
Business-Oriented Component-Based Software Development and Evolution

Stan Jarzabek1 Martin Hitz
Dept. of Information Systems & Computer Science Inst. f. Angew. Informatik & Informationssysteme

National University of Singapore University of Vienna
stan@iscs.nus.edu.sg Martin.Hitz@UniVie.ac.at

1 This work was supported by National University of Singapore Research Grant RP3950616.

Abstract

Huge size and high complexity of legacy software are the
main sources of today’s software evolution problems. While
we can ease software evolution with re-engineering tools, in
the long term, we should look for a more fundamental and
effective solution. Component-based software development
(CBSD) technology makes it possible to build software
systems as collections of cooperating autonomous
application components. This new paradigm has a potential
to ease software evolution problems as modification or
replacement of components is deemed to be much easier than
modification of today's huge monolithic legacy programs.
For CBSD to bring promised benefits, we must identify the
right components in a given business domain. The claim of
this paper is that while CBSD is an important enabling
technology, the decomposition of a software system into
components must be driven by business considerations. If we
let logical models of business processes drive planning and
design of software systems, we can avoid creating huge
legacy software. Similar approaches may apply to software
evolution in other than business domains, too.

1. Introduction

Software evolution takes many different forms ranging
from fixing errors to implementing functional enhancements,
conversions of programs to other platforms, restructuring for
ease of maintenance and re-engineering. Evolution of
business environments and technological changes affect
software requirements and trigger the need for software
evolution. However, the pace of software evolution appears
to be much slower than the pace of changes in business and
technology. As a result, many of today’s programs fall short
of user expectations. Increasing costs of adapting software to
ever changing business needs and technology (industrial
surveys indicate increasing maintenance costs, mounting to
80% of computing budgets [16]), makes companies consider
software re-engineering as a cure to maintenance problems.
While successful re-engineering projects have been reported

[19,20,1], the same sources inform us about the risks and
high failure rate of reengineering projects. Reengineering
tools, in hands of experienced programmers, can help in on-
going maintenance and reengineering, but they do not
provide an ultimate solution to software evolution problems.
Finally, there is no guarantee that modern CASE tools and
visual development environments will help us avoid similar
problems in the future, either.

Emergence of component-based software development
(CBSD) technology in recent years brings a new hope.
Industry interest in component technologies such as
ActiveX™, COM™, CORBA™ or JavaBeans™ grows
rapidly. It is hoped that with the CBSD technology, we can
build software systems out of reusable and autonomous
application components with well-defined functionality and
interfaces. Software evolution can then become an easier
task, as we can evolve software systems by modifying or
replacing application components. Modification of
components would have only local impact, therefore could
be implemented fast. Finally, with CBSD, we could reuse
component applications in different software systems.

While software technology for CBSD becomes already
available, it is illusory to think that the component techno-
logy alone will free us from software evolution problems. In
particular, the critical question of “what should constitute an
autonomous component in a software system so that soft-
ware evolution is easier?” cannot be answered by the CBSD
technology alone, as the answer to this question depends pri-
marily on business considerations. Software evolves because
it is an integral part of a larger, also evolving business
system: 50% of maintenance costs are due to program en-
hancements in response to changes in business requirements
[16]. The claim of this paper is that only from the business
perspective can we correctly understand, formulate and solve
current software evolution problems. The CBSD is an
important enabling technology that will help to put business-
oriented and component-based solution into practice.

Lack of business-orientation during software planning
and development is responsible for problems with today’s
legacy software systems. Over decades of computerization,

many companies have been developing software in an ad hoc
way rather than according to a business plan. Due to
concentration on local needs of company departments and
lack of attention to the global business needs, the business
value of software often fell short of expectations: many
software systems did not address central issues such as using
software to automate and smoothen business processes and
supporting information needs of the corporate management
[7]. In response to those problems, software systems have
been heavily maintained, producing huge, degrading in
quality, overloaded with redundant functions and difficult to
evolve legacy software.

We try to save legacy software with tools that improve
code quality through re-engineering or help understand
complex programs through reverse engineering and static
program analysis. While these tools can help to some extent,
in the long term, we should look for more fundamental
solutions to software evolution problems. Instead of
struggling with evolution of huge and complex software
systems, we should ask how we can avoid creating huge
systems in the first place. In this paper, we argue that
business-oriented criteria for component identification
together with domain analysis, generic software architecture
design techniques and the CBSD technology can bring
substantial improvements to software evolution.

Sections below discuss component technology and
software evolution in the context of large companies, such as
banks or manufacturing, that develop software to run their
own business. At the end of the paper, we argue that
discussed concepts apply in other software development
situations and in non-business domains, too.

2. Business perspective on software components

In response to software problems, in the 1980s methods
for strategic planning emerged, James Martin’s Information
Engineering [14], IBM’s Business System Planning and
Zachman’s enterprise information architecture [7,21], to
name a few of them. The objective of strategic planning
methods is to provide an element of coordination and
business-orientation to software development. Among these
methods, Zachman’s approach has some unique features that
make it attractive in the context of the CBSD technology and
software evolution.

The aim of the enterprise information architecture is to
provide a stable, business-oriented framework for software
development in a company. An enterprise information
architecture has a hierarchical structure, with different levels
reflecting views of different stakeholders. It consists of three
vertical columns (data, process and technology) and six
horizontal levels. The upper two levels (ballpark and owner’s
views) address business concerns. The lower levels define
information systems a company needs to develop, how they
should be fragmented into smaller applications to avoid
redundancy, what applications should do to add value to the

whole company in terms of support for both cross company
business processes and information needs of decision
makers, which applications should work together to support
higher level functions and, finally, how applications should
be built and installed. We refer the reader to [7,21] for more
details of the enterprise information architecture.

supports

 ...

Info. Syst.
D

appl 2
appl 5

appl 4

appl 3appl 1
software

applications

1 54
3

2

D

C

A B

hierarchy of
sub-processes

high-level

business processes

M arketingProduction

Figure 1. An enterprise information architecture

Fig. 1 illustrates a sample fragment of an enterprise
information architecture. Production and Marketing business
processes have been decomposed into lower level processes
(A, B, C, and D in circles) which in turn have been
decomposed into elementary processes (smaller circles
labeled with digits) roughly corresponding to use cases as
described in [9]. High level processes in Fig. 1 correspond to
end-to-end cross-departmental business processes. They are
modeled as chains of elementary processes. We call
processes in the enterprise information architecture logical
processes, as we derive them from models of what a
company does rather than from how a company does it in
terms of company organizational charts.

The above information architecture is a prelude to
building evolving business software. We start by developing
small-size software applications to support elementary
processes (circles with digits). Then, we compose larger
information systems, supporting higher-level processes, out
of small applications. In that way, software structure is
closely integrated with the structure of business processes.
The impact of changes in a business environment can more
easily be traced to the level of software. As business evolves,
software can evolve accordingly. Re-engineering of a
business processes will usually affect some of the related
applications but will not require massive changes (or
scrapping) of the existing information systems. As logical
business processes are independent of the company structure,
we can also change the company structure and evolve
information systems by re-configuring component
applications to fit into the new structure.

Although the concept of an enterprise information
architecture has been known for some time, it has not had
much impact on the structure of business software and did
not save us from problems of maintaining today's legacy
software. We could blame lack of education, mismatch
between the architectural concepts and organizational

structure of companies and many other non-technical issues.
However, it also true that only with the recent introduction
and acceptance of the CBSD technology standards, software
component solutions suggested by the enterprise information
architecture can be directly and easily implemented. Properly
identified functionalities at the business level can be
implemented as stand-alone executable applications,
encapsulated as COM objects, with an interface providing
access to application functions. Keeping applications small
and the ability to use them in different configurations is now
possible and simple.

3. Software decomposition for ease of evolution

Long ago, Parnas noticed that, for any given problem,
there are many possible ways to design a program solution
[18]. A required program structure depends on the objectives
that we want to achieve such as simplicity of the design, run-
time efficiency, ability to change design decisions,
portability across platforms or ease of enhancing program
functions. Here, we are interested in how we should
decompose software systems into a set of executable
application components for ease of evolution. Obviously,
there are many ways we can do this. The lesson from the
discussion in the previous section is that to ease software
evolution we should structure business software into
components according to business criteria. Strictly speaking,
software components should correspond to business
processes at different levels of an enterprise information
architecture. The interactions between business processes
should determine interfaces between software components.
Functionally coupled components should be packaged into
one application and functionally coupled applications into an
information system. Components that share much data
should be built around common databases, ideally
conforming to a business wide conceptual data model.

4. A model for component-based software evolution

Consider the following situation. Suppose we identified a
business process P that consists of a chain of sub-processes
p1,…,pn. Software applications App(pi) support sub-
processes pi and an information system Is(P) supports the
whole process P. Evolution of applications App(pi) may
include any of the following activities:

P1. modifying the functionality of an application
App(pi) through:
a. customization mechanism provided by the

CBSD framework such as COM, ActiveX, etc.,
b. modifying code of the App(pi),

P2. modifying interfaces between App(pi) and other
applications using the CBSD framework,

P3. modifying interfaces between App(pi) and
databases.

Evolution of Is(P) may include any of the following
activities:

S1. evolving one or more component applications
App(pi), as described above,

S2. adding, deleting, replacing component applications,
S3. modifying the part of Is(P) that does not belong to

any of its component applications. For example, the
overall control of Is(P) is likely to be implemented
within Is(P), outside the component applications.

In the above evolution model, we treat applications as
either black-box components equipped with vendor-provided
customization mechanism (options P1a, P2 and P3) or as
open components that can be customized by code
modifications (option P1b). Such a view is simplified and
may not allow us to exploit all potentials of the CBSD
paradigm. Now let us examine how program construction
time reuse facilitated by domain analysis and generic
software architectures can enhance the above model and
better support software evolution.

5. Generic software architectures, CBSD and
software evolution

In Fig. 1 we see that some of the lower level processes
recur in more than one higher level business processes. For
example, process 2 occurs in processes B and C, while
process B occurs in Production and Marketing. Furthermore,
when deciding which departments will be performing which
processes, we can find out that many departments may deal
with different instances of the same process. For example,
process ‘procurement’ is likely to appear in many high-level
business processes and in many departments, even if only a
subset of functions are performed there.

Figure 2. Many-to-many mappings between entities in
the enterprise information architecture

Fig. 2 depicts these many-to-many relationships among
business and software entities in Martin/Odell notation [15].
A cost-effective strategy for software development and
evolution should not ignore an opportunity to reuse software
applications that recur in more than one context.

An enterprise information architecture helps us identify
reuse opportunities. However, not always is it easy to tap
reuse opportunities, even though we know they exist. Apart
from similarities, there will be differences among processes
and applications that recur in different contexts.
Consequently, there will be differences across software

departments

 high-level
business processes elementary processes

software applicationsinformation systems

applications that support those processes. Applications may
vary in user requirements or attributes of data. Different
applications may run on different platforms, use different
DBMSes, etc. To reuse, we need implement generic
applications that can be customized to various contexts in
which applications are to function.

The CBSD paradigm can be practical only if software
components are highly customizable - does the CBSD
technology provide a sufficiently strong mechanism to create
such applications? Technologies such as COM and ActiveX
partially address this issue by providing a mechanism for
run-time customization of application components. We can
view applications as objects with rich interfaces providing
access to different functions of an application. User-defined
active control objects provide selective access to application
functions and allow us to further customize the way appli-
cations interact one with another. However, there is a limit to
such black-box customization and there will be cases when
the CBSD technology will fail to provide a sufficient custo-
mization mechanism. In the evolution model described in
section 4, we must customize an application by modifying its
code (option P1b) for such cases. Code modifications are
difficult, time consuming and over time degrade the quality
of an application. To better address the issue of application
component customization, we should view executable appli-
cations as structured objects, built themselves out of generic
components customizable at program construction time.

Based on the above observations, we distinguish the
following two types of software components:

1. executable components such as applications or
software systems (sets of co-operating applications), and

2. generic software components that are used to build
applications at the program construction time.

The construction time components should provide a
mechanism for customizing executables to a wide range of
variant requirements, in particular to those variants that the
CBSD technology cannot address. These construction time
generic components will allow us to limit the need for
modifying components at the code level, easing software
evolution. Finally, construction time components should be
reusable across a family of similar applications.

Run-time and construction time components and custo-
mization mechanisms complement each other. Understan-
ding how they can work together is essential to deliver easy
to use, flexible and evolving component-based solutions.

The reuse community coined the term Domain-Specific
Software Architecture (DSSA) for techniques dealing with
designing generic architectures in specific domains such as
procurement [6]. Processes in the enterprise information ar-
chitecture, especially ones that appear at lower levels in
Fig. 1, are similar to domains in the DSSA approach. Instead
of building a new software application for each instance of a
generic process, we can build a common, generic archi-
tecture for a family of applications first, and then develop
specific applications by customizing a generic architecture.

From a business perspective, software reuse is closely
related to software evolution. At the technical level, reuse
even further reinforces software evolution by limiting
redundant code. Generic software functions are implemented
within generic software architectures. During software
evolution, we modify a generic architecture and changes are
automatically propagated to all software applications that are
based on that architecture.

6. A refined model for component-based
software evolution

A model sketched in this section shows how the CBSD
and DSSA technologies can work together to foster software
reuse and ease evolution. Consider the same situation as in
our initial software evolution model (section 4). But this
time, we assume that (some of the) software applications are
built based on generic software architectures. Suppose an
application App(pi) is an instance of a generic architecture
Gen(pi). Evolution of application App(pi) may include any of
the following activities:

G1. modifying the functionality of an application
App(pi) through:
a. a customization mechanism provided by the

CBSD framework such as COM or ActiveX,
b. customizing Gen(pi),
c. evolving Gen(pi),
d. modifying App(pi) code in ad hoc way,

G2. modifying interfaces between App(pi) and other
applications,

G3. modifying interfaces between App(pi) and databases.
The evolution model for information systems is the same

as in section 4. Options G1a-c are more systematic and cost-
effective ways of evolving software than option G1d. Option
G1a refers to the run-time customization of application
components. Option G1b reflects small evolution steps that
have been envisioned during the design of a generic
architecture. Occasionally, we shall inevitably face more
substantial, new software requirements that cannot be
addressed by means of customizing a generic architecture.
Option G1c reflects the situation when we decide to evolve
the architecture to accommodate these new requirements as
an integral part of the architecture.

7. Software evolution in non-business domains

At first look, it may seem that the above software
evolution concepts are only relevant to large,
multi-department companies that develop software for in-
house use. we would like to argue that similar concepts also
apply to software evolution in non-business domains.

Domain analysis facilitates development of product fami-
lies in both business and non-business domains [14,18].
Many software houses develop programs that differ in user
requirements or run on different platforms but otherwise

display many similarities. A program family is based on a
generic architecture that implements features common to all
family members. This is in contrast to the situation whereby
we treat each program as a separate, unique entity that is
developed in isolation from other programs. Concepts of
program families are relevant to most application domains.

Domain analysis [2,3,4,5,19], an activity that leads to
identifying commonalties and differences across program fa-
mily members, bears many similarities to building an enter-
prise information architecture. While during building an
enterprise information architecture we identify processes that
can be supported by small applications, during domain ana-
lysis we identify software functions, design patterns and
code that can be supported by self-contained software com-
ponents. In the same way as an enterprise information archi-
tecture facilitates evolution of business software, domain
analysis can facilitate software evolution in other domains.

The emerging CBSD technologies facilitate building
software systems out of relatively small, problem-oriented
application components. CBSD offers mechanisms for run-
time customization and integration of such components. To
identify and, eventually, build such components, we need a
proper decomposition technique for domain analysis
[11,12,13]. This technique should facilitate creation of
partial problem-oriented domain models and generic
architectures for problem-oriented software components. In
such a scenario, software applications would be created by
customizing and combining generic architectures. Software
evolution would be done by run-time customizations of
application components or program construction time
customization of generic architectures rather that by patching
code in an ad hoc way. Combining the CBSD and generic
software architecture concepts seems to be a natural way to
advance software evolution, reuse and software engineering
practice in general.

What are the criteria for decomposing a domain so that
we observe the above benefits? We think decomposition
should identify problems that can be considered instances of
the same generic problem [8]. Examples of such problems
are process monitoring, failure tracking, metric collection,
etc. Problems that occur in many software applications,
possibly in different application domains, are most impor-
tant. Problem-oriented domain components may be identified
at user requirements, design and implementation levels.

8. Conclusions

We presented a view that software decomposition based
on business criteria leads to software that easily evolves. The
emerging CBSD technologies and generic software archi-
tectures complement each other by providing run-time and
construction time component customization mechanisms,
respectively. They both contribute to component-based
software systems that can evolve easily and whose quality
will not degrade over time. we argued that generic software

architectures reinforce software evolution, as some of the
software evolution activities can be done at the software
architecture level rather than by patching code in an ad hoc
way. Finally, we suggested that, in non-business domains,
problem-oriented domain analysis similar to enterprise
information architecture modeling, leads to identifying
components of a software architecture that can easily evolve.

References

[1] Adolph, W.S. "Cash Cow in the Tar Pit: Reengineering a
Legacy System," IEEE Software, May 1996, pp. 41-47

[2] Arango, G. “Domain Analysis - From Art Form to
Engineering Discipline,” Proc. Fifth Int. Workshop on
Software Spec. & Design, May 1989, Pittsburgh, pp. 152-159

[3] Bassett, P. Framing Software Reuse - Lessons from Real
World, Yourdon Press, Prentice Hall, 1997

[4] Batory, D et al. “The GenVoca Model of Software-System
Generators,” IEEE Software, September 1994, pp. 89-94

[5] Biggerstaff, T. and Perlis, A. (Editors) Software Reusability,
vol. I and II, ACM Press, 1989

[6] Coglianese, L, Tracz, W. et al. Collected Papers of the
Domain-Specific Software Architectures (DSSA) Avionics
Domain Application Generation Environment (ADAGE)
Project, ADAGE-IBM-93-09A, July 1994

[7] Cook, M.A. Building Enterprise Information Architectures -
Reengineering Information Systems, Prentice Hall, 1996

[8] Fowler, M. Analysis Patterns: Reusable Object Models,
Addison-Wesley, 1997

[9] Jacobson, I. Object-Oriented Software Engineering, Addison-
Wesley, 1992

[10] Jarzabek, S. “Modeling Multiple Domains for Software
Reuse,” Symposium on Software Reusability, SSR’97, Boston,
May 1997, ACM Press, pp. 65-79

[11] Kang, K.S. Cohen, et al. Feature-Oriented Domain Analysis
(FODA) Feasibility Study, Technical Report CMU/SEI-90-
TR-21, Software Engineering Institute, November 1990

[12] Lung, C. and Urban, J. “An Approach to the Classification of
Domain Models in Support of Analogical Reuse,” ACM
SIGSOFT Symposium on Software Reusability, SSR’95,
Seattle, 1995, pp. 169-178

[13] Macala R. et al. “Managing Domain-Specific, Product-Line
Development,” IEEE Software, May 1996, pp. 57-67

[14] Martin, J. Information Engineering, Prentice-Hall, 1986
[15] Martin, J. and Odell, J. Object-oriented analysis and design,

Prentice-Hall, 1992
[16] McClure, C. The Three Rs of Software Automation: Re-

engineering, Repository and Reusability, Prentice Hall,
Englewood Cliffs, NJ, 1992

[17] Parnas, D. “On the Design and Development of Program
Families,” IEEE TSE, March 1976, pp.1-9

[18] Prieto-Diaz, R. “Domain Analysis for Reusability,” Proc.
COMPSAC’87, 1987, pp. 23-29

[19] Sneed, H. “Planning the Reengineering of Legacy Systems,”
IEEE Software, January 1995, pp. 24-34

[20] Ulrich, W. "Re-development Engineering: Formulating an
Information Blueprint for the 1990's," CASE Outlook, No. 2,
1990, pp. 15-23

[21] Zachman, J. “A Framework for Information Systems
Architecture,” IBM Systems Journal 26, no. 3, 1987

