nize a situation where a parcel of type normal arrives and is put to its compart�
ment correctly� But if no more parcels for that destination will arrive� this shelf
is never emptied� which is normally not intended� Our analysis model allows
such behavior� leading to the discussion of incomplete requirements and how to
rework the analysis and design models developed so far�

With the students we discuss how to prevent parcel starvation� Shelves
should be emptied by a periodical emptying action� analyzing the last access to
all shelves� But the question arises� Which object should be responsible for this
work� During the discussion of this problem �and bringing further aspects of

��

isFull(): BOOL
lock()

startEmptying()
unlock()

takeParcel(d t)
getParcel()

Shelf

destination
capacity
currNum
lastAccess
emptIntervall

new(d c eInt): Shelf

Distributor

new()
emptyShelf(s)

0..n

Controller

InitSystem()

controls

0..1

SystemObject

state

getState()
reset()
start()
stop
new()

Exp shelf

takeParcel()

ConveyerBelt

1..1

R
es

po
ns

ib
ilit

y

0..n

0..1

0..n1..1

0..1 attached 0..n
Arm

takeParcel(d t)
scan()

Figure �� The static Design Model resulting from the revised Analysis Model

exception handling into the design space�� the existence of a controller object is
justi�ed once more� Alternatively it is also conceivable to shift the responsibility
for periodical emptying to the object Distributor or to the object Shelf�

To foster our main design goal �reusability� we decided to put the responsi�
bility for periodical emptying to the shelf object itself� To enable this approach�
an attribute lastAccess is attached to the object Shelf� This variable is needed
for calculating the storage period of each parcel in its compartment� Addition�
ally� the interval determining the period after which emptying is started must
be speci�ed� We do so in adding a parameter eInt to the new �method of the
shelf object for initializing the internal attribute emptIntervall� The resulting
behavior is modeled in �g� ��

� Pursued Issues

The following issues show� why in our opinion� the Parcel Dispatching System
is an e�ective classroom example for introductory courses�

��� The World is not that OO one always believes

From the modeling perspective� our example is di�erent from �classical intro�
ductory� examples� like those used in ��� �
 and other books� In those examples�

��

[currNum<=0][NOT isFull()]

emptIntervall < TODAY]

[currNum<=0][currNum>0]

t

getParcel()

/currNum--

getParcel()

emptying empty

open gate

getParcel()

robot informed

dispatcher informed

/currNum++

full

/Dispatcher.empty(self)
startEmptying()

/Arm.stop()

capacious

[lastAcces +

[isFull()]

unlock()

new(d c)/currNum := 0

lock()
/Arm.resume()

takeParcel()

Figure �� The state chart modeling the dynamics of the object Shelf�

the static model can �easily� be derived by reading the problem statement� but
this is not always the case in real world problem analysis�

Taking a closer look at our example one can see that there is some potential
for students to think more deeply about the problem �eld and conceive serveral
reasonable alternate solutions�

For example� one could identify an object Parcel� Further analysis of this
object will possibly lead to two further decompositions of this object into an
Express Parcel and a Normal Parcel� But after further reconsideration of these
objects and of the problem statement� one should come to the conclusion that
Parcel is not an object of the system� but data to be processed resp� a message
to be passed�

��� Analysis Objects vs� Design Objects

As stated in section �� the development process dimension is also considered
when designing classroom examples� We pay attention to this issue� when dis�
cussing di�erent design solutions departing from the analysis model of our exam�
ple� The basis for this discussion is an understanding of several design criteria
and strategies� For criteria one could think of reusability� maintainability� per�
formance� the use of several design patterns etc� Some of these criteria are
indi�erent� complimentary� or contradictory to other criteria� These discussions
should not be pursued in depth� but students should gain an awareness that
analysis objects need not necessarily be identical to design objects� They may
be changed or replaced by other concepts�

Within our example� there are several points of discussion� The Controller
�see the resources mentioned in section ���� object for example� is an object
not appearing in the analysis model� It covers� among others� the functionality
of a shelf to stop the conveyer belt and the robots arm if its capacity limit is
reached� Hence� within the design model� the Shelf object is changed and an
additional design object �the Controller�� responsible for exception handling� is
introduced�

Following other design criteria� like responsibility driven design ��
� there

�

would be no Controller object�

��� Further Design and Implementation Issues

When extending the scope of the example on the development process dimension
to the implementation� several further issues like packaging or collaborations can
be discussed with the students�

��� Three Dimensions

� As described in the previous sections� the example covers the analysis as
well as the design phase of the development process� hence it satis�es at
least two phases of the process dimension� It can easily be extended to
the implementation level as well�

� The example contains a static� dynamic and functional view� Therefore
the lecturer can easily shift the focus on the system models dimension if
needed�

� Concerning the prerequisite knowledge dimension� the example contains
various parts�issues demanding knowledge at di�erent levels from the stu�
dents�

Basic knowledge in object�orientation is su�cient to identify most of the
classes� Taking the Parcel class into account� a discussion about class vs�
value can be pursued to strengthen these basic skills� Also identifying
further abstraction concepts like aggregation or generalization �e�g� Shelf
or Robot� can be performed by beginners�

Medium knowledge is required for issues like determining the systems
boundary during analysis �e�g� is the Scanner part of the system or not��

Detailed knowledge and some experience in OO development is necessary
for tasks like �nding and assigning methods to classes� This is due to the
fact� that this task can only be accomplished by continuously integrating
the di�erent views of the system� Another issue is that incomplete require�
ments forces the students to iterate the whole development process more
than one time raising issues like con�guration and version management�

The Parcel Dispatching System� when placed within our framework �cf� �g�
ure �� would result in a three�dimensional �gure� We refer to such examples
as three�dimensional classroom examples� We claim that e�ective holistic class�
room examples should cover the three dimensions of our framework� Which of
them are speci�cally stressed is at the instructors discretion�

� Conclusions

In this paper the Holistic Nutshell pattern was presented� Designing classroom
examples by following this pattern leads to three�dimensional examples� We
claim that teaching OO in three dimensions is one way to provide the learner
with a holistic view of object�oriented system development�

��

An instance of this pattern� the Parcel Dispatching System� was presented as
a classroom example for introductory courses in object�orientation� It is a three�
dimensional example� as it covers several phases of the development process as
well as several system models� It requires basic knowledge of the learner�

References

��
 B� Henderson�Sellers and J� Edwards� The Object�Oriented Systems Life
Cycle� Communications of the ACM� ������� � �	�� Sept� �����

��
 I� Jacobson� G� Booch� and J� Rumbaugh� The Uni�ed Software Development
Process� Addison Wesley� �����

�
 H� Kaindl� Di�culties in the transition from oo analysis to design� IEEE

Software� ���	��������� Sept� �����

��
 M� L� Manns� H� Sharp� M� Prieto� and P� McLoughlin� Capturing Suc�
cessful Practices in OT Education and Training� Journal of Object�Oriented
Programming� ����������� Mar� �����

�	
 The Pedagogical Patterns Project � Successes in Teaching Object Technol�
ogy� http���www�li�a�info�unlp�edu�ar�ppp�� �current ������������

��
 J� Rumbaugh� M� Blaha� W� Premerlani� F� Eddy� and W� Lorensen� Object�
Oriented Modeling and Design� Prentice Hall Internationl� �����

��
 J� Rumbaugh� I� Jacobson� and G� Booch� Uni�ed Modeling Language Ref�

erence Model� Addison Wesley� �����

��
 R� Wirfs�Brock� B� Wilkerson� and L� Wiener� Designing Object�Oriented

Software� Prentice Hall International� �����

�	

A Biography of the Authors

Helfried Pirker works as a university assistant at the department of Infor�
matics�Systems at Klagenfurt University� His research interests include
software maintenance� evolution and formal methods� He has three years
of experience in teaching introductory lab courses in software design and
test� database design and formal methods within the Computer Science
curriculum at Klagenfurt University�

Heinz Pozewaunig works as a university assistant at the department of Infor�
matics�Systems at Klagenfurt University� His research interests include
software reuse� system analysis and work�ow systems� He has three years
of experience in teaching introductory lab courses in programming� soft�
ware design and test� database design and system analysis within the
Computer Science curriculum at Klagenfurt University�

Roland T� Mittermeir is professor at the department of Informatics�Systems
at Klagenfurt University� His research interests are in various aspects of
software engineering� He has substantial teaching experience in software
design and object oriented methodology in four continents� The original
version of the �dispatcher example� has been developed for a methodol�
ogy course he taught in the early ���ies at the University of Constantine�
Algeria�

��

