
Towards an Automatic Integration of Statecharts

Heinz Frank and Johann Eder

Universit�at Klagenfurt� Institut f�ur Informatik�Systeme
Universit�atsstra�e ������ A���	� Klagenfurt

fheinz� ederg�ifi�uni�klu�ac�at
http���www�ifi�uni�klu�ac�at

Abstract� The integration of statecharts is part of an integration me�
thodology for object oriented views
 Statecharts are the most important
language for the representation of the behaviour of objects and are used
in many object oriented modeling techniques� e
g
 in UML ��	��

In this paper we focus on the situation where the behaviour of an object
type is represented in several statecharts� which have to be integrated
into a single statechart
 The presented approach allows an automatic
integration process but gives the designer possibilities to make own de�
cisions to guide the integration process and to achieve qualitative design
goals

� Introduction

Conceptual modeling of a universe of discourse using an object oriented data
model has two dimensions� the structure of objects and their relationships are
represented in a static model �or object model� and the behaviour of objects is
documented in a dynamic model ���� �� ��	�

Statecharts� introduced by David Harel ������	�� are a popular method
for designing the behaviour of objects
 This concept is used in various design
methodologies� e
 g
 OMT ����	�� OOD ���	� or UML ���� ��	�

View integration is a commonly followed technique for developing a concep�
tual model
 The universe of discourse is described from the viewpoint of di�erent
user groups or parts of the systems resulting in a set of external models
 In a
second step these models are integrated into a common conceptual schema

Many integration methodologies consider only the structure of objects� their
attributes and the relationships between them
 A survey of such approaches can
be found in ��	
 Some approaches also deal with the integration of methods �e
 g

���	� ���	�� but little work as been done concerning the integration of behavioural
models

Preuner and Schre� ����	� discuss the integration of object life cycles
 They
use so called Object�Behaviour Diagrams to represent the behaviour of objects

In di�erence to our approach they assume that states and activities can be
identi�ed by their names
 Common behaviour of objects� described in di�erent
views� can be identi�ed by the names of the constructs
 Con�icts� such as naming
con�icts� must be solved before the integration process
 In our approach states

katja
published in: Proceedings of the 18th International Conference on Conceptual Modeling, ER`99, Springer Verlag, ISBN 3-540-66686-9, pp. 430-444

and transitions are identi�ed by using logical conditions �see section ��
 Of course
we have to deal with naming con�icts� e
 g
 that di�erent events have the same
name
 However� such con�icts do not in�uence the integration process
 They can
be solved even at the end of the integration process
 Furthermore� the usage of
logical conditions allows to automate the integration process

In an earlier paper ����	� we presented an overview of our whole integration
methodology for object oriented views
 For this method we assume that mod�
els have been developed from di�erent perspectives
 Each of these view models
consists of a structural �or static� model and a set of behavioural �or dynamic�
models in form of statecharts �for each type one�
 Our integration methodol�
ogy consists of two major phases� the integration of the static models and the
integration of the dynamic models

The integration of the static models deals with the structural parts �types�
attributes and their relationships to other types�
 The aim of this phase is to
identify and solve con�icts �naming con�icts or structural con�icts� among the
types of the various views
 The result of this integration phase is the common
conceptual static model of the universe of discourse
 Several integration strate�
gies� mainly for the entity relationship model ���	�� were published in the past�
e
 g
 ��� ��� ��� ��� ��	
 Further comparative analysis of view integration method�
ologies were made in ��	 and ���	
 For our methodology we have not yet developed
another strategy for integrating the structural part of types but use already pub�
lished methodologies� mainly that one of Navathe et al
 ����� ��	�

The integration of the static models results in an integrated conceptual
model� a common agreement about types� their internal structure �attributes�
and their relationships
 Afterwards the integration of the dynamic models takes
place
 The input parameters are one integrated type and its various statecharts�
describing the behaviour of this type from di�erent viewpoints
 The aim of this
integration phase is to obtain the common behaviour of this type

For the integration of statecharts we propose two phases�

� The�integration�in�the�large� In this integration phase an overall structure of
the integrated statechart is developed
 All statecharts of the integrated type
are analyzed simultaneously in order to compute an integration plan
 The
integration plan consists of a tree of integration operators
 Each operator has
two statecharts as input and computes a statechart integrating both
 Some
of the integration operators can be performed automatically without the aid
of a designer
 In these cases the statecharts to integrate overlap only on
marginal states �these are start and end states�
 The integration operators
simply merge these marginal states to integrate the statecharts
 The goal
is to develop an integration plan with minimal integration e�ort� i
 e
 with
minimal interactions with the designer

The integration�in�the�large phase was subject of an earlier paper ����	��
where we showed that this integration phase can be performed automatically
without the aid of a designer

� The�integration�in�the�small� According to the integration plan� the integra�
tion operators are carried out step by step
 However� in some situations

we need a more detailed analysis of the involved statecharts and probably
designer decisions

The scope of this paper is the integration�in�the�small
 We concentrate on
the situation where we have to deal with one integrated type whose behaviour is
described by two di�erent statecharts
 The result is the integrated statechart
 In
this paper however� we omit some formal details and proofs
 Interested readers
are refered to ��	 and ���	

The paper is organized as follows� In section � we present an overview of
the data model we use and discuss some extensions we made to the statechart
language
 In section � an example from the domain of a library is presented to
demonstrate our methodology
 The integration process for statecharts is shown
in section �� illustrated by the library example
 In section � we draw some con�
clusions

� The data model

For the structural part of types we are using a very simple data model �according
to ��	�
 A type is a labeled set of type attributes
 E
 g
 type book � �title� string�
pages� integer� is a type where book is name of the type
 Title and pages are the
attributes of the type
 Attributes are typed with basic types� such as string or
integer or using labels of user de�ned types

For the representation of the behaviour of a type we are using the statechart
language ������	�
 A statechart of a type primarily consists of states� events
and transitions
 The major elements of statecharts are shown in �gure �

A state is a condition or situation during the life time of an object during
which it satis�es some condition
 An object satisfying the condition of a state�
is said to be in that state ����	�
 We call this condition the range of a state

t3: lending
 [reserved = false]

state

transition

state

source state target state
guard

event

book on
 loan

book on
 stock

Fig� �� The basic elements of statecharts

A transition is a kind of relationship between two states and is triggered by
an event
 A transition indicates that an object which is in the �rst state �called
source state� will enter the second state �called target state� when the event
occurs and some speci�ed condition �called the guard of the transition� holds
����	�
 The conjunction of the range of the source state of the transition and its

guard is called the precondition of the transition
 At the end of a transition the
object satis�es the postcondition of the transition� which must imply the range
of the target state of the transition

As speci�cation language for these conditions �the range of states� pre� and
postconditions and guards of transitions� we use T QL�� ����	����	�
 The lan�
guage allows the de�nition of logical conditions� which objects have to sat�
isfy
 E
 g
 the range of the state solvent of a type bank in T QL��would
be this�assets � �
 To be an object of this type in this state the value of its
attribute assets must be greater than zero

As notation S��Range�� is used for the range of the state S�
 We use t�P reC��
for the precondition of a transition t
 As these conditions are logical expressions
we may combine them by disjunction� conjunction or negation
 For instance� the
precondition of a transition t is the conjunction of the range of its source state
and its guard� that is t�Source State�Range�� � t�Guard��

Ranges of states as well as pre� and postconditions of transitions are used to
de�ne the semantics of statecharts
 We developed a complete set of schema trans�
formations to transform a statechart into any other equivalent statechart ����	�

As an example we have transformations to decompose and to construct state
hierarchies� to split and to combine states and to shift transitions within state
hierarchies
 These schema transformations are used in the integration process to
prepare the statecharts and to integrate them

In ���	 we have shown that any statechart with state hierarchies can be
transformed into an equivalent statechart without state hierarchies
 For the in�
tegration we assume statecharts without state hierarchies

Details about the semantics of statecharts and schema transformations can
be found in ���	 including the proofs that the schema transformations preserve
the semantics of statecharts

� The example

Let us introduce a short example from the domain of a library showing the
behaviour of books from the viewpoint of two departments
 This example is
used later to discuss each integration step

Assume that the integration of the static models results into an integrated
type Book� having the following syntax�

Book � �
Title� str�
Authors� fAuthorg�
reserved� bool�
status� �new� in library� borrowed� in textbook collection��

The behaviour of a book from the viewpoint of the Service Desk Department
is shown in �gure ��a�
 The department registers new books and places them
into the library
 Books can be borrowed if they are available
 Borrowed books
are returned into the library

book on
 stock

book on
 loan

t1: new

t2: place

book in
library

educational
 book

 t10: lending
[status = borrowed]

t3: lending
[reserved = false]

t4: return
[reserved = false]

t5: new

t6: place

t7: lending
[status = in library]

 t9: reserve
[status = borrowed]

a) View of the Service Desk Department b) View of the Educational Book Department

 book
 new

 book
 new

 t8: return
[status = in text book collection]

Fig� �� The behaviour of the type book

Table �� Ranges of the states of the Service Desk Department

book new this
status � new

book on stock this
status � in library � this
reserved � false

book on loan this
status � borrowed

The second department is the Educational Book Department which registers
new books and places them into the library too
 Furthermore� it is responsible
for the administration of educational books which are necessary for a lecture
during a certain period
 These books may not be borrowed by anyone until the
end of the lecture
 If a book in question is out of stock it can be reserved by the
department
 Such books may not be borrowed by anyone except the educational
book department
 If a book� borrowed by the department� is no longer necessary
for a lecture it is returned
 The behaviour of a book from the viewpoint of this
department is shown in �gure ��b�

For the integration we require the speci�cations of the ranges of states which
are shown in the tables � and �
 The postconditions of the transitions are either
equivalent to the range of their target state or shown in table �
 Note that for
the speci�cations of the guards we omit the keyword this in the �gures

� The process of integrating statecharts

��� Overview

According to the integration plan� which was developed in the integration�in�
the�large phase� we have to deal with one integrated type and two statecharts to
integrate
 Structural con�icts� such as naming con�icts� have already been solved
in previous integration steps
 Therefore� we do not have to consider naming
con�icts between attributes used in the de�nitions of the ranges of states� pre�
and postconditions or guards of transitions

Table �� Ranges of the states of the Educational Book Department

book new this
status � new

book in library �this
status � in library � this
status � borrowed� �
this
reserved � false

educational book �this
status � borrowed � this
reserved � true� �
this
status � in text book collection

Table �� The postconditions of the transitions

t�lending this
status � borrowed � this
reserved � false

t��place this
status � in library � this
reserved � false

t��lending this
status � in textbook collection

t��return this
status � in library � this
reserved � false

t��reserve this
status � borrowed � this
reserved � true

t���lending this
status � in textbook collection

The integration process resulting in the integrated statechart consists of three
major phases �shown in �gure ���

� The schema analysis phase� In this phase the statecharts are analyzed to
�nd common behaviour which is represented in a graph called the state
relationship graph

� The schema transformation phase� The statecharts are transformed so that
common behaviour is represented by a single state in both statecharts

� The schema merging phase� The transformed statecharts are merged to the
integrated statechart

� The schema restructuring phase� The integrated statechart is restructured
to meet quality criteria and to make it more readable
 The result of this step
is the �nal statechart

statechart 1

statechart 2 schema
transformation

schema
merging

 schema
restructuring

 final
statechart

state relationship
 graph

transformed
 statecharts

integrated
statechart

schema
analysis

Fig� �� The process of integrating two statecharts

��� The schema analysis phase

In the schema analysis phase the schemas are analyzed to �nd behaviour which
is described in both schemas
 The ranges of the states are used to detect common
behaviour
 We de�ne four classes of relationships between states�

� Two states are disjoint if their ranges exclude each other
 No object can
satisfy the ranges of both states simultaneously

� Two states are equivalent if their ranges are equivalent
 Each object either
satis�es both ranges or neither

� A state S� subsumes a state S� if the range of S� implies the range of S�

An object� satisfying the range of S�� satis�es the range of S� too

� Two states are overlapping if their ranges overlap
 If an object satis�es the
range of one of the states� it might but need not satisfy the range of the
other state

Example� The states book new from the book ordering department and book
new from the book book service desk are equivalent as their ranges are equiv�
alent �this�status � new�
 The range of state book on stock �this�status �
in library � this�reserved � false� implies the range of book in the library
��this�status � in library � this�status � borrowed� � this�reserved � false�

The states book on loan �this�status � borrowed� and the state educational book
��this�status � borrowed � this�reserved � true� � this�status � in text book

collection� overlap
 �compare table � and ��
 �

The relationships between states are used to build the state relationship
graph
 Nodes of the graph correspond to states of the statecharts� edges rep�
resent the relationship between two states and are annotated with the kind of
relationship
 An edge between two nodes exists if the corresponding states are
not disjoint
 Note that states of the same statechart must be disjoint if the state�
chart is correct ����	�
 Figure � shows the state relationship graph of our library
example

book in the
 library

subsumes

book on loan

book on stock

educational
 book

equivalent
book new book new

overlap

overlap

Fig� �� The state relationship graph

��� The schema transformation phase

The goal of the schema transformation phase is to transform the statecharts
such that common behaviour is described by a single state in both statecharts�

i
 e
 until the state relationship graph contains only �equivalent� edges between
nodes

For transforming the statecharts we are using the schema transformation
Split�S� S�� S�� B�� B�� which replaces a state S with two states� S� with the
ranges B� and S� with the range B�� where B� �B� is equivalent to the range
of S

A transition t� having S as source state� is replaced with two transitions t�
with source state S� and t� with source state S�
 Transitions� having S as target
state� are replaced with two transitions in an analogous way
 However� in order to
preserve the semantics� the postcondition of t� is replaced with the conjunction
of the postcondition of t and the range of its new target state S�
 Similar� the
postcondition of t� is replaced with the conjunction of the postcondition of t and
the range of S�
 Note that transitions having S as source and target state are
replaced with four transitions

After the transformation some of the copied transitions might have contra�
dictory pre� or postconditions� e
 g
 if it is not possible for any object to satisfy
the range of a source state and the guard of a copied transition simultaneously

Such transitions can be deleted� without changing the semantics of the state�
chart
 More formal details about the schema transformation including the proof
that Split preserves the semantics of a statechart can be found in ���	

This schema transformation and the information represented in the state
relationship graph are used to transform the statecharts
 We have to consider
two cases� a state is subsumed by another state and states which overlap

Transformation of subsuming states� A state S� subsuming a state T of the
other statechart� is transformed into two states S� and S� such that the ranges
of S� and T are equivalent and the ranges of S� and T are disjoint
 We need the
transformation

�
 Split�S� S�� S�� T�Range��� S�Range��� � T�Range���

Split demands that S�Range�� � T�Range�� � �S�Range�� � � T�Range���

This is obvious� as the range of T implies the range of S

In the state relationship graph the edge between S and T is deleted
 The
node S is replaced with the nodes S� and S�
 Obviously� S� has an equivalent
relationship to T � but is disjoint to all other states
 The node S� may have
relationships to other states� if S had further �other than disjoint� relationships

