
Support of Semantics Recovery during Code Scavenging
using Repository Classification

Heinz Pozewaunig, Dominik Rauner-Reithmayer
Institut für Informatik-Systeme

Universität Klagenfurt
Klagenfurt, Austria

email: fhepo, dominikg@ifi.uni-klu.ac.at

Abstract

One of the hardest tasks to be fulfilled during the analysis
of legacy systems is how to determine the precise seman-
tics of program components. Investigating the internal data
and control structures is difficult due to the huge number of
possible implementation variants for the same problem.

To facilitate the task we propose to use components kept
and described in a repository of reusable concepts as refer-
ence points. This becomes possible when behavior sampling
is used as classification/retrieval strategy. In matching the
results of isolated components from a legacy system against
already executed components in a repository, one can tackle
the problem of classifying legacy components without con-
sidering there internal structure. As a side effect, the popu-
lation of the reuse repository is increased.

In this paper we propose a model to reuse the knowledge
containd in a behavior based reuse repository for analyzing,
classifying and understanding isolated executable compo-
nents from a legacy system. Components not yet classfied
will augment the repository.

Keywords: behavior sampling, component classification,
reengineering, program understanding

1 MOTIVATION

One of the main topics in software reengineering is the
task of analyzing parts of the system in order to (re)detect
the functionality and meaning of such fragments. A broad
range of methods for identifying, understanding, classify-

ing, redocumenting, and reengineering program components
in legacy systems has been proposed in the literature. Most
of these methods can be applied very successfuly, if a-priori
knowledge about program structure and programming style
is available. As a consequence, if these assumptions do not
hold, structure based analysis techniques must fail.

In contrast, to classify assets for the purpose of software
reuse, extensive documentation is available to fulfill this
task. But here the problem of correct interpretation of de-
scribing keywords arises. Since interpretation of keywords
depends heavily on the cultural, social, and personal context
[3, 1], successful classification depends on many human fac-
tors. To overcome such obstacles, researchers work on ques-
tions such as how to describe software without relying on
human interpretation. Many approaches deal with formaliz-
ing the properties of component interfaces [6, 19] or using
the inherent property of executabilty to directly determine
meaning from software attributes.

Part of our motivation for the work described in this pa-
per stems from a project to develop a reengineering tool [18].
Here, we were faced with the problem to perform seman-
tics preserving code transformations. In quite a number of
cases, this re-juvenation of code would be better performed
by replacing parts of this code (a chunk) by some seman-
tically equivalent component written according to state-of-
the-art programming practices. Linking reengineering tech-
niques with reuse experience seems promising in this sit-
uation. Thus, we were looking for domain specific com-
ponents either as reference points or even as candidates for
substitution of pieces of legacy code. As stated in [13] do-
main specific reusable components are considered as four
times more valuable than general assets (abstract data-types,
graphical user-interface functions, ...). Hidden in legacy sys-
tems, one can find a lot of high quality components that have
been proven to be valuable during many years of operation.
Since these components are required in one application, they
are good candidates for further use in a similar domain and
should be analyzed for potential reusability.

Subsuming we can say that on one hand there is the
need for revealing semantics from legacy code in the field



of reengineering and on the other hand there exist techniques
(in the field of reuse) to describe components without (much)
additional help from human experts. Our idea is to bring
these two areas together with the aim of gaining benefit for
both sides.

To bridge the gap between the demand for domain spe-
cific components and the task to detect unrevealed assets in
the legacy code, we present a method for classifying and un-
derstanding program components.

This paper is organized as follows: In the next section
we illustrate the difficulties in determining the meaning of
components if analysis solely rest upon internal structure. In
section 3 we present the structure of a reuse repository based
on the behavior of reusable components. Furthermore, we
sketch how a newly added component is classfied according
to our approach. The detailed method is described in sec-
tion 4. We reflect upon our work with a discussion in section
5 and conclude in section 6.

2 REVEALING PROGRAM SEMANTICS

This section sketches the problems structure based methods
for program understanding are facing, in the case that no
assumptions can be made about the analyzed components.

Program understanding is often viewed as the process of
finding program plans in source code, which represent a cer-
tain meaning [15]. In taking a closer look to approaches in
that field we see that most of them begin by analyzing some
source-code instructions. The next step is to find out which
program plans might use these instructions. Taking these
plans as input, the program understanding methods try to in-
fer higher level plans from that information [14].

The representation of plans, therefore, must contain de-
tails of the program structure and the relationship of source-
code instructions with such plans. The representation varies
from graphs [17], logical constraints [10] to abstract lan-
guages [9]. All these bottom-up approaches need to de-
scribe every possible implementation variant they want to
recognize. This leads to either extensive plan libraries or to
small and highly domain dependent plan libraries. But if we
want to understand (parts of) programs for the purpose of
reusing software, applying object oriented rearchitecting or
redocumenting the dynamics of a system [16], the program
structure itself does not matter: we only want to detect the
semantics of programs.

We sketch the problem by a small example. Figure 1
shows two (semantically different) C functions strfun1
and strfun2 with identical signature and identical struc-
ture. The only difference one can find is in the calculation of
the return value. This minor but important difference in the
calculation of the return value discriminates between the se-
mantics of the functions: The first of them performs a string

int strfun1 (const char *s1, const char *s2){
for (;*s1 == *s2 && *s1 != ’\0’; s1++,s2++);
return (*s1 - *s2);

}

int strfun2 (const char *s1, const char *s2){
for (;*s1 == *s2 && *s1 != ’\0’; s1++,s2++);
return (*s1 != ’\0’);

}

Figure 1: C functions performing an unknown task

comparison and returns a value of zero, if the two input
strings are equal. The other one also performs a string com-
parison, but the return value is zero if the first input string
s1 is a prefix of the second input string s2. This difference
is important if

1. a reuser searches for a function performing one of
these two tasks or

2. a reengineer tries to determine the functionality of the
respective component.

In a plan based approach it is costly in terms of time and
money to describe all possible implementation variants (for
the function strfun1 some of them are shown in Fig. 2).
In general the attempt to determine the whole variety of im-
plementation variants is impossible.

Of course, these examples are small and simple, never-
theless they suffice to present the idea.

int strfun1_version1 (const char s1[],
const char s2[]){

int i;
for(i=0;s1[i] == s2[i] && s2[i] != ’\0’;i++) ;
return (s1[i] - s2[i]);

}

int strfun1_version2 (const char *s1,
const char *s2){

if(*s1 == *s2 && *s1 != ’\0’)
return(strfun1_version3(++s1,++s2));

else
return(*s1 - *s2);

}

int strfun1_version3 (const char *a,
const char *b){

while(*b != ’\0’ && !(*(a++) - *(b++))) ;
return(*a - *b);

}

Figure 2: Semantically equivalent C functions with different
structure

3 SELF DESCRIBING COMPONENTS

In this section a method for classifying components based
solely on the property of executability of software is dis-
cussed. We extend this known technique to support auto-
matic classification using test data as discriminative values.



3.1 Behavior Sampling

Podgurski, Pierce and Hall [12, 7] describe this approach to
retrieve software components without the need of human in-
terpretation. In general, if someone is looking for a certain
component to be integrated into a software system, she/he is
not interested in a particular structure or description, but in a
special functionality. The “behavior sampling” technique is
founded upon this observation and exploits the main differ-
ence of software artifacts to other information objects: their
executability. Since every execution can be seen as an ex-
ample of component behavior, the examples gathered in this
way are considered as partial descriptions of the functional-
ity performed by the component. It is obvious that a volatile
execution eludes from direct observation for the purpose of
behavior determination.

However, behavior manifests itself in data transforma-
tions. From an abstract point of view, every software compo-
nent transforms some input into some output. If the library
containing the software artifacts is organized in such a way
that every artifact is directly executable, examples of behav-
ior are generated on-the-fly by entering a “query”. Thus, a
query is a set of examples in the form of input-output tuples.
Such tuples are carefully selected by the reuser searching for
needed functionality (hereafter called the searcher).

The process of retrieving components by behavior sam-
pling requires three interactive steps :

1. The searcher specifies the interface of the component.

2. The searcher chooses a small set of relevant input items
and determines (eventually manually) the output.

3. The query (the set of input-output tuples) is entered
into the retrieval system. The components stored in
the software repository (which are in accordance to the
interface specification) are executed on that input data.

