PAOLA-—Program Analysis of Object-Oriented

Languages

Wolfram Amme, Markus Schordan

Laszlo Boszormenyi, Wilhelm Rossak

(amme|rossak)@informatik.uni-jena.de
(markuss|laszlo)@ifi.uni-klu.ac.at

PAOLA is a collaboration between University of Klagenfurt (Austria) and
University of Jena (Germany). The main focus of the PAOLA project is the de-
velopment of new techniques for program analysis of object-oriented languages.

In object-oriented languages, objects are accessed via references. An object
reference is in principle the same as a pointer to a storage cell. As in impera-
tive languages a correct program analysis of object-oriented languages must be
based on the results of a safe alias analysis. One of the main issues is overrid-
ing of methods which depends on type information and references to objects
established at run-time.

Program analysis often uses a well-known technique of static analysis—
monotone data flow analysis. By doing so, a program has to be transformed into
a control flow graph in a first step. Thereafter, for each program statement the
desired information can be derived by traversing the control graph iteratively.

To be able to determine the methods invoked at run-time we first construct
an approximate but safe control flow graph, and give some additional type
information to entry nodes of methods. We use the class hierarchy information
to restrict this graph.

For a non-virtual function call, we model the control flow in the called
method by an interprocedural edge from a call node to the corresponding entry
node. Virtual methods make it impossible to determine the correspondence be-
tween a call node and an entry node before analysis, since the method invoked
depends on the type of the receiver at the call site. Therefore we establish mul-
tiple edges from the call node to the entry nodes of all methods, that may be
called at run-time. Each type corresponds to one edge of the call of a virtual
function. Later, by typed alias analysis we are able to restrict the number of
edges that carry information. By this we identify overridden methods that are
not invoked at run-time. If it is not possible to reduce the number of possibly
invoked methods to one the information is combined at the join node of the exit
nodes.

It is imperative to our analysis that types are computed in the same way
as reaching definitions. Additionally the subtype relation and set of types com-
puted for a particular node 1s used at call nodes to reduce the set of methods
that may be invoked at run-time. Since our analysis is a conservative analysis
we may not identify all methods that are not invoked but we are able to reduce

X class B extends A { class A {
entry: { Demo} void modifyby (A x) { int val;
this.val+=x.val*4; void add(int v) {

this.val+=v;

void modifyby (A x) {
this.val+=x.val*2;

}
}
public class demo {
public static
void main(..) {
% A a=new A();
B b=new B();
b.modifyby (a) ;
g
a.modifyby (b) ;

@

entry: { B}
modifyby: A->void
exit: { B}
modifyby: A->void
entry: {A}
modifyby: A->void
thisval+=x.val*2;
exit: {A}
modifyby: A->void
entry: { B}
modifyby: A->void
thisval+=x.val*4;
exit: { B}
modifyby: A->void

€
@

}

a) example program

@

€

call(a[x],[b])

€

® [|

b) Control flow graph d) Annotated TA graph

Figure 1: Source, control flow graph, TA graph, and annotated TA graph.

the number of invoked methods significantly because our method is well suited
for computing reaching definitions.

Let us illustrate the basic mechanisms by example. Fig. 1 (b) shows parts
of an interprocedural control flow graph, which we derived from the simple
Java program listed in Fig. 1 (a). The program consists of three classes. One
class Demo holds the main method whereas class A is the base class of class
B. Further, the method modifyby that is defined in A is overridden in class B.
We store information about the receiver object, the formal parameters and the
actual paramters in the call node. The type information is stored in the entry
node of the respective method.

We use typed alias graphs (TA graphs) as data flow information sets. Fach
TA graph denotes possible structures of the store and some aspects of its state
at a certain point in program execution. In TA graphs, alias information is
expressed by the set of paths with which we can access an object at one program
point. Nodes of a TA graph represent the objects present in the store. We
mark the nodes of a TA graph with the class name of the corresponding object.
Additionally, to express the structure of an object we annotate each node with
names of variables of the corresponding object. Eventually, a reference of one
object to another object is expressed by a labeled edge in the TA graph. Figure
1 (c) contains the TA graph, which describes the storage after analyzing the
given program, that is before execution of statement 5. As we can see, besides
compiler constructed storage cells there could be an object instance of type B
in storage which is reachable by the set of variables {a, b}.

The availability of object types, which we assign to the nodes of an TA
graph, leads to a more precise control flow analysis. With this technique we can

choose the target of a calling method during data flow analysis, 1.e. with the
TA graphs in Fig. 1 (¢) we can determine that the calling method in statement
5 must be the modifyby routine of class B and not that of class A.

To solve our intrinsic task—performing a program analysis of object-oriented
languages—we additionally can assign information, which we need for optimiza-
tion of programs, like value, last definition, last use of an object resp. available
expressions, etc., to the nodes of a TA graph. Fig. 1 (d) contains an annotated
TA graph for statement 6 in which we hold the program statements that define
the contents of a storage object last, i.e., the reaching definitions. Integrating
such kind of annotations into the data flow analysis leads to an elegant form
of program analysis. With the additional type information at program point
5 we are able to determine which method is invoked and we compute that it
must be program point 55 where a value is assigned to the variable val of the
dynamically allocated object that is referenced by variable a.

A very significant point of research work in the PAOLA project will be the
evaluation of our methods by means of real applications. By doing so, we hope
to answer the question, how far an optimization of object oriented programs,
which is based on our program analysis, can improve the runtime behavior of a
program. In contrast to other works we are not only interested in performing a
static evaluation of our method — which means we are not only interested in
measures as number of appearing alias pairs, number of data dependences, etc.
We perform a dynamic evaluation of our techniques as well. In this way, we hope
to get an answer to the question, how precise an alias analysis resp. a program
analysis should be, so that a significant improvement in runtime behavior of a
program can be reached.