Example� According to the state relationship graph ��gure �� the state book in
the library subsumes the state book on stock
 The state is split into two states with
Split�book inthelibrary� book inthelibrary���� book inthelibrary���� B�� B��
 B�

is the range of the state book on stock� this�status � in library � this�reserved �
false
 B� becomes book in the library�Range�� � � book on stock�Range�� which
is equivalent to this�status � borrowed � this�reserved � false
 It is easy to see
that the disjunction of B� and B� is equivalent to the range of the state book in
the library �see tables � and ��
 The ranges of the new states�

book in the library ��� this
status � in library � this
reserved � false

book in the library �	� this
status � borrowed � this
reserved � false

The result of the transformation is shown in �gure �
 Note that all transi�
tions starting from or ending in the original state are duplicated� their source
and target states are adopted
 To make it more readable we numbered them�
t�����place is the �rst copy of the transition t��place� t��	��place the second one

Lets take a closer look to the guard of the transition t
����reserve� which is
this�status � borrowed
 However� the range of the source state of this transition is
this�status � in library � this�reserved � false
 As the precondition of a transition
is the conjunction of the range of its source state and its guard� no object can
satisfy the precondition of the transition t
����reserve
 We delete this transition
and in analogy the transition t��	��lending

We have to consider the changed postconditions of the new transitions� e
 g

the transition t��	��return
 The transformation replaces the postcondition of
transitions� having the split state as target state� with the conjunction of its
original postcondition and the range of its new target state
 The postcondition
of the transition t��return is this�status � in library � this�reserved � false �see
table ��
 Taking the range of the state book in the library�	� we see that no object
is able to satisfy the conjunction of the postcondition of t��return and the range
of this state
 The transition t��	��return is deleted and in analogy the transition
t��	��place

t5: new

educational
 book

 book in
library (1)

 book in
library (2)

t6 (2): placet6 (1): place

 t9(1): reserve
[status = borrowed]

t9(2): reserve
[status = borrowed]

 t7(1): lending
[status = in library]

t7(2): lending
[status = in library]

 book
 new

t10: lending
[status = borrowed]

 t8(1): return
[status = in text book collection]

 t8(2): return
[status = in text book collection]

Fig� �� Transforming the view of the Educational Book Department using the trans�
formation Split

Finally� we have to change the state relationship graph shown in �gure �

Note that the relationship between book on loan and book in the library �	� is
now �subsuming� �compare table ��
 �

book on loan

book on stock

equivalent

educational
 book

book in the
 library (1)

book in the
 library (2)

equivalent

subsumes

book new book new

overlap

Fig� �� The state relationship graph after transforming the view of the Educational
Book Department

Transformation of overlapping states� In the case that two states S and T

overlap� we split them into four states
 Two states are disjoint to each other and
two states are equivalent
 The transformations�

�
 Split�S� S�� S�� S�Range�� � � T�Range��� S�Range��� T�Range���
�
 Split�T� T�� T�� T�Range�� � � S�Range��� T�Range��� S�Range���

The schema transformation Split demands that S�Range�� � �S�Range�� �
� T�Range��� � �S�Range�� � T�Range��� which is obvious
 It is easy to see that
the analogous condition holds for the second transformation too

In the state relationship graph S and T are replaced with nodes which cor�
respond to the new states
 Note that the states S� and T� are equivalent but
disjoint to all other states
 The states S� and T� might have relationships to
other states �if S or T had further relationships other than disjoint ones to other
states�

Example� In the state relationship graph shown in �gure � we have an �over�
lapping� relationship between the states book on loan and educational book
 The
states are split as shown in �gure � and �gure �

book on
 stock

t1: new

t2: place

book on
loan (1)

book on
loan (2)

t3(2): lending
[reserved = false]

t4(1): return
[reserved = false]

t4(2): return
[reserved = false]

 t3(1): lending
[reserved = false]

 book
 new

Fig� �� Transforming the view of the Service Desk Department using the transformation
Split

The state book on loan is split using the transformation Split�book on loan�
book on loan���� book on loan�	�� B�� B�� where B� � book on loan�Range��
� � educational book�Range�� and B� � book on loan�Range�� � educational
book�Range��
 The new states with their ranges�

book on loan ��� this
status � borrowed � this
reserved � false

book on loan �	� this
status � borrowed � this
reserved � true

The transition t�	��return is deleted ��gure �� because its guard does not
match with the range of its source state
 The transition t��	��lending is deleted
because its postcondition does not imply the range of its source state �compare
table ��

t5: new

 book in
library (1)

 book in
library (2)

t6 (1): place

educational
 book (2)

t10 (3): lending
[status = borrowed]

educational
 book (1)

t10 (1): lending
[status = borrowed]

t10 (2): lending
[status = borrowed]

t10 (4): lending
[status = borrowed]

t9(2)(2): reserve
[status = borrowed]

t9(2)(1): reserve
[status = borrowed]

 t7(1)(1): lending
[status = in library]

 t7(1)(2): lending
[status = in library]

 book
 new

t8(1)(1): return
[status = in text book collection]

t8(1)(2): return
[status = in text book collection]

Fig� �� The second transformation of the view of the Educational Book Department
using the transformation Split

The state educational book is split using the transformation Split�educational
book� educational book���� educational book�	�� B�� B��
 The parameter B� is
educational book�Range�� � � book on loan�Range��
 B� is educational book�Ran�
ge�� � book on loan�Range��
 The new states with their ranges�

educational book ��� this
status � in textbook collection

educational book �	� this
status � borrowed � this
reserved � true

Note that the transition t���lending is replaced with four transitions as the
state educational book is source and target state of this transition �see �gure ��

The transitions t������lending and t���	��lending are deleted because the
range of their source states and their guards contradict
 The postcondition of
the transition t
�	�����reserve �see table �� does not imply the range of its target
state and is removed too

The transition t�����	��return has a guard which does not match with the
range of its target states
 The transitions t������lending and t�����	��lending have
postconditions which do not imply the range of their target states �compare
table ��
 All these transitions are deleted

Finally� we change the state relationship graph again ��gure ��
 Note that
the states book on loan��� and book in the library�	� now have equivalent ranges
�this�status � borrowed � this�reserved � false�
 The schema transformation
phase of our example is completed� the state relationship graph contains only
nodes representing disjoint or equivalent states
 �

book on stock

equivalent

book in the
 library (1)

book in the
 library (2)

equivalent

book on
loan (1)

educational
 book (1)

book on
loan (2)

educational
 book (2)

equivalent

equivalent

book new book new

Fig� 	� The �nal state relationship graph

With the presented schema transformations the statecharts are transformed
as long as the state relationship graph contains subsuming or overlapping edges
between nodes
 In each step common behaviour is extracted and a subsuming or
overlapping edge of the relationship graph is removed
 The transforming process
terminates in any case

��� The schema merging phase

In this phase the transformed statecharts are merged into the integrated stat�
echart
 According to the state relationship graph� states are either disjoint or
equivalent
 The merging of the statecharts is quite easy
 Two equivalent states
are merged to a single state� disjoint states remain unchanged

Example� Let us complete the integration process of our library example
 The
statecharts ��gure � and �gure �� are merged
 Equivalent states such as book
on stock and book in the library��� ��gure �� are merged to single states
 The
integrated statechart is shown in �gure ��
 �

book in library(1)/
book on stock

t1: new

t2: place

educational
 book (1)

book on loan (2) /
educational book (2)t9(2) (2): reserve

[status = borrowed]

 t10 (4): lending
[status = borrowed]

book on loan (1) /
book in the library (2)

 t3(1): lending
[reserved = false] t4(1): return

[reserved = false]

 t7(1)(1): lending
[status = in library]

t5: new

t6(1): place

book new /
book new

 t8(1)(1): return
[status = in text book collection]

Fig� �
� The integrated statechart

During the integration process we used schema transformations that trans�
form states into disjoint states
 As shown in ���	 a state of a statechart can
always be split into two disjoint states without changing the semantics of the
statechart
 It is easy to see that combining equivalent states does not change
the information described by a statechart
 The information� described by the
statecharts which must be integrated� is described by the integrated statechart
too

��� The schema restructuring phase

The schema merging step delivers a �rst cut integrated statechart
 Since we made
a series of transformations to extract common behaviour� the readability of the
integrated statechart should be improved� e g
 redundant information should be
removed

For instance� the transitions t��new and t��new have equivalent pre� and
postconditions and the same target states
 Assuming that they are triggered by
the same event� i
 e
 new� we may combine them to one transition
 Otherwise
the designer should rename one event
 Analogous the transitions t	�place and
t�����place can be combined to a single transition

Before starting with the integration we have decomposed state hierarchies

In the schema restructuring phase state hierarchies can be introduced again

For instance� if states have some transitions triggered by the same event with
the same source �or target� state in common� they could be put into a state
generalization

We can restructure the statechart automatically using some quantitative de�
sign goals like minimizing the number of edges� or minimizing the number of
necessary guards
 The �nal restructuring and naming� however� should be made
by a �human� designer to meet qualitative design goals like readability

� Conclusion

In this paper we presented an approach for integrating statecharts� which is part
of an integration methodology for object oriented views
 We assume that the
integration of the structural parts of an object oriented data model �i
 e
 the
integration of the types� has already be done

We concentrate on the situation where the behaviour of one type is described
by two di�erent statecharts
 We show� how common behaviour can be found
and how the di�erent statecharts are merged into an integrated statechart
 The
integration process follows a very simple strategy� whenever two states are not
disjoint� they are transformed into disjoint states and the common ground of
these states is put into a separate state

It was our aim to relieve the designer by automating the integration as much
as possible
 The major steps of our integration methodology can be done without
the aid of a designer
 The schema analysis phase� the schema transformation
phase� and the schema merging phase could be performed by a tool
 The crucial
part of such a tool is the language� which is used to specify the range of states
and the pre� and postconditions and guards of transitions
 Assuming that this
language is decidable� the integrated statechart can be computed
 However� the
designer is needed to make changes in order to improve the quality in the schema
restructuring phase� e
 g
 to make it more readable

At the moment we are working on a language for representing conditions
on states and transitions which is decidable
 In a next step we are planning to
implement our integration methodology

We see the main advantages of our approach in the formal treatment of
the integration process which allows an automatic integration while giving the
designer the possibilities to make decisions and their consequences are carried
out automatically in the model

References

�
 Batini� C
� Lenzerini� M
� A Methodology for Data Schema Integration in the Entity
Relationship Model
 IEEE Transactions on Software Engineering� ��������������
November ����

	
 Batini� C
� Lenzerini� M
� Navathe� S
� A Comparative Analysis of Methodologies
for Database Schema Integration
 ACM Computing Surveys� ������	���� De�
cember ����

 Booch� G
� Object�Oriented Design with Applications
 Benjamin Cummings� ����

�
 Booch� G
� Rumbaugh� J
� Jackobson� I
� The Uni�ed Modeling Language� User

Guide
 Addison�Wesley� ����

�
 Bukhres� O
� Elmagarmid� A
 �eds
�� Object�Oriented Multidatabase Systems� A

Solution for Advanced Applications
 Prentice Hall� ����

�
 Chen� P
� The Entity�Relationship Model � Toward a Uni�ed View of Data
 ACM

Transaction on Database Systems� ���� March ����

�
 Coleman� D
� Arnold� P
� Bodo�� S
� Dollin� C
� Gilchrist� H
� Hayes� F
� Jere�

maes� P
� Object�Oriented Development� The Fusion Method
 Prentice Hall Object�
Oriented Series
 Prentice�Hall� Inc� ����

�
 Formica� A
� Groger� H
� Missiko�� M
� Object�Oriented Database Schema Analysis
and Inheritance Processing� A Graph�Theoretic Approach
 Data� and Knowledge
Engineering� 	���������� ����

�
 Frank� H
� View Integration f�ur objektorientierte Datenbanken
 Dissertationen zu
Datenbanken und Informationssystemen Band 	
 in�x� ����

��
 Frank� H
� Eder� J
� Integration of Behaviour Models
 Proceedings of
ER��� Workshop on Behavioral Modeling and Design Transformations

http���osm�
cs
byu
edu�ER���workshop�� November ����

��
 Frank� H
� Eder� J
� Equivalence of Statecharts
 Technical report� Institut f�ur
Informatik�Systeme� Universit�at Klagenfurt� ����

�	
 Frank� H
� Eder� J
� Integration of Statecharts
 In Halper� M
 �ed
�� Third IFCIS
International Conference on Cooperative Information Systems �CoopIS����
 ���
�	
 IEEE Computer Society� August ����

�
 Geller� J
� Perl� Y
� Neuhold� E
� Sheth� A
� Structural Schema Integration with
Full and Partial Correspondence Using the Dual Model
 Information Systems�
������������� ���	

��
 Gotthard� W
� Lockemann� P
� Neufeld� A
� System Guided View Integration for
Object�Oriented Databases
 IEEE Transaction on Knowledge and Data Engineer�
ing� �������		� January ���	

��
 Harel� D
� Statecharts� A Visual Formalism for Complex Systems
 Science of Com�
puter Programming� ��	��	��� ����

��
 Harel� D
� On Visual Formalisms
 Communications of the ACM� ������������
May ����

��
 Harel� D
� Naamad� A
� The Statemate Semantics of Statecharts
 ACM Transac�
tions on Software Engineering and Methodology� �����	��� October ����

��
 Lam� H
� Missiko�� M
� On Semantic Veri�cation of Object�Oriented Database
Schemas
 Proceedings of Int
 Workshop on New Generation Information Technol�
ogy and Systems � NGITS� 		�	�� June ���

��
 Missiko�� M
� Toaiti� M
� Mosaico� An Environment for Speci�cation and Rapid
Prototyping of Object�Oriented Database Applications
 EDBT Summer School on
Object�Oriented Database Applications� September ���

	�
 Navathe� S
� Elmasri� R
� Larson� J
� Integrating User Views in Database Design

IEEE Computers� �������� January ����

	�
 Navathe� S
� Pernul� G
� Advances in Computers
 Vol
 �� Chapter Conceptual and
Logical Design of Relational Databases� ����
 Academic Press� ���	

		
 Preuner� G
� Schre�� M
� Observation Consistent Integration of Views of Object
Life�Cycles
 In Embury� S
� Fiddian� N
� Gray� W
� Jones� A
 �eds
�� ��th British
National Conference on Databases
 Lecture Notes in Computer Science� Vol
 �����
����

	
 Rational Software et
al
� Uni�ed Modeling Language �UML� Version �
�

http���www
rational
com�uml� September ����

	�
 Rumbaugh� J
� Blaha� M
� Premerlani� W
� Eddy� F
� Lorensen� W
� Object�
Oriented Modeling and Design
 Prentice Hall International� Inc� ����

	�
 Schre�� M
� A Comparative Analysis of View Integration Methodologies
 In
Traunm�uller� R
� Wagner� R
� Mayr� H
 �eds
�� Informationsbedarfsermittlung und
�analyse f�ur den Entwurf von Informationssystemen
 ������� ����
 Fachtagung
EMISA

	�
 Sheth� A
� Issues in Schema Integration� Perspective of an Industrial Researcher

ARO�Workshop on Heterogeneous Databases� September ����

	�
 Thieme� C
� Siebes� A
 Guiding Schema Integration by Behavioural Information

Information Systems� 	����������� ����

