published in: W. Abramowics, M. E. Orlowska (eds.) : BIS'99 3rd International Conference on Business
Information Systems, Springer Verlag 1999, ISBN 1-85233-167-4, pp 265-280

Time Management in Workflow Systems

Johann Eder’ Euthimios Panagos
AT&T Labs — Research AT&T Labs - Research
Florham Park, NJ 07932 Florham Park, NJ 07932

hans@research.att.com thimios(@research.att.com
Heinz Pozewaunig Michael Rabinovich

Department of Informatics Systems ~ AT&T Labs — Research
University of Klagenfurt, Austria ~ Florham Park, NJ 07932
hepo@ifi.uni-klu.ac.at misha@research.att.com

Abstract

Management of workflow processes is more than just enactment of process activities
according to business rules. Time management functionality should be provided to con-
trol the lifecycle of processes. Time management should address planning of workflow
executions in time, provide various estimates about activity execution durations, avoid
violations of deadlines assigned to activities and the entire process, and react to deadline
violations when they occur. In this paper we describe how time information can be cap-
tured in the workflow definition, and we propose a technique for calculating internal
activity deadlines with the goal to meet the overall deadlines during process execution.

1 Introduction

Time plays an important role in the management of business processes. For in-
stance, business process reengineering projects typically try to reduce tur-
naround times and improve process execution duration estimates in order to
improve competitiveness. In addition, many business processes have time-
related restrictions, including bounded execution durations for activities and sub-
processes and absolute deadlines associated with activities and sub-processes.

! On leave from Department of Informatics Systems, University of Klagenfurt, Austria,
eder@ifi.uni-klu.ac.at

katja
published in: W. Abramowics, M. E. Orlowska (eds.) : BIS`99 3rd International Conference on Business Information Systems, Springer Verlag 1999, ISBN 1-85233-167-4, pp 265-280

Consequently, time management should be part of the core management func-
tionality provided by workflow systems to control the lifecycle of business
processes.

Even though existing workflow management systems offer sophisticated mo-
deling tools to specify and analyze workflows, their time management functio-
nality is rudimentary [PEL97, JZ96]. In particular, their time management func-
tionality mainly addresses process simulations (to identify process bottlenecks,
analyze the execution durations of activities, etc.), assignment of activity dead-
lines, and triggering of process-specific exception-handling activities (called
escalations) when deadlines are missed during run-time [LR94, InC, Flo, Ult,
CS96, CSE98, SAP97]. Morcover, few research activities about workflow and
time management exist in the literature.

For process-centered organizations, time management is essential for the ma-
nagement of the processes themselves. Typically, time violations increase the
cost of a business process because they lead to some form of exception handling.
Therefore, a workflow management system should provide the necessary infor-
mation about processes and their time requirements. In particular, the following
requirements should be satisfied.

e Workflow modelers need means to represent time relevant aspects of busi-
ness processes (e.g., duration of activities, time constraints, etc.) and means
to check these timing conditions;

e Process managers need support to adjust time plans (¢.g., extend deadlines)
according to time constraints, and they need means to be warned of possible
violation of time constraints so early that they can act accordingly to avoid
time failures;

e Workflow participants need information about urgencies of the tasks as-
signed to them to manage their personal work plans;

o If time failures (i.c., deadline misses) occur, the workflow system should
trigger exception handling to regain a consistent state of the workflow in-
stance;

e Business process reengineers need information about the time consumption
of workflow executions to improve business processes;

e Also controllers and quality managers need information about when and for
how long activities of a workflow instance were performed.

The latter two aspects are usually provided by workflow systems via
workflow documentation (also referred to as workflow history or workflow log)
and monitoring interfaces. In this paper, we are mainly interested in the first
three aspects. In particular, we address the following issues.

e Modeling of time at process build time to capture the available time infor-
mation;

e Pro-active time calculation to raise alerts in case of potential future time
violations;

e Time monitoring and deadline checking at run-time;

e Handling of time errors.

However, a word of caution ahead: the effectiveness of time management de-
pends on the nature of the workflow, how detailed its description is, and whether
there are external causes for time relevant events. For highly structured produc-
tion workflows with only interorganizational events, time behavior and con-
sumption of a workflow can be calculated precisely. In administrative
workflows, which span different organizations with several external events (e.g.,
waiting for a costumer to reply), time calculations are rough. Nevertheless, ma-
nagement of time, time planning and controlling has to be done, and, to our ex-
perience, it is being done in current business processes. Typically, time planning
relies on estimates based on experience. Time management during the execution
of a process becomes even more important in such an environment, where time
monitoring is essential for adjusting plans to avoid deadline misses. Our ap-
proach tries to model and represent the knowledge about time issues and make
the best use of existing time knowledge during the execution of workflows.

The remainder of the paper is structured as follows. Section 2 describes the
workflow model we use in this paper, addresses activity durations and deadlines,
and covers the phases when time calculations take place. Section 3 presents the
time calculations at process build time. Section 4 presents the time calculations
at process instantiation and the actions taken during run-time. Section 5 offers a
comparison with related work and, finally, Section 6 concludes our presentation.

2 Time Information in Workflow Schemas

In this section, we describe the workflow model we use in this paper, discuss

assignment of activity and process deadlines, and present the various points du-
ring the lifecycle of a process where time calculations can take place.

2.1 Workflow model

We use a generic workflow model that employs the structures typically found in
existing workflow models. In particular, a workflow is a collection of activities,
agents, and dependencies between activities. Activities correspond to individual
steps in a business process. Agents are responsible for the enactment of activi-
ties, and they may be software systems (e.g., database application programs) or
humans (e.g., custumer representatives). Dependencies determine the execution
sequence of activities and the data flow between these activities.

Activities can be executed sequentially or in parallel, and the possible parallel
executions are: unconditional | 1.e., all activities are executed, conditional | i.e.,
only the activities that satisfy a given condition are executed, and alternative,
1.€., any activity among many alternative activities can be executed. In addition,
a workflow may contain optional activities. Optional activities are typically exe-
cuted during the execution of workflow instances. However, they may be drop-
ped during the execution of a particular workflow instance when existing time
constraints can only be satisfied by omitting the execution of some activities.

There is an important difference between conditional execution and alternati-
ve execution of activities. In the former case, the activity that is executed next
depends on data and state that are generated during the execution of the
workflow process instance. In the latter case, the activity that is executed next
depends on policies and information that is shared by all instances of the same
workflow process. This means that any alternative will lead to a correct
workflow execution, and for time management, when the schedule is tight, the
alternative with the shortest execution time can always be chosen.

In order to represent time information, we need to augment our workflow
model with the following basic temporal types: time points, durations, and dead-
lines. For the sake of simplicity we assume that all time information is given in
some basic time units. For applications, the time information has to be given in
application specific temporal units. For build time and workflow schemas, time
information is always given relative to the beginning of a workflow. For
workflow instances, this time information is mapped to an actual calendar.

2.2 Execution Durations and Deadlines

Given a workflow schema, a workflow designer can assign execution durations
and deadlines to individual activities and to the whole workflow process [LR94,

InC, Flo]. Usually, execution durations correspond to estimated or projected
activity execution times. In addition, many duration values may be specified for
activities and used during simulation. These durations can be either calculated
from past executions, or they can be assigned by specialists based on their expe-
rience and expectations. Typically, the most common duration values used in-
clude minimum, maximum, and most frequent execution times.

Activity and process deadlines, on the other hand, correspond to maximum
allowable execution times for activities and processes, respectively. In the re-
mainder of this paper, we refer to these deadlines as explicit deadlines. At
process build time, these deadlines are specified relative to the beginning of the
process. At process instantiation time, a calendar is used to convert all relative
deadlines to absolute time points, modify the assigned deadlines, or assign new
deadlines.

Deadlines do not have to be associated with every activity in a given
workflow schema. In fact, no deadlines may be assigned to activities at all.
However, it is beneficial to associate deadlines with activities. The most com-
pelling reason for doing so is the monitoring of the execution progress of activi-
ties and processes containing these activities so that preemptive actions are taken
when delays are developed. We present how these deadlines, called internal
deadlines, are computed at process build and instantiation times and how we use
them at run-time in later sections of this paper.

It is important to note that activity durations and deadlines may not be the
same, which is how they are always treated by some of the existing workflow
management systems. Distinguishing between the two is extremely beneficial
for cases where the actions taken when a deadline is missed may have consider-
able costs associated with them (e.g., rollback of the entire process). In such
cases, when an activity takes longer to execute than the duration assigned to it in
the workflow schema, pre-emptive steps can be taken to assess deadline satisfia-
bility, modify workflow parameters, and alert appropriate agent(s) and process
manager(s).

2.3 Time Calculations

Given the activity durations and deadlines assigned in a workflow schema, time
calculations are needed for computing optimistic and pessimistic start and finish
times of activities within processes, available slack time for activities, updating
existing deadlines, converting time information to absolute time points, and so
on. In particular, the following three phases are used for these time calculations.

e At build time, time information (durations and external deadlines) is recor-
ded, and general time information on the workflow type is computed.

Furthermore, several start and finish activity times are computed based on
the above time information and the process structure. This information can
be used by the process designer(s) to locate temporal bottlenecks and candi-
dates for further optimization efforts;

e At process instantiation time, a process instance and its own time informati-
on are created, and the time information is mapped to absolute time points
using a calendar. Furthermore, a deadline for the entire process is specified
and internal activity deadlines are computed,

e At run-time, the execution progress of a process is monitored and activity
execution times are recorded together with the decisions made at various
conditional and alternative execution points. This information is subse-
quently used to adjust internal deadlines when activities are launched to
worklists.

Typically, the assignment of external deadlines is an iterative process. The
designer first assigns activity durations. The time calculations at process build
time are then used to compute the duration of the whole process and the relative
position of all activities. The designer can then choose to set external deadlines
to some of the activities and recompute the time information. If external dead-
lines cannot be met, the designer might modify the workflow structure, or
change the deadlines.

From this information, the duration of complex activities or sub-processes
consisting of sequences, alternative, conditional, optional, and parallel executi-
ons can be calculated as we show in the sequel. However, for loops, we need
additional information about the number of iterations. The designer can provide
this information in three ways.

1. For a fixed number of iterations, the designer assigns exactly this number;
2. The designer can provide minimum, maximum, and mean number of itera-

tions to calculate expectancy and variance as above, and use it for multipli-
cation with the duration of the loop body;

10
K
20
c \ G

20

Figure 1: Example workflow process schema

3. The loop can be considered as a complex activity and the designer defines
the duration of this whole complex activity.

In the following we will not consider loops in detail, but assume that they are
treated as (complex) activities.

3 Time Management at Build Time

Typically, execution durations for activities are available at process build ti-
me. These durations are either assigned by the process modeler(s) based on va-
rious estimates, projections, and expectations or derived from past process exe-
cutions. Figure 1 shows an example workflow schema having durations attached
to activities. Activity 4 is the start activity and its duration is set to 2 time units.
After A, there is a conditional split, and after activity C, there is an unconditional
split (parallel execution). Activities D and I are optional. After 7, there is an al-
ternative split, i.¢., either J or K will be executed (both are valid choices). Final-
ly, L corresponds to the final activity of the workflow.

Using the workflow process schema and the durations assigned to the activi-
ties in the schema, we can calculate the relative start and end times for all activi-
ties (with respect to the beginning of the process), as well as the finish time of
the entire process. In the remainder of the section, we describe how such calcu-
lations are carried out and how they can be used.

3.1 Timed Graph Construction

Every workflow activity 4 has a start and an end event associated with it. The
start event denotes the start of the activity, while the end event denotes the com-
pletion of the activity. Assuming that any start-up costs are already incorporated
in activity durations and, in addition, there exist no time constraints between
activities (e.g., activity B can start 5 time units after activity 4 ends), the end
event of an activity and the start event of all its successor activities are the same.
When start-up costs exists or external timing constraints are present, dummy
activities can be used to make the end event of an activity be the same as the
start event of the next activity. Therefore, we only consider end events for the
remainder of the paper.

In [PEL97], the authors used the PERT-net technique to formulate time con-
straints in workflow systems. Here, we extend their work and associate the fol-
lowing relative time information with the end event of an activity A: Egs, Ews,
Epr, Ewr, Lgs, Lws Lgr, and Lyr. In the above time information, E stands for the
carliest point in time 4 may end, while L stands for the latest possible point in
time A can finish to ensure minimal execution time for the entire process. Since
conditional branches may require different execution times, we use 5 to denote
the best case and W to denote the worst case. Finally, optional and alternative
activity executions are “captured™ by F and S. I corresponds to an execution
where optional activities are not executed and the fastest alternative is always
selected. .S corresponds to an execution where all optional activities are executed
and any alternative can be selected.

For example, E; ¢ corresponds to the earliest point in time 4 may end when

in the preceding process execution the worst conditional branches were follo-
wed, all optional activities were executed, and the slowest alternatives were cho-

sen. On the other hand, L) corresponds to the latest possible point in time acti-

vity 4 has to finish in order to minimize the execution of the entire process, as-
suming that the worst conditional branches will be followed, all optional activi-
ties will be executed, and any alternative can be selected in the remaining of the
process.

Depending on the control dependencies between activities, Fgr, Eps, Eyp,
Ews, Lgr, Lgs, Lyr, and Lyy are computed in the following way. First, a forward
traversal of the workflow schema is required for computing Egr, £gs, Ewr and
Ews. At the beginning of this traversal, the E-values of all activities without pre-
decessors are sct to 0. Next, a backward traversal of the workflow schema is
required for computing Lgg Lgs, Lwr, and Lys. At the beginning of this traversal,
the L-values of all activities

Forward Computation Procedure

sequential El. =E.. +d().i—]
Ejs =Ej +d(). 1]
El. =E.. +d().i—]
Ejs =Eps +d().i]
unconditional El. =max{E’, +d'() [Viii—>j}
E’. =max{E.. +d()|Vi:i—j}
E/ =max{E +dG)|Vi:i—>j}
E/. =max{E._ +d()|Vi:i—j}
conditional El. =min{E’, +d'(j) | Viii—j}
E’. =min{E +dG)|Vi:i—j}
E/ =max{E +dG)|Vi:i—>j}
E/. =max{E._ +d()|Vi:i—j}
alternative El. =min{E’, +d'(j) | Viii—j}

E’. =max{E.. +d()|Vi:i—j}
E/. =min{E., +d'(G)|Vi:i—j}

E/. =max{E._ +d()|Vi:i—j}

Table 1: Computations OfEBs, Ews, EBF, EWF

Backward Computation Procedure

sequential L, =L -d().i—]
Lis =L -dG).i—>]
Lyp =Lip -d'().i—]
Lys = Lis -d().i—>]
unconditional |L . =min{LZ, -d'G)|Vi:i—j}
L. =min{L’; -dG)|Vi:i—j}
L!. =min{L_ -d'G)|Vi:i—>j}
L! . =min{L’ -dG)|Vi:i—j}
conditional L%, =max{L/, -d'() | Viii—j}
L., =max{L’; -d()| Vi:i—j}
L! =min{L:_ -d'G)|Vi:i—>j}
L! . =min{L’ -dG)|Vi:i—j}
alternative L%, =max{L7, +d'() |Viii—j}
L. =min{L’; +dG) | Vi:i—j}
L!. =max{L}, +d(G) |Vi:i—>j}
L! . =min{L}, +dG) | Vi:i—>j}

Table 2: Computations OfLBs, st, LBF, LWF

Activity

duration| opt.
Ebf Lbf
Ebs Lbs
Ewf Lwf
Ews Lws

Figure 2: An activity node in the timed workflow graph

without successors are set to their corresponding E-values, unless external dead-
lines are assigned to these activities. In this case, all L-values are set to these
deadlines, which are assumed to be relative to the beginning of the process.

If during the backward traversal external deadlines are assigned to activities
with successors, the L-values of these activities are set to their respective dead-
lines when they are greater than these deadlines. Tables 1 and 2 illustrate the
formulas used for the above computations. For clarity, we have omitted external

deadlines from these formulas. The notation i — j is used to represent the fact
that ; is an immediate successor of 7. In addition, d(j) denotes the execution du-
ration of activity j. If activity j is optional, d(j) is set to 0. Otherwise, d (j) is set
to d(j). It is casy to see, that the following invariants hold: Epr < Ewr < Ews,
EBF < EBS < Ews R and EBS < LBS .

For the calculations presented in tables 1 and 2, the execution duration of an
activity can be set to the minimum, maximum, or average execution duration, or
to a duration that corresponds to some percentage of the already executed
process instances. These values can be computed from the log records generated
by existing workflow systems. Alternatively, they can be assigned by process
modelers and be part of the workflow-specific data. For the remainder of the
paper, we assume that execution durations correspond to average execution
times.

3.2 Interpretation of the Timed Graph

Figure 3 shows the result of calculating the E- and L-values for the workflow
schema shown in Figure 1. Figure 2 shows the meaning of these values for each
activity node. The most important information in this timed graph is the activity
E-values and, in particular, the E-values of activity L. This is because L is the
last activity to be executed and, thus, its termination

u| u 24| 4
32 B| 3B
1| 32 1 5| 62 L
10| o0 A 10

olo|o|lo|s

©lo|olo|w

glg|olo|o
@

10 32 32 45 45
17 3 42 42 K 72 72
17 6 20
17 27 28 11

[SHENRINRERHINS

[SHENRINREN

-17 32 8 62 62

NN~ (N o
-
5]
n
@
S
-
=

27 6
27 27
27 27

Figure 3: Workflow timed graph after the build-time calculations

time point corresponds to the termination time point for the entire process.
In particular, the earliest possible time for the entire workflow to terminate is

21, which corresponds to E ;. . This can happen when activities D and are not

executed, J is selected instead of K, and the conditional branch containing B is
followed. On the other hand, if all optional activities are executed, the workflow

can finish as early as 51 (i.c., Eés) and as late as 72 (i.e., EﬁVS), depending on

the alternative activity selection and the conditional branch followed.

Regarding the L-values of an activity, they indicate whether there is a path
containing this activity that may lead to a time error at process execution. In
particular, if all L-values of an activity are greater than their corresponding E-
values, there exist execution paths containing this activity that are likely to avoid
time violations. However, if there exist L-values that are less than their matching
E-values, then there exist paths that may lead to time violations. For example,
activity C has negative Lzr and Lgs values in Figure 3. Therefore, if C is execu-
ted at run-time and the deadline of the entire process is set to 21, the deadline
will be violated.

B D H J
4 3 o) 2 3
6 23 6 23 8 25 1 50
6 15 9 18 11 20 24 50
6 23 6 23 8 25 35 50
y 6 15 9 18 11 20 I 45 50 L
10 (o] 10
2 c A
8 47 21 60
2 | 1
E 21 30 51 60
2 11
10 2| & 5| o
2 17
7| a2 2| K 2] e
2 | 1
7| 15 20
| 2| %
c 7| 15 G 4| %
5 5 52| %0
7| 2 2| & 62| 5
7|5 F 2|
7 |2 2 2|
7|5 7| % 2|
7| 15
27 42
27 15

Deadlines: L: 60, H: 25, G: 50

Figure 4: Example workflow process schema after process instantiation

4 Time Management at Run-Time

At run-time, relative time information contained in the timed graph created du-
ring build time is transformed into absolute time points, internal activity dead-
lines are monitored, and remedial actions are taken when deadlines are violated.
In the remainder of the section, we address these issues in depth.

4.1 Time Fixing at Process Instantiation

At process instantiation time, an actual calendar is used to transform all relative
time information to absolute time points. In addition, the timed graph may have
to be recomputed if external, absolute deadlines are assigned to activities.
However, the re-computation only affects the L-values and, hence, we only have
to repeat the backward traversal of the workflow schema.

Figure 4 shows the workflow graph after deadlines for the activities 7, H, and
G have been given externally. When we look at the values for activity A, we can
conclude that it is possible to meet all deadlines. However, if at conditional

branches longer paths are followed, then it is necessary to skip optional activities
or select faster alternatives.

If all L-values are negative, we cannot make it and we should raise a time ex-
ception. At this point, E-values are not really needed since the L-values are af-
fected by the external deadlines. However, E-values could be used for perfor-
ming agent load analysis. This can be done by checking the activities that
are/will be assigned to an agent and the E-values for these activities. This topic,
not discussed further in this paper, is subject of ongoing research to improve the
forecast of delays in workflow executions.

4.2 Internal Deadline Calculation

During the execution of a workflow instance, the execution durations of activi-
ties may vary considerably from their average values. When the execution takes
less than the average execution time, slack time becomes available. On the other
hand, when the execution takes longer that the average execution time, slack
time for future activities may be reduced. In addition to the slack time that is
generated when activities take less time to finish, slack time may be available
due to the following.

1. The deadline assigned to the entire workflow process is greater than the L-
values of all activities that signal the end of the process, i.c., they have no
SUCCESSOrs;

2. Activities belonging to parallel branches may have different execution cha-
racteristics. Since the longest branch determines the execution of all parallel
branches belonging to the same unconditional split point, shorter branches
have slack available to them;

3. In conditional and alternative structures, slack is generated from the diffe-
rence in the duration of different paths;

4. When an optional activity is not executed, its average execution time beco-
mes the available slack for its successor activities.

Given the current absolute time point, now, the average duration of an acti-
vity 4, and the L-values for this activity, we can assess the state of the workflow
instance containing A with respect to its execution progress as follows.

A

e If now + duration(4) < L, the process is running smoothly and all dead-

lines will be met, given that the remaining activities take the expected exe-
cution time;

o If L;S < now + duration(4) < LAWF , the process can still meet all deadlines.

However, it might be necessary to drop some optional activities or chose
faster alternatives;

o If now + duration(4) < L’;,, , there is still a chance that the workflow finis-

hes in time. However, this depends on which conditional branches are fol-
lowed;

o IfL%, <wnow + duration(4), then it is only possible to meet the deadlines if
the remaining activities finish faster than expected.

We should note that since externally defined deadlines are already taken into
account during the construction of the timed graph, we do not have to consider
these deadlines as long as Lgr can be met. If Lgr is missed, escalation is invoked.
Based on the above observations, we can summarize the status of a workflow
using the following states.

Green: We expect to finish the workflow in time without dropping any of the
optional activities or changing the alternative selection policies;

Yellow: Although we may still be able to finish in time, we may have to elimi-
nate some of the optional activities or select specific alternatives. In
particular, before launching an optional activity, a decision has to be
made whether the activity should be executed. Similarly, a decision
needs to be made regarding the selection of the alternative activity to
execute next. The rest of the activities are executed normally in this
state;

Red: The threat of missing a deadline is great and a time error should be
raised to trigger escalation actions.

To monitor the state at which a process instance is currently operating, we
use two threshold values for each activity, Lgy and Ly . Lgy signals the change
from a green state to a yellow state. Lyz signals the change from a yellow state

to a red state. Default values for these thresholds are set as follows: L5, = L

A A . . .
and L, =L, . These values are conservative choices, where no risk concer-

ning alternative paths is taken. However, these threshold values should take into
account the variance in activity durations, the proportion of best and worst cases,
and the willingness to accept risks and, thus, are influenced by more information
than is usually available in workflow systems. It is an important tuning knob for
the time management system, and we believe that it should be the responsibility
of a process manager to set these values and adjust them accordingly.

The above thresholds could be treated as internal activity deadlines (i.c.,
deadlines not assigned at build or instantiation times). In particular, the deadlines
of all non-optional activities could be set to Ly , while the deadlines of optional
activities could be set to Lgy . Note that for optional activities we use Ly becau-
se a decision has to be made before launching such activities, according to the
discussion presented in the description of the yellow state.

However, it may be beneficial to assign different internal activity deadlines
than the above threshold values when these deadlines can influence the sequence
in which activities are sclected from worklists and, therefore, influence when
activities are executed. For instance, in workflow systems where the shortest
deadline first scheduling policy is used by the engine or the workflow partici-
pants can choose the next activity to execute from their worklists, strict internal
deadlines can be used to accelerate process execution and create slack that can
be used to address unexpected delays and exceptions in the future. If these dead-
lines cannot be met, deadline extension can be granted based on the current state
of the process and the available slack.

Possible alternatives for computing these internal deadlines are the no slack
and proportional slack policies described in [PR97b]. In the former case, the
internal deadline is set to the duration of the activity. In the later case, the durati-
on is extended by a fraction of the available slack according to the proportion of
the duration of the actual activity to the duration of the rest of the workflow. If
the internal deadline does not influence the order in which activities are selected
from worklists, which is the case when FIFO is used, the internal deadlines are
not necessary and the threshold values introduced above can be used. This policy
corresponds to the total slack policy presented in [PR97b]. For these worklist
selection strategies, the deadline is only necessary to determine when an escala-
tion has to be raised.

4.3 Handling Missed Deadlines

When a deadline is missed, a time failure is generated and escalation actions are
taken. These escalation actions depend on the state of the workflow process
(green, yellow or red), and some of the possible alternatives are the following.

e Deadline Extension: When an internal deadline is missed while the process
is in either the green or the yellow state, the deadline may be extended. For
non-optional activities, the upper bound for the new internal deadline is Ly
For optional activities, the upper bound for the new internal deadline is Lz,
according to the discussion presented in the previous section. Extending in-
ternal deadlines is helpful when the proportional slack or the no slack strate-
gies are followed during deadline assignment.

e Alternative Selection: When the process is in the yellow state and its inter-
nal deadline is missed, besides extending its deadline (as in the previous
case), the selection policy for future alternative activities may be changed to
favor alternatives with faster execution times. Of course, the above is bene-
ficial only when the process deadline can be met with these changes. The
pre-emptive escalation work of [PR97a, PR97b] can be used for determining
this.

e Option Removal: If no deadline extension can be granted and no alternative
selection policy can be altered to preserve the process deadline, future optio-
nal activities can be eliminated. Actually, these optional activities are mar-
ked as dropped, and the decision to drop them is made when they are about
to be scheduled for execution, as we discussed in the previous section.

e Time Error: If the process is in the red state, a timing exception has to be
raised to escalate the problem. Here, recovery may be automatically invoked
(ala [EL96]) or human interaction may be required to proceed. In the latter
case, there are several options available to process managers in order to re-
gain a valid workflow state. The workflow schema can be dynamically
changed (e.g., by parallelizing sequential activities), activity priorities can be
raised to speed up execution, or deadlines can be renegotiated.

The escalation strategy tries to avoid higher escalations as long as possible.
The threshold values between the timing states defined above are again used for
determining the escalation level. Pro-active actions like avoiding alternative
branches or skipping optional activities are delayed as long as possible. When
such pro-active means are taken, the timed graph has to be recomputed to reflect
the changed workflow.

5 Related Work

Assignment of internal deadlines differs from dynamic workflow modification
that is supported by some existing workflow products and research prototypes.

The latter is done to reflect changes in the model of the business process or a
particular instance of the process. In contrast, our goal is to capture time infor-
mation at build time, monitor process execution at run-time, and react to time
failures without modifying the business process model. In this, it is somewhat
similar to scheduling in real-time systems [LL73, AGM88, HSTR89]. However,
real-time systems use deadlines for scheduling system components such as CPU
and I/0. We view scheduling and internal deadline assignment and adjustment
as complimentary mechanisms.

Our work is related to the work described in [MN95]. In [MN95], the au-
thors presented priority-driven CPU scheduling algorithms for transactional
workflows. Each workflow process consists of several sequential tasks. Each
task is an ACID transaction having an average response time goal. The as-
signment of priorities is based on the performance of the tasks relative to their
original response time goals. In contrast to these algorithms, our work does not
concentrate on CPU scheduling. In addition, our algorithms are not restricted to
transactional workflows, and they allow both sequential, conditional, parallel,
alternative, and optional execution of tasks.

In [KGM93a, KGM93b], the authors studied the problem of how the deadline
of a real-time activity is automatically translated to deadlines for all sequential
and parallel sub-tasks constituting the activity. Each sub-task deadline is as-
signed just before the sub-task is submitted for execution, and the algorithms for
deadline assignment assume that the earliest deadline first scheduling policy is
used. While our work has similarities with the above work, there are several
important differences. In particular, we treat alternative, conditional, and optio-
nal activities. Also, we offer techniques for building the timed graph at process
build time and using the graph for arriving at a process deadline. Finally, our
work supports the assignment of external deadlines to individual activities as
well as to the entire process.

In [PR96, PR97a, PR97b], the authors proposed the use of static data (e.g.,
escalation costs), statistical data (e.g., average activity execution time and pro-
bability of executing a conditional activity), and run-time information (e.g.,
agent work-list length) for adjusting activity deadlines and estimate the remai-
ning execution time for workflow instances. However, this work does not
address time management at process build time, nor does it consider alternative
activity executions and optional activities.

In [PEL97], the authors presented an extension to the net-diagram technique
PERT to compute internal activity deadlines in the presence of sequential, alter-
native, and concurrent executions of activities. Under this technique, business
analysts provide estimates of the best, worst, and median execution times for
activities, and the [f-distribution is used to compute activity exccution times as
well as shortest and longest process execution times. Having done that, time
constraints are checked at build time and escalations are monitored at run-time.

Our work extends this work by providing a technique for handling optional acti-
vity executions, and addressing the computation of internal deadlines under va-
rious circumstances.

6 Conclusion

In this paper, we presented a method for incorporating time aspects into
workflow management. The idea is to enrich a workflow specification by time
information for activities, and to translate such a workflow description into a
PERT-diagram that shows for each activity the time when the activity has to be
at a specific state (¢.g., started or finished) to satisfy the overall time constraints
of the workflow. For these calculations, we extended the net diagram technique
PERT to handle alternatives and optional activities in the process definition. At
run-time, the PERT-diagram supports the workflow scheduler in finding optimi-
zed workflow executions.

An important advantage of our work in the explicit treatment of time during
workflow definition and execution. In particular, our work enables process ma-
nagers to plan workflows along the time dimension and to be alerted about po-
tential time error, ¢.g., missed deadlines, early on so that they can take steps to
avoid the conflicts or to escalate in order to minimize operational costs. The time
information is also used to inform workflow users about time constraints about
the activities in their worklists. This information allows users to make priority
decisions between activities based on the urgency of activities in the global
process and their deadlines to avoid time errors.

References

[AGMS88] R. Abbott and H. Garcia-Molina. Scheduling real-time transactions:
a performance evaluation. In Proceedings of the 14th International

Conference on Very Large Data Bases, pages 1-12, Los Angeles,
CA, 1988.

[CS96] CSE Systems. Benutzerhandbuch V 4.1 Workflow. CSE Systems,
Computer & Software Engineering GmbH, Klagenfurt, Austria,
1996.

[CSE98] CSE Systems Homepage. http://www.csesys.co.at/, February 1998.

[EL96] Johann Eder and Walter Liebhart. Workflow recovery. In First
IFCIS International Conference on Cooperative Information Sy-

[Flo]

[HSTRS9]

[InC]

[1Z96]

[KGM93a]

[KGMO93b]

[LL73]

[LR94]

[MNO5]

stems (CooplS 96), Brussels, Belgium, Jun 1996. IEEE Computer
Society Press.

TeamWare Flow. Collaborative workflow system for the way
people work. P.O. Box 780, FIN-00101, Helsinki, Finland.

J. Huang, J.A. Stankovic, D. Towsley, and K. Ramamritham. Expe-
rimental evaluation of real-time transaction processing. In Procee-
ding of the 10th Real-Time Systems Symposium, December 1989.

InConcert. Technical product overview. XSoft, a division of xerox.
3400 Hillview Avenue, Palo Alto, CA 94304.
http://www xsoft.com.

Heinrich Jasper and Olaf Zukunft. Zeitaspekte bei der Modellierung
und Ausfihrung von Workflows. In S. Jablonski, H. Groiss,
R Kaschek, and W. Liebhart, editors, Geschdfisprozefimodellierung
und Workflowsysteme, volume 2 of Proceedings Reihe der Infor-
matik '96, pages 109-119, Escherweg 2, 26121 Oldenburg, 1996.

B. Kao and H. Garcia-Molina. Deadline assignment in a distributed
soft real-time system. In Proceedings of the 13th International
Conference on Distributed Computing Systems, pages 428-437,
1993.

B. Kao and H. Garcia-Molina. Subtask deadline assignment for
complex distributed soft real-time tasks. Technical Report 93-
1491, Stanford University, 1993.

CL. Lin and J. Layland. Scheduling algorithms for multipro-
gramming in hard real-time environments. Journal of the Associati-
on of Computing Machinery, 20(1):46-61, January 1973.

F. Leymann and D. Roller. Business process management with
flowmark. In Proceedings of the 39th IEEE Computer Society In-
ternational Conference, pages 230-233, San Francisco, California,
February 1994, http://www.software.ibm.com/workgroup.

M. Marazakis and C. Nikolaou. Towards adaptive scheduling of
tasks in transactional workflows. In Winter Simulation Conference,
Washington D.C., 1995.

[PEL97]

[PRY6]

[PR97a]

[PRO7b]

[SAPY7]

[Ul]

H. Pozewaunig, J. Eder, and W. Liebhart. ¢ePERT: Extending PERT
for Workflow Management Systems. In First Fast-European Sym-
posium on Advances in Database and Information Systems ADBIS
97, St. Petersburg, Russia, Sept. 1997.

E. Panagos and M. Rabinovich. Escalations in workflow man-
agement systems. In DART Workshop, Rockville, Maryland, No-
vember 1996,

E. Panagos and M. Rabinovich. Predictive workflow management.
In Proceedings of the 3rd International Workshop on Next Genera-
tion Information Technologies and Systems, Neve llan, ISRAEL,
June 1997.

E. Panagos and M. Rabinovich. Reducing escalation-related costs in
WFMSs. In A. Dogac et al., editor, NATO Advanced Study Institue
on Workflow Management Systems and Interoperability. Springer,
Istanbul, Turkey, August 1997.

SAP Walldorf, Germany. SAP Business Workflow ¢ Online-
Help, 1997. Part of the SAP System.

Ultimus. Workflow suite. Business workflow automation. 4915
Waters Edge Dr., Suite 135, Raleigh, NC 27606.
http://www.ultimus1.com.

