
PAOLA�Program Analysis of Object�Oriented

Languages

Wolfram Amme� Markus Schordan
Laszlo B�osz�ormenyi� Wilhelm Rossak

�ammejrossak��informatik�uni�jena�de
�markussjlaszlo��i	�uni�klu�ac�at

PAOLA is a collaboration between University of Klagenfurt �Austria� and
University of Jena �Germany�� The main focus of the PAOLA project is the de�
velopment of new techniques for program analysis of object�oriented languages�

In object�oriented languages� objects are accessed via references� An object
reference is in principle the same as a pointer to a storage cell� As in impera�
tive languages a correct program analysis of object�oriented languages must be
based on the results of a safe alias analysis� One of the main issues is overrid�
ing of methods which depends on type information and references to objects
established at run�time�

Program analysis often uses a well�known technique of static analysis�
monotone data �ow analysis� By doing so� a program has to be transformed into
a control �ow graph in a 	rst step� Thereafter� for each program statement the
desired information can be derived by traversing the control graph iteratively�

To be able to determine the methods invoked at run�time we 	rst construct
an approximate but safe control �ow graph� and give some additional type
information to entry nodes of methods� We use the class hierarchy information
to restrict this graph�

For a non�virtual function call� we model the control �ow in the called
method by an interprocedural edge from a call node to the corresponding entry

node� Virtual methods make it impossible to determine the correspondence be�
tween a call node and an entry node before analysis� since the method invoked
depends on the type of the receiver at the call site� Therefore we establish mul�
tiple edges from the call node to the entry nodes of all methods� that may be
called at run�time� Each type corresponds to one edge of the call of a virtual
function� Later� by typed alias analysis we are able to restrict the number of
edges that carry information� By this we identify overridden methods that are
not invoked at run�time� If it is not possible to reduce the number of possibly
invoked methods to one the information is combined at the join node of the exit
nodes�

It is imperative to our analysis that types are computed in the same way
as reaching de	nitions� Additionally the subtype relation and set of types com�
puted for a particular node is used at call nodes to reduce the set of methods
that may be invoked at run�time� Since our analysis is a conservative analysis
we may not identify all methods that are not invoked but we are able to reduce

a=new A();

b=new B();

entry: {Demo}0

1

2

entry: {B}
modifyby: A->void

this.val+=x.val*4;

exit: {B}
modifyby: A->void

entry: {B}
modifyby: A->void

this.val+=x.val*4;

exit: {B}
modifyby: A->void

entry: {A}
modifyby: A->void

this.val+=x.val*2;

exit: {A}
modifyby: A->void

call(a,[x],[b])

a=b;

call(b,[x],[a])3

4

5

6

31

32

33

41

42

43

54

55

56

exit: {Demo}

b) Control flow graph

class B extends A {
 void modifyby(A x) {
 this.val+=x.val*4;
 }
}

class A {
 int val;
 void add(int v) {
 this.val+=v;
 }
 void modifyby(A x) {
 this.val+=x.val*2;
 }
}

public class demo {
 public static
 void main(..) {
 A a=new A();
 B b=new B();
 b.modifyby(a);
 a=b;
 a.modifyby(b);
 }
}

1

2

d) Annotated TA graph

{A }Ref

{B }Ref

a:

b:

{B}
val: 55

.

.

c) TA graph

{A }Ref

{B }Ref

a:

b:

{B}
val:

.

.

a) example program

5
4

2
1

3

Figure
� Source� control �ow graph� TA graph� and annotated TA graph�

the number of invoked methods signi	cantly because our method is well suited
for computing reaching de	nitions�

Let us illustrate the basic mechanisms by example� Fig�
 �b� shows parts
of an interprocedural control �ow graph� which we derived from the simple
Java program listed in Fig�
 �a�� The program consists of three classes� One
class Demo holds the main method whereas class A is the base class of class
B� Further� the method modifyby that is de	ned in A is overridden in class B�
We store information about the receiver object� the formal parameters and the
actual paramters in the call node� The type information is stored in the entry
node of the respective method�

We use typed alias graphs �TA graphs� as data �ow information sets� Each
TA graph denotes possible structures of the store and some aspects of its state
at a certain point in program execution� In TA graphs� alias information is
expressed by the set of paths with which we can access an object at one program
point� Nodes of a TA graph represent the objects present in the store� We
mark the nodes of a TA graph with the class name of the corresponding object�
Additionally� to express the structure of an object we annotate each node with
names of variables of the corresponding object� Eventually� a reference of one
object to another object is expressed by a labeled edge in the TA graph� Figure

 �c� contains the TA graph� which describes the storage after analyzing the
given program� that is before execution of statement �� As we can see� besides
compiler constructed storage cells there could be an object instance of type B

in storage which is reachable by the set of variables fa� bg�
The availability of object types� which we assign to the nodes of an TA

graph� leads to a more precise control �ow analysis� With this technique we can

choose the target of a calling method during data �ow analysis� i�e� with the
TA graphs in Fig�
 �c� we can determine that the calling method in statement
� must be the modifyby routine of class B and not that of class A�

To solve our intrinsic task�performing a program analysis of object�oriented
languages�we additionally can assign information� which we need for optimiza�
tion of programs� like value� last de	nition� last use of an object resp� available
expressions� etc�� to the nodes of a TA graph� Fig�
 �d� contains an annotated
TA graph for statement
 in which we hold the program statements that de	ne
the contents of a storage object last� i�e�� the reaching de	nitions� Integrating
such kind of annotations into the data �ow analysis leads to an elegant form
of program analysis� With the additional type information at program point
� we are able to determine which method is invoked and we compute that it
must be program point �� where a value is assigned to the variable val of the
dynamically allocated object that is referenced by variable a�

A very signi	cant point of research work in the PAOLA project will be the
evaluation of our methods by means of real applications� By doing so� we hope
to answer the question� how far an optimization of object oriented programs�
which is based on our program analysis� can improve the runtime behavior of a
program� In contrast to other works we are not only interested in performing a
static evaluation of our method � which means we are not only interested in
measures as number of appearing alias pairs� number of data dependences� etc�
We perform a dynamic evaluation of our techniques as well� In this way� we hope
to get an answer to the question� how precise an alias analysis resp� a program
analysis should be� so that a signi	cant improvement in runtime behavior of a
program can be reached�

