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Abstract.  The object-oriented modeling language UML offers various
notations for all phases of application development. The user is left alone,
however, when applying UML in up-to-date application development involving
distribution, data management, and component-oriented mechanisms.
Moreover, various shortcomings have been encountered, most notably w.r.t.
refinement of model elements throughout the development life cycle and
employment of interaction diagrams to formalize use cases. The paper will shed
some light on how these issues may be handled with UML.

1 Introduction

"When it comes down to it, the real point of software development is cutting code.
Diagrams are, after all, just pretty pictures." [4, p.7]

This opinion is still alive among researchers working in the area of software
development as well as practitioners involved in software projects. Nonetheless, it has
been more and more commonly accepted that the early phases of software
development such as requirements specification, analysis, and design are key to the
successful development and deployment of software systems. Not least due to the
usage of some intuitive but rigor diagrammatic notations representing the artifacts of
these development phases the software development process has been improved
considerably. Object-oriented software development follows the same lines of
thought. From the very beginning of requirements specification on, object-oriented
modeling notations provide intuitive mechanisms for representing the objects and
their interactions for reaching a common goal, namely the required system
functionality.



Several object-oriented modeling notations and methods had been developed in the
late eighties and early nineties (for an overview we refer to [5]). After different
merging efforts and a request for proposal by the Object Management Group, UML
(Unified Modeling Language) was adopted in November 1997 as the official industry
standard for object-oriented software design notations [3, 4].

UML covers several advantages, among which only three shall be mentioned at
this place. First and most importantly, the standardization of UML helps to bypass
notational discussions and to concentrate on the real problems, such as modeling
guidelines and design heuristics, proper development process, and proper tool
support. Second, UML represents the fusion of the Booch method, Jacobson’s
Objectory, and Rumbaugh’s OMT. As such and thanks to Objectory, the very first
step of object-oriented modeling encompasses not the finding of the objects of the
problem domain - as has been the case in most other object-oriented modeling
techniques - but the identification of the system functionality as required by the users.
These so called use cases correspond to what has been depicted in level zero data
flow diagrams known from traditional structured analysis. With use cases it has been
possible both to overcome the "everything is an object and everything taken from
structured development is bad"-mentality and to concentrate at the very beginning of
software development on the user’s requirements, which is just functionality and not
objects. And third, different model views supported by UML allow to comprehend a
complex system in terms of its essential characteristics. These are its system
functionality (use case view), its internal static and dynamic structure (logical view),
its synchronization behavior (concurrency view), and its implementation and physical
layout (deployment view, component view) [3]. We won’t dig into a further
discussion of UML’s goodies, but rather concentrate on suffered pitfalls (which is
more interesting anyway).

The main problems encountered during the development of a web-based calendar
manager [8] are due to UML´s partially sloppy definition of notations, which lack a
precise semantic specification. The main contribution of this paper is to shed some
light on some of these deficiencies and discuss possible workarounds, some of which
may be considered as suggestions of future enhancements of the notation. In the next
section some refinements of UML constructs are discussed. Section 3 concentrates on
the employment of interaction diagrams to formalize use cases. Finally, Section 4
points to the development of data-intensive, distributed applications based on
component technology. Section 5 concludes the paper.

2 Refinement of Models

Development of complex systems based on various model views requires that the
modeled diagrams can be related to each other for the purpose of traceability, i.e.,
connecting two model elements that represent the same concept at different levels of
granularity. In addition, consistency checking between various model views
representing different though overlapping characteristics of the system at hand is a
prerequisite for correct system development. Last but not least, most applications



have to cope dynamically with changing requirements. Thus, various kinds of
evolution mechanisms should be provided by the modeling notation. To adequately
support traceability, consistency checking, and evolution, UML should provide for the
refinement of model elements. In this context, refinement refers to "... a historical or
derivation connection between two model elements with a mapping (not necessarily
complete) between them." [16, p.71]. In the following we will question some of
UML’s refinement mechanisms. We will investigate use case diagrams, class
diagrams, and statechart diagrams. Sequence diagrams are discussed in the context of
use case diagrams, too.

2.1  Refinement of Use Case Diagrams

A use case represents some system functionality. Several use cases together depicted
in a use case diagram make up the whole system to be implemented. To support both
reuse and the stepwise specification of the required functionality, two use case
relationships are provided by UML, the extends relationship, and the uses
relationship. Their precise meaning, however, is only poorly specified.
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Fig. 1. Extends relationship between two use cases

Concerning the extends relationship, in [16, p.78] it is stated that if use case A
extends use case B then an instance of use case B may include the behavior specified
by A. Figure 1 depicts such a use case relationship.  In the object-oriented literature
there are two well-known interpretations for this relationship, which are captured by
the inner concept of Beta and the super concept of Smalltalk, respectively.

In Beta [12], the keyword inner may be placed somewhere within the
implementation of an operation B (in analogy to use case B) of some object class B’.
Within some subclass A’ of B’, the implementation of B may be overridden. During
runtime, if the operation B is invoked on an instance of A’, not only the
implementation of A’ but also the one of B’ gets executed in such a way, that the inner
construct is replaced with the specialized implementation and the such extended
implementation of B is executed (cf. lower left part of Figure 1, where the
implementation of a use case is depicted as a sequence diagram). The inner construct
in Beta specifies an unambiguous place in the implementation of an operation where
to insert specialized code.



In Smalltalk, the keyword super may be placed somewhere within the specialized
implementation of the operation A (in analogy to use case A) of some class A’, and
always refers to the class’ superclass. Forwarding the message to super, it is possible
to invoke the overridden implementation of the respective operation in the superclass
within the specialized implementation of the subclass (cf. lower right part of Figure
1). Again, the exact location of this forwarding plays a crucial role.

Both interpretations rely on the exact definition where the behavior extension takes
place, but this is not possible in UML. Although extension points may be specified in
the original use case (cf. definition of extension points in [17, p.95]), these extension
points are just declared within the elliptic representation of the use case but there is no
referencing mechanism from within the corresponding sequence diagrams.

Concerning the uses relationship, in [16, p.78] it is stated that if use case A uses use
case B then an instance of use case A will also include the behavior as specified by B.
Figure 2 depicts such a use case relationship. Again, in UML the exact interpretation
of this uses relationship is left unspecified. There is no indication in the
implementation of use case A where to include the behavior of B.

For both refinement relationships, probes as defined in Objectory [9] may be used
as a workaround. A probe is a position in the implementation of a use case, i.e., in a
sequence diagram, where an additional behavior can be inserted (cf. lower part of
Figure 2). It should be easy to include an appropriate notation in UML.
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Fig. 2. Uses relationship between two use cases

2.2  Refinement of Class Diagrams

Although the UML standards document states that the details of specifying the
refinement, i.e., the derivation, are beyond the scope of UML [17, p.46], there should
be at least some notational conventions provided to support any of traceability,
consistency checking, and evolution. Especially the evolution from an analysis
document to a design document should be supported. A class diagram is a typical
example of such a "moving target". Object classes, associations, and generalizations
are deleted and added, and multiplicities and directions of associations are changed, to
mention just a few. A recurring pattern of class evolution is shown in Figure 3. There,



a one-to-many association between object class X and object class Y is further inserted
between X and Y.

 X Yα *1

X Y_Set Y
α2

*α11 1

Fig. 3. Refinement of class diagrams

Since the object-oriented paradigm is strong at modeling single objects and
navigation among them but falls short at working with sets of objects, container
classes are heavily used helper classes. In a car reservation system, for example, if
some client wants to reserve a car the availability of all the cars has to be checked to
find the optimal car. This is a typical operation to be invoked on a set of objects,
namely cars. Thus, either the operation is modeled in terms of a class operation or a
container class is inserted holding sets of cars. In the latter case, the availability check
would be invoked on instances of  the container class. Besides constraints, which may
be specified arbitrarily, UML provides no mechanism to annotate the derivation, e.g.,
that association α has evolved into α1 and α2, and the class Y_Set has been inserted.
Bergner et al. have drawn similar conclusions and have suggested extensions to the
refinement notation [1]. To increase standardization and portability, the definition of
the precise semantics of the most common derivation rules should not only be left to
some UML CASE tool designers.

2.3 Inheritance of Statechart Diagrams

Refinement of statechart diagrams is properly supported as far as state refinement is
concerned. State refinement comes in two different flavors, and-refinement, which
implies that the original state is decomposed into a set of parallel substates, and or-
refinement, which implies that the original state is decomposed into a statechart again.
However, the refinement of statechart diagrams must also be seen in the light of the
inheritance of statecharts. The reason is the following. In general, object classes are
organized in class hierarchies, in which subclasses inherit the structure as well as the
behavior of superclasses. As far as the inheritance of behavior is concerned, the
discussion has mainly focused on inheritance of single operations in the past. Object
behavior, however, is specified at two interrelated levels of detail: at the operation
level and at the object class level. The latter is specified in terms of object life cycles
that identify legal sequences of states and state changes, i.e., operations. In UML,
object life cycles are modeled in terms of statechart diagrams, i.e., inheritance of
object life cycles has to be treated in the realm of inheritance of statechart diagrams.



Whereas there exist a common understanding on the inheritance of single operations
in terms of inheriting their signatures and implementations, and specializing them
[18], there exist no common understanding on how to specialize object life cycles in
terms of specializing statechart diagrams and which criteria to follow. The
encountered problems are briefly investigated in the following.

There are several possibilities to inherit and to specialize object life cycles ranging
from no restriction at all, called arbitrary inheritance, to allowing no specialization at
all, called strict inheritance. Whereas the former does not support any notion of
substitutability in the sense that an instance of a subclass can be used when an
instance of a superclass is expected [18], the latter prohibits the specification of new
operations in the subclass at all. Whereas the former notion is too unrestricted to build
reusable and reliable systems, the latter notion is too restrictive. What would be
necessary instead is a common understanding of the notion of consistent inheritance.
Two alternative notions of consistent inheritance prevail: covariance and
contravariance. Covariance requires that input and output parameters be restricted to
subclasses and that pre- and postconditions of operations be strengthened when
operations are redefined for a subclass. Contravariance requires that input parameters
be generalized to superclasses and preconditions be weakened, while output
parameters be restricted to subclasses and postconditions be strengthened. Covariance
is favored by object-oriented modeling methods as it supports the concept of
specialization in the tradition of conceptual modeling and knowledge representation
[13]. Contravariance is favored by programming language folks as it supports strong
type checking in the presence of type substitutability [18].

create
checkAvailability

s1 s2
confirm

s3
consume

s4

sendSorryLetter

pay
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s5 s6
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s7
payCancellationFee

s0

Fig. 4. Statechart diagram of object class RESERVATION plus extensions

Object life cycles may be specialized by extension and by refinement. Extension
means adding states and transitions. Refinement means expanding inherited states into
substatechart diagrams, which consist of newly added states and transitions in turn.
Whereas the latter has been treated more thoroughly in the literature (for an overview,
we refer to [6, 15]), even within the UML standards  document (see below), there is
less attention paid to the former. We will discuss some peculiarities of inheritance by
extension in the following.



Consider the unshaded states of Figure 4, which depict the life cycle of a generic
class RESERVATION (gray shaded states and incident transitions are considered
below). A reservation object is created, the availability of the thing to be reserved is
checked, and the reservation is either confirmed or a sorry letter is sent. After the
reservation is consumed, it has to be paid. Let’s assume a subclass
CAR_RESERVATION, which extends the inherited life cycle in that the signing of an
insurance contract is added (cf. light-gray shaded states in Figure 4). This parallel
extension seems to be most intuitive and a frequently recurring pattern in reality.
Parallel extension implies the covariant notion of consistent inheritance in that both
the postcondition of the inherited transition confirm and the precondition of the
inherited transition pay are strengthened (preconditions and postconditions of
transitions are their prestates and poststates, respectively; in the example:
post(confirm) = {s2} and pre(pay) = {s3} for the superclass, and post(confirm) = {s2, s5}
and pre(pay) = {s3, s6} for the subclass). If one wants to adhere to the notion of type
substitutability, one would have to disregard parallel extension, and support only
alternative extensions in some subclasses. Let’s assume a subclass
RESERVATION_WITH_CANCEL of class RESERVATION, which extends the
inherited life cycle with the possibility to cancel the reservation (cf. dark-gray shaded
states in Figure 4). This alternative extension implies the contravariant notion of
consistent inheritance, in that no inherited conditions and no inherited types of
parameters are changed. The interpretation of covariant and contravariant inheritance
is further elaborated on by Ebert et al. [2] along the following lines: Parallel extension
conforms to covariant inheritance, which implies observation consistency, i.e., any
instance of a subclass may be observed like an instance of a superclass disregarding
the added states and state transitions. Alternative extension conforms to contravariant
inheritance, which implies invocation consistency, i.e., on any instance of a subclass
each operation of the superclass may be invoked disregarding the added states and
state transitions. Observation consistency and invocation consistency exclude each
other. For a detailed discussion and formal proof thereof, we refer to [2, 11, 14].

Extension mechanisms of statechart diagrams are not discussed at all in the UML
standards document. Refinement of statechart diagrams is discussed to that effect that
"... state machine refinement as defined here does not specify or favor any specific
policy of state machine refinement. Instead, it simply provides a flexible mechanism
that allows subtyping (behavioral compatibility), inheritance (implementation reuse),
or general refinement policies.’’ [17, p.117]. With the above considerations in mind,
we would advocate for a more complete notion of inheritance of statecharts within the
realm of UML. More specifically, within the statechart diagram of a subclass, the
inherited parts should be clearly distinguishable from the newly defined ones.
Possible solutions may include shading of inherited states or qualifying state names
with the class names where they have been originally defined.



3 Formalizing Use Cases

A use case provides a high-level, rather abstract notion for representing some required
system functionality. If one wants to show how this use case is realized by the
underlying objects and their interactions, one has to formalize use cases in terms of
sequence diagrams, and collaboration diagrams, respectively. Since sequence
diagrams and collaboration diagrams are deemed equivalent in terms of expressive
power, we concentrate in the following on sequence diagrams. We have extensively
used them in the realm of our calendar management system. Some of the encountered
problems and possible workarounds are discussed in the following.

Concerning class operations, it is not specified how they are represented in
sequence diagrams, besides the special class operation create. Due to the
representation of time in sequence diagrams it is not possible to depict general
purpose class operations like create operations, i.e., leading to the box representing
the object. Instead, it would be possible to borrow class diagram notation and
underline any class operation. Another solution would be to represent the respective
class as an object and thus be able to handle each class operation like any other object
operation. The flaw of both solutions concerns the different notations for class
operations, one for create operations, and one for all the other class operations.

Concerning set operations, the equivalence of multiobjects in collaboration
diagrams has been left out in sequence diagrams. Multiobjects are a convenient
mechanism especially for data intensive applications where sets of objects are
involved. A possible solution to iterate over objects in a set is discussed below.

: Calendar i: Participant c: CV

update()

update()

∀ Participants i

∀ CVs c of Participant i

Fig. 5. Implementation of use case Update_View

Concerning the objective of sequence diagrams, they are used for representing
either scenarios or algorithms. Concerning the former, it is an intuitive way to capture
the main idea of a use case, however, only one possible execution path is depicted. If
one prefers a rather complete specification of the use case’s semantics, one would
have to use sequence diagrams for representing whole algorithms including iterations
and conditional execution paths. In particular, iterations are poorly specified within
sequence diagrams. Consider the sequence diagram in Figure 5, which depicts the
implementation of the use case Update_View within our calendar manager. The
purpose of this use case is to inform all participants of a date that something has



changed, e.g., a date has been inserted, or its begin time has been moved. Thus, the
operation update() is invoked on all participants of the respective date. In the UML
standard document, there is no indication on how to represent messages sent to each
object of a set. We suggest to index the objects of a set by some iteration variable, and
use this index also as object name at the top of the respective lifeline (cf. ∀
Participants i and i:Participant in Figure 5). The nesting of iterations is treated in an
analogous way. Referring to Figure 5, for each participant the message update() is
sent to each client view of that participant displaying his/her personal calendar (cf. ∀
CVs c of Participant i in Figure 5).

: Calendar

: Datecreate()

createNot()

addParticip(PIDi))

add(PIDi)

add(PIDi)
i = 1..n

Update_View

: UI

insertDate(...)

n: Notificationcreate()

Fig. 6. Implementation of use case Insert_Date

Last but not least, concerning the inclusion of component sequence diagrams into
more complex sequence diagrams in analogy to subprogram calls, there is no
discussion thereof in the standards document. We suggest to use probes from
Objectory to precisely specify where and when to include another sequence diagram
(cf. discussion on uses relationship of use case diagrams in subsection 2.1). Figure 6
shows the usage of probes. There, within the implementation of the use case
Insert_Date, the use case Update_View is called. Another extension, which is depicted
in Figure 6, refers to the dynamic creation of a (possibly variable) set of objects and
the interaction with those objects. We borrow the notion of multiobjects from
collaboration diagrams. Messages to multiobjects address the entire set (exhibiting
cascading semantics in general), whereas in order to communicate with a single
element of the multiobject, the former has to be explicitly depicted with a separate
lifeline (not shown in Figure 6). Our system supports at most three notifications per
date. The corresponding multiobject and its elements are constructed by the create
message. For each participant, all notification objects are informed of his existence
via the add message to the multiobject, which is assumed to be cascaded to the
element objects.



4 Component-Based Development

This section on component-based development does not provide any solutions. Rather
its purpose is to give a quick tour on various topics on component-based
development, which all point to open research issues.

Similar to the question posed on objects ten years ago, it has still to be clarified
what a component is all about. The least common denominator may define a
component being a reusable artifact. Thus, it encapsulates certain functionality and
provides a clear notion of interface to use this functionality. Figure 7 depicts two
dimensions to classify components, based on the kinds of artifacts, and on the kinds
of software development phases, where components are reused. Along the artifacts
axis, we may distinguish executable objects, class descriptions, patterns of reusable
knowledge, frameworks in the sense of patterns with inversion of control [10], and
whole executable programs. Along the phases axis, reusability may occur during all
software development phases ranging from requirements specification to
implementation. An interesting topic of research remains to look into each
combination of the two dimensions and investigate their relevance for component
technology in turn.

Programme

Framework

Pattern

Class

Object

Artifacts

Implementation    Design    Analysis  Requ.Spec.
Phases

Fig. 7. Kinds of reusable artifacts

UML supports the notion of components. There, "a component is a reusable part
that provides the physical packaging of model elements.’’ [17, p.45] Thus, in UML a
component is a very low-level, implementation oriented notion. In other words, it is a
physical component, which comprises either source code or executable code.
However, we feel that this is not enough. To explore the whole potential of
reusability, there should be also the notion of a logical component with a clear
interface definition supporting both the notion of a provided interface and a required
interface. Examples thereof exist in the literature. Subsystems in RDD [19] have
contracts, which enclose the provided functionality to the "outside world’’. At the
same time, RDD also supports the notion of collaborators, which are other object
classes necessary to fulfill the functionality of the object class at hand. Thus,
collaborators and their provided operations make up the required interface of the
respective object class.



Another question concerns the packaging of functionality within components.
Components may be fine-grained encapsulating some small functionality, e.g., a sort
algorithm, or they are coarse-grained encapsulating whole applications. Concerning
up-to-date application development including distribution and database functionality,
we also regard components as a possible mechanism to encapsulate various levels of
implementation details and to provide an easy-to-use interface to connect to some
database and to use some underlying distribution mechanism, respectively. We feel
that the component notation provided by UML is by far not sufficient. It seems,
however, that the software development community has not yet agreed upon a
uniform notion of component based development. Thus, defining a standard notation
might be premature at this point of time.

5 Conclusion

"When it comes down to it, the real point of software development is cutting code.
Diagrams are, after all, just pretty pictures." [4, p.7]

The purpose of the paper was to demonstrate that UML in its present state is still
suffering a certain lack of expressive power as well as several weaknesses in its
definitions. Thus, blames of the kind cited above can be hardly refuted at present.
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