In matching the computed output against the expected
(eventually manually) calculated result values, components
are included into the candidate set if there output matches,
excluded if there is no match.

Since precision is in this case the domanant aspect, the
searcher must

1. enter an sufficient number of examples and

2. the examples should reflect the main characteristics of
the required functionality in the sense of domain tests.

On the one hand, if the cardinality of the query set is suf-
ficiently large, only relevant components are selected. The
result of a query is a component, resp. a (hopefully) small set
of candidate components, matching the given input-output
specifications. A candidate consists of the executable bina-
ries, but also the source code and additional documentation

are ingredients. In this way the searcher is allowed to check
candidates to ensure the relevance of the component. On the
other hand, if the query samples are chosen carefully, the
cardinality of the candidate set is small enough to enable re-
finement of the results in a few iterative steps.

3.2 Behavior based classification

One of the main disadvantages of behavior sampling is the
need to execute all components. To do this, an execution en-
vironment must be established which provides all necessary
resources for executing the assets. This requirement cannot
be fulfilled in every case, as some resources or preconditions
cannot be maintained. Furthermore, executing components
is time consuming and even with a high degree of parallel
computation a moderate number of components can not be
treated interactively.

In [11] the authors propose to use the history of executed
program traces (test runs) as a knowledge base to describe
the behavior of components. Starting from the presumption
that all asserts in a software repository are tested carefully,
these test cases are stored in the repository and serve as a
(partial) description of the component. These “past pictures”
of program runs are examples (partially) describing the be-
havior.

It is obvious that not all test cases are useful in the re-
quired sense. Test cases originally are designed with the in-
tention to detect faults. But considering the theory of func-
tional testing, black-box-tests aim to reveal the characteris-
tics of components by checking domain boundaries [2]. In
that sense domain test cases are a good choice to serve as
discriminators between assets. We want to point out that an
important property of test cases for the purpose of discrim-
ination is that they are designed as domain test data. Such
black box tests reflect the functionality per se in the most
accurate way.

The component library (hereafter called component-
behavior repository – CBR) contains signature abstractions,
run time environments for executing components, test data
and components. The notion component refers to a package
including name, parameters, binaries and further comments
and descriptions.

The structure of the CBR is coarse grained with respect
to equivalent signatures. Signatures are generalized in the
sense of the type view technique presented in [8] and are
embodied as abstract signatures without implementation de-
tails. The library is divided into partitions containing com-
ponents conforming to a generalized signature �i. We will
refert to such library partitions as �-partitions hereafter. The
CBR also includes a run time environment for every �i to
support automated testing of components. Figure 3 depicts
an overview of the CBR, where components C (together
with their input-output tuples) are placed in segments i with



respect to their signature �i.

Component Behavior Repository

4

I

OI
I O

O

I OI O

OI

Σ

I O
I O

I O

1

3

Σ

Σ2

Σ5

Σ

C

C

C

C

C

C C

C

C

Signature Matching System

Figure 3: CBR Example

In figure 3 the conceptual architecture of the CBR is
shown. To allow efficient access all test cases tj of a sig-
nature �i are administered in a set of test cases T . As it
is described in the following section we use test tuples as
discriminators. To do so, we define a component retrieval
function cr � ��T � � ��C�, which allows to map a subset
of test-tuples to a relating subset of components c � C.

The CBR index is organized as classification tree, based
on the test tuples as decision criterion. The main idea is to
start from the set of all components of a �-partition and to
add incrementally discriminating test data. Every added test
tuple helps to generate a subset of components providing the
output on the given input of the test tuple. The test tuple is
chosen in the way that at least one component is extracted.
A good discriminating test tuple is given, if the number of
refined components is near to the number of the remaining
ones.

If no tuple which helps to discriminate between the com-
ponents can be found, the repository administrator must pro-
vide new test data according to the domain boundaries.

3.3 Classification example

The following example for inserting a new component into
the CBR should help to understand the classification process.

In the repository a segment according to the signature
char � bool contains ten (slightly modified ANSI-C)
functions implementing predicates which determine certain
properties of characters:

1 bool isalnum(char c); 7 bool islower(char c);
2 bool isalpha(char c); 8 bool isupper(char c);
3 bool iscntrl(char c); 9 bool ispunct(char c);
4 bool isdigit(char c); 10 bool isspace(char c);
5 bool isgraph(char c);
6 bool isprint(char c);

The CBR is indexed by a classification tree shown in fig-
ure 4. A node ni in the tree is poulated by components which
demonstrate equivalent behavior on executing them on the
test data given by the path from the root to the current node

ni. Thus, an edge between two nodes is labeled with an in-
put and branches to several output edges. A successing node
contains only those components of the previous node, which
behave in accordance to the input-output labeling the edge
from predecessor to successor. More details on how to build
the classification tree can be found in [11].

F

n5:n4:

n3:n2:

n1:
FT

T
’Z’

’0’

’a’
T

n6:

4

1, 2, ..., 10

2,3,7,8,9,10

1,5,6

1, 5, 6

1, 4, 5, 6

Figure 4: CBR classification structure

For the sake of demonstration, let us assume that we want
to add a function 11 isxdigit : char � bool to
the library which checks if a given character is a hexadec-
imal digit character. The classification algorithm performs
in the following manner: Starting at the root node, the com-
ponent is inserted into node n1. To determine the correct
successor node, the component is executed on the input ’0’
and after recognizing the calculated output T, the successor
n2 is chosen, since the path from n1 to n2 is labeled correctly
with (’0’, T). Node n2 is not a leaf and, therefore, com-
ponent 11 is executed with input value ’a’. As the output
is T, node n4 is selected as successor. Now we execute 11
with input ’Z’ and because no edge is labled with the result
(’Z’, F) we insert a new leaf node n7, link it to n4 with
a correctly labeled edge and add component 11 to the new
leaf.

’a’
T

n6:

n5:n4:

n3:n2:

n1:
FT

T
’Z’

F

F

’0’

1, 4, 5, 6

4

1, 2, ..., 10

2,3,7,8,9,10

111,5,6

1, 5, 6

Figure 5: Classification structure after inserting isxdigit
(11)

The result of the classification process is depicted in the
classification tree of figure 5.



4 CLASSIFYING LEGACY COMPONENTS

In this section we want to show how to apply the software
classification technique just presented to support reveal the
semantics of legacy components. Since not every identifi-
able part is suited to be handled by our approach we discuss
some preconditions legacy parts must fulfill. Subsequently,
the process of scavenging and classifying components is de-
scribed in detail.

4.1 Preconditions

If we want to find classifiable components in legacy systems
we have to carve out meaningful, valuable and executable
program fragments which fulfill the following criteria:

� The fragments should have meaning outside their orig-
inal context. If components have no meaning no
knowledge is available in the repository. This cannot
be determined in advance in all cases.

� The fragments have to be executable outside their orig-
inal context. This is a necessary precondition to start
the matching process, since otherwise no path in the
classification tree can be found.

The first criterion assures a certain degree of generality
of the fragment, but cannot be proven during extraction. In
program understanding the same problem is stated as chunk
extraction. In this work we consider classifyable compo-
nents as chunks and refer primarily to the definition and ex-
traction technique for chunks given in [4]. The key issue of
that definition is that a chunk has a coherent purpose and can
be understood outside the original context.

Besides, we also view a chunk as a component (e.g. C-
function) that can be executed outside its original context.
A chunk should for this purpose be described by means of
its input/output parameters (signature) and its global depen-
dencies. With the term global dependency we mean the used
(called) functions, not primarily defined within the respec-
tive chunk. This includes all global functions which are
reachable in the call graph of the chunk. Hence, to isolate
a program chunk we have to carve out its definition and all
global dependencies.

Chunk extraction includes a certain amount of uncer-
tainty. A fragment of legacy code can contain more than one
chunk, since an executable part can be “shifted” through a
set of source instructions. Likewise, considering that bound-
aries of chunks are not necessarily procedure boundaries, in-
clusion or exclusion of some statements at the boundary of
a chunck might be improtant to obtain semantic coherence
[5] Therefore, the determination of the correct signature for
a chunk involves some fuzzyness, although, the referenced
variables in that chunk give some good hints to build a signa-
ture. This uncertainty should be resolved in iterating through

the process described in section 4.2. The process should be
applied to every reasonable signature to increase the rate of
recall, and in doing so increase the possibilty of detecting
semantics.

4.2 Classification process

This section describes the process of analyzing legacy code
and using the CBR as knowlege repository for determining
the meaning of a program chunk. As additional benefit of
this approach, not yet know chunks are identified as suitable
candidates for adding them as reusable parts to the CBR.

The process contains several steps:

1. Extract and isolate a program chunk.

2. Generate a signature according to the used variables in
the extracted chunk. If the chunk consists of a com-
plete procedure, this step is trivial. If it is carved out
of some larger monolithic code, the signature is to be
determined by a dataflow analysis from all uninitial-
ized variables to all defined variables spanning the state
space of the chunk. (With prior knowledge, this “out-
put set” can be reduced).

3. Determine the �-partition (together with the classifica-
tion tree) for that chunk acccording to the signature.

4. Determine if the current node is a leaf.
If it is a leaf we know that the chunk behaves (at least
up to now) identically to all components in the current
node and we continue with step 7a. Otherwise, if it
is not a leaf node, select the input discriminating be-
tween the successor nodes and continue as discussed
in section 3.3.

5. Execute the isolated program chunk on the selected
input-data.
To do so, we have to bed the chunk into an appropri-
ate run time environment where it can be executed on
the input data. The computed output is collected and
stored for the next step. The run time environment
is provided as part of the CBR �-partition description
(see section 3 for details).

6. Match the computed input/output pairs against the ap-
propriate input/output pairs specified in the classifica-
tion tree.
The input/output pairs computed in the previous step
have to be matched against all “labels” of successing
edges in the classification tree.

The following results may be obtained by the matching
procedure:

(a) The calculated output matches perfectly with one
edge output-label. This implies that the CBR
contains more refined components demonstrating



this behavior. We select the appropriate successor
node and proceed with step 4.

(b) The calculated output matches with no label.
Thus, no component in the CBR demonstrates the
same behavior as the chunk. In that case we con-
tinue the classification process with step 7b.

7. (a) The chunk behaves in the same way as compo-
nents in a leaf node.
From that we know that the chunk performs the
same task as all other components in that leaf
node and we have found at least a subset of the
semantics of the chunk.
It is in the responsibility of a human expert to in-
vestigate further, whether the chunk in that leaf
can be specialized and so up to now only a part of
the semantics has been revealed. If this is the case
the expert must provide new input data not yet on
the classification path and test the chunk in order
to reveal specialized behavior.
As a consequence, this chunk is considered as a
new candidate for reuse purposes. In any case
the expert is able to attach a significant amount
of meaning to the analyzed legacy part.

(b) The chunk behaves equally to components in an
inner node, but does not show the behavior of any
components in the classification subtree of that
node.
The chunk can be automatically classified as de-
scribed in section 3.3. In that case we know that a
new component has been found and the reuse ben-
efit is obvious. But as the chunk has been derived
from a legacy system, it has to be analyzed by a
human expert and then amended by a correct de-
scription. The expert is supported by the informa-
tion obtained by the classification process, such
as the calculated input-output pairs and the avail-
able documentation of components showing par-
tially the same behavior. So on the other hand pro-
gram understanding for that chunk has also been
obtained.

In figure 6 the process of program understanding is
shown as a sequence of the above mentioned single steps
using the CBR as knowledge base and plan library.

4.3 Role of Human

Steps 7a and 7b of the algorithm just described mentioned
that the process of semantics recovery is not completed when
sifting down through the classification hierarchy of the CBR
comes to a halt. Why is this the case?

We have to be aware that the data-tuples used for CBR
classification are carefully designed according to the specifi-

cations of the components contained in the CBR. Hence, do-
main partitioning on the basis of the specification can assure
that the data points used in the classification can really dis-
criminate among components and thus, in a pointwise man-
ner, describe their semantics. – For the legacy chunk, we do
not have a specification and hence there is no way to claim
that the data points that lead to the classification up to the
point where sifting down the hierarchy fully define different
domain partitions. They only show that the component be-
haves in the data-points characterizing the partitions of the
component stored in the CBR identical to this component.
Hence, at least these partitions exists. But there may be
more refined partitions and the partition boundaries might
be drawn slightly different.

To check this, one can directly rely on a human expert.
This was pointed out as simple fall-back strategy in the de-
scription of the algorithm. In this case, the human analyst is
helped by knowing that the component is “a kind of” com-
ponent X if the search stopped at component X and that it
behaves at least partially like X . Certainly, this is already a
big step forward over just having the plain code, as it pro-
vides heuristic guidance for further human program under-
standing.

In more complex situations, one can benefit further from
the CBR. Since the �-partitions contain components of iden-
tical signature, the overall input-/output space of all compo-
nents contained in a �-partition is identical. Components
in a given �-space differ only in their specific input-/output
mapping. Hence, one can use components attached to the
node where sifting down came to a halt as generators for
test data. Thus, further random testing can be used to show,
whether a component classified up to a leave node has the
same semantics as this node, or whether it is more refined.
If it is more refined or if sifting down halted at an inner node,
these random (or, specifically with inner nodes, strategically
selected) test tuples can help to give further clues about the
actual semantics of the component. The interpretation of
these further experiments, of course, rests really with the hu-
man expert.

5 DISCUSSION

As one can see from the arguments in section 2 it is nearly
impossible to infer semantic difference from the structure of
different functions.

Returning to the demonstrative example: If we want to
classify the first function of figure 1 (under the precondition
that the CBR contains an ANSI-C compliant string compare
component), we will see that strfun1 behaves identical to
our to examined string compare and this is also true for all
variants shown in figure 2.

After applying the classification strategy presented above
we can now easily determine that these functions belong to



I OClassification Tree Node

Signature

Comparation

I

I O

Isolated Chunk

OILegacy System

OI O

Output-Matching
Environment
Execution/Test

Behavior Component Repository

Signature Matching System

Step 2: Signature Generation

Step 5: Execution

Step 6: Matching
Step 7: Result Determination

?

Step 1: Extraction

?

I

Step 3: Partition Selection

Step 4: Input Selection

D

D

D

D

D

Figure 6: Classification Steps

the class of string compare components. This does not help
to increase the population of our CBR, but we can state that
the components in the CBR are of relevance within the appli-
cation domain. Non-functional reasons might nevertheless
be a cause for including the chunk just analyzed.

On the other hand we can use the information obtained
about these chunks to analyze their quality and to improve
the understanding of the legacy system in general. Due to
the results of the classification, we can consider the process
of behavior based classification as an alternative technique
for program understanding. Of course, with that approach
we can only understand chunks that are isolateable and when
there exists a functionally equivalent counterpart in the CBR.
But if these preconditions hold, we get high quality docu-
mentation for the analyzed part of the legacy system.

Furthermore, the knowlege in the CBR is manifested in
executable, valuable software components of certified qual-
ity. Beyond the stated advantages the approach is useful for
renovating legacy system. To increase the quality of the
legacy system and to go stepwise into the direction of re-
architecturing, equivalent and modern components are first
class candidates for substituting outdated legacy parts. If the
behavior is exactly the same we may be confident about a se-
mantics preserving transformation irrespective of structural
differences.

If the precondition of an equivalent counterpart does not
hold, the benefit is not in the field of program understand-
ing, but in reuse! For example, if there is no counterpart of
strfun2 in the CBR, the classification process generates
a new leaf node in the classification tree, indicating that the
function may be important in this or similar application do-

mains. As this function has already been proved valuable
for a legacy system, the effort to engage a human expert for
further analysis seems justified. The human expert is now
in duty to document the specialization and to determine the
quality of the component to ensure the high quality of com-
ponents in the CBR.

Although classification based solely on behavior is very
promising, some deficiencies are obvious. Side effects of
components such as deletion of directories or files or writing
to devices cannot be handled correctly on the tuple level.
Also components requiring interactions with the enviroment
cause difficulties in classifying and analyzing.

As a possibility to solve this problem, we investigate ab-
stract signatures containing more information about depen-
dencies to external interaction agents, like files, devices, and
humans.

6 CONCLUSION

We presented an approach to understand, redocument and
classify program fragments scavenged from legacy systems
applying gathered knowledge incorporated in a reuse reposi-
tory. The successful employment of a reuse technique in the
field of reengineering brings a twofold benefit to normally
non-overlapping areas: software reuse and program under-
standing. Since we apply the reuse repository on both fields,
the return on investment justifies the effort of building a high
quality reuse repository system.



References

[1] Steven Atkinson. Cognitive Deficiencies in Software
Library Design. In Proceedings of Asia-Pacific Soft-
ware Engineering Conference and International Com-
puter Science Conference, pages 354–363. IEEE Com-
puter Society Press, December 1997.

[2] Boris Beizer. Software Testing Techniques. Van Nos-
trand Reinhold – New York, 1990.

[3] Nik Boyd. Using Natural Language in Software Devel-
opment. The Journal of Object-Oriented Programming
– JOOP, 11(9):45–55, February 1999.

[4] Ilene Burnstein, Abdul Mirza, Katherine Roberson,
Floyd Saner, and Abdallah Roberson. Knowledge
engineering for automated program recognition and
fault localization. In Proceedings of the �th In-
ternational Conference on Software Engineering and
Knowledge Engineering SEKE’ 96, pages 85–91, Lake
Tahoe (Nevada), June 1996.

[5] Ilene Burnstein and Floyd Saner. Applying Fuzzy Rea-
soning to the Program Understanding Problem. In The
��th International Conference on Software Engineer-
ing and Knowledge Engineering – SEKE’98, pages
394–401, San Francisco Bay, California, June 1998.

[6] Yonghao Chen and Betty H. C. Cheng. Formalizing
and Automating Component Reuse. In Proceedings of
9th International Conference on Tools with Artificial
Intelligence – TAI 97, pages 94 – 101, Newport Beach,
California, November 1997.

[7] R. J. Hall. Generalized Behaviour-based Retrieval. In
International Conference on Software Engineering –
ICSE93, Baltimore, MD, May 1993. IEEE Computer
Society, IEEE Computer Society Press.

[8] Gordon S. Novak Jr. Software Reuse by Specialization
of Generic Procedures through Views. IEEE Transac-
tions On Software Engineering, 23(7):401 – 417, July
1997.

[9] K. A. Konntogiannis, R. Demori, M. Galler, and
M. Bernstein. Pattern matching for clone and concept
detection. Automated Software Engineering, 3:77–108,
1996.

[10] Wojtek Kozaczynski, Jim Q. Ning, and Andre Eng-
berts. Program concept recognition and transforma-
tion. IEEE Transactions on Software Engineering,
18(12):1065–1075, December 1992.

[11] Roland T. Mittermeir and Heinz Pozewaunig. Classify-
ing Components by Behavioral Abstraction. In Paul P.
Wang, editor, Proceedings of the 4th Joint Conference
on Information Sciences –JCIS’98, volume 3, pages

547–550, RTP, North Carolina, USA, October, 23-28
1998. Association for Intellgient Machinery.

[12] Andy Podgurski and Lynn Pierce. Retrieving Reusable
Software by Sampling Behavior. ACM Transactions
on Software Engineering and Methodology, 2(3):286 –
303, July 1993.

[13] Jeffrey S. Poulin. Measuring Software Reuse – Prin-
ciples, Practices, and Economic Models. Addison-
Wesley, Reading, Massachusetts, 1997.

[14] Alex Quilici. A memory-based approach to recogniz-
ing programming plans. Communications of the ACM,
37(5):85–93, May 1994.

[15] Alex Quilici, Quiang Yang, and Steven Wood. Ap-
plying plan recognition algorithms to program under-
standing. Automated Software Engineering, 5:347–
372, 1998.

[16] Dominik Rauner-Reithmayer and Roland Mittermeir.
Behavior abstraction to support reverse engineering.
In Proceedings of the ��th International Conference
on Software Engineering and Knowledge Engineering
SEKE’ 98, San Francisco, USA, June 1998.

[17] Charles Rich and Linda M. Wills. Recognizing a pro-
gram’s design: A graph-parsing approach. IEEE Soft-
ware, pages 82–89, January 1990.

[18] Mario Taschwer, Dominik Rauner-Reithmayer, and
Roland T. Mittermeir. Generating Objects from C code
– Features of the CORET Tool-Set. In 	rd European
Conference on Software Maintenance and Reeingi-
neering – CSMR’99, Amsterdam, Netherlands, March
1999. IEEE CS Press.

[19] Amy Moormann Zaremski and Jeannette M. Wing.
Signature matching: a Tool for Using Software Li-
braries. ACM Transactions on Software Engineering
and Methodology, 4(2):146 – 170, April 1995.


