
Managing the Operator Ordering Problem in

Parallel Databases

Harald Kosch

Institute of Information Technology, University Klagenfurt
A - 9020 Klagenfurt, Austria

email: harald.kosch@itec.uni-klu.ac.at

Abstract

This paper focuses on parallel query optimization. We consider the operator problem
and introduce a new class of execution strategies called Linear-Oriented Bushy
Trees (LBTs). Compared to the related approach of Bushy Trees (BTs) a sig-
nificant complexity reduction of the operator ordering problem, while not loosing
quality, can be derived theoretically and demonstrated later on experimentally. In
addition, we applied LBTs to parallel query optimizers using an enumerative search
technique, like the parallel query optimizer of Microsoft SQL Server [1]. To do this,
we propose necessary modifications to the exploring strategy of the search tech-
nique. An effective memoizing structure is reused and its size for the space of LBTs
is computed. In order to guarantee the efficiency of the optimization process, a
duplicate-free transformation rule set for the generation of LBTs is introduced and
its correctness is proven. Finally, we summarize selected performance results to give
a flavor of the practical relevance.

Key words: Parallel Databases, Parallel Query Optimization, Search Space,
Linear-Oriented Bushy Trees.

1 Introduction

Modern database applications, such as data mining and decision support pose
several new challenges to query optimization and processing [2]. One of the
main issues concerns the processing of complex queries (e.g., recent Teradata
relational data warehouse queries involved more than 30 joins while the size
of some relations reach several Gigabytes [3]) 1 . Parallelism is one of the key
technologies to handle those challenges [5], but increases the complexity of

1 In our comprehension a complex query involves more than ten binary query op-
erators [4] ; this boundary plus minus two operators is mostly adopted.

query optimization [6]. The most crucial problem to be solved within query
optimization for relational, object-relational as object-oriented databases [7]
is the operator ordering problem. An operator ordering describes the de-
pendencies between the different algebra operators of a query and determines
at the same time the degree of inter-operator parallelism, i.e., how many op-
erators are executed concurrently. The operator ordering problem is the
search for an optimal ordering with respect to a cost function.

The search space spawn by all operator orderings in parallel databases, with-
out any restrictions, is extremely large, e.g., for a 16 way-join relational query
(16 participating relations), the number of possible orderings is low bounded
by 3.18 · 1011 [8]. In the context of this high complexity, most early works
have restricted the search to orderings allowing no inter-operator parallelism.
However, the exploitation of inter-operator parallelism has been shown to be
very effective in the case of high performance parallel machines. Thus lat-
ter works managed the search complexity by applying randomized search or
heuristics [9,10]. These methods work well if low cost partitions of the search
space are accessed. However, as the navigation is more or less randomly, locally
advantageous moves might be accepted allowing no access to global low cost
strategies later on. This is not acceptable for complex database applications.

Rather than navigating ’blindly’ through the search space we propose to con-
sider a subspace of it, the so called Linear-oriented Bushy Trees (LBTs).
LBTs identify a regular structure in the search space including inter-operator
parallelism and face a significantly smaller search space than the one spawn
by Bushy Trees (BTs). We will validate the pertinence of the LBT process-
ing in a serie of experiments with 1800 optimized queries. The main result is
that using LBTs instead of BTs reduces the optimization time considerably:
in mean by about a factor of 3 for query complexities > 10 (in the worst case
the BT optimization time was nearly 2 minutes, as it was 35 seconds for the
LBT). In addition, the costs of the generated plans differs slightly, i.e., LBT
generated plans have in mean about 10% less quality than BT plans.

The paper is organized in nine Sections. Next Section 2 introduces to parallel
query optimization and defines LBTs. Section 3 discusses the LBT processing
in relation to previous works. Section 4 calculates the LBT search space size
and compares it to that of the Bushy and Linear Trees. Section 5 introduces a
memoizing structure (MEMO) to encode the search space of LBTs. In order to
cope with LBTs, we present modifications to broadly used enumerative search
strategies. Section 6 proposes a novel duplicate-free transformation rule set to
encode the LBT space. Section 7 computes the size of the MEMO-structure
encoding the space of LBT. Section 8 presents experimental results. Finally,
Section 9 concludes this paper.

2

2 Parallel Query Optimization and Linear-Oriented Bushy Trees

Query optimization in an uni-processor DBMS can be roughly divided into
three main tasks [11]: the rewriting of the query (e.g., push the selections as
near as possible to the scan of the base relations/object sets), the operator
ordering problem and the choice of the access methods (e.g., use of an index or
not). In a parallel system, the optimization problem is more complicated with
the new dimension introduced by parallelism, especially for the operator order-
ing and the now introduced parallel scheduling phase. The number of feasible
execution strategies increases dramatically [12] as in addition to uni-processor
query optimization, the degree of inter- (i.e., the number of concurrent op-
erations or how bushy is the associated processing tree), and intra-operator
parallelism (i.e., the number of sub-operations executed concurrently on parti-
tions of the input relation/object sets), and possible pipeline parallelism has to
be determined. Furthermore, proper scheduling and allocation of resources are
critical to parallel databases. Two main meta-strategies have been developed
to manage parallel query optimization. In the first one, the two-phase opti-
mization strategy [13], the operator ordering generates one solution without
taken the parallel resources into considerations. This solution is then sched-
uled for parallel execution in a second phase. In the second one, the one-phase
optimization strategy [14], operator ordering and scheduling go hand in hand.
For every generated ordering a physical scheduling is done.

In this paper we focus on the operator ordering problem which is common to
both, the one-phase and two-phase strategy. It is the most important problem
to be solved in parallel query optimization, as all other problems depend on it.
Parallel scheduling is addressed elsewhere and good solutions have yet been
proposed (see [15]). The estimated cost associated to one ordering and the
determination of the degree of intra-operator parallelism will be concretized in
the experimental context for a sample parallel machine and database schema.
For the general methodologies we can make abstraction of it.

In the remainder we will concentrate on parallel relational databases and
equi-join operators with single attribute join predicates 2 , but the proposed
methodologies apply to object-relational and object-oriented databases too.
This is true because the best way to evaluate a path expression in an OO(-
REL)DB query is to use pointer joins between the extents of the objects
involved in the path expression [16]. Our approach remains general, because
the join operators can be exchanged without further adaption of the pro-
posed methodologies to other complex operators (as intersection, union and
the object-oriented flatten operator). As usually performed by DBMS prod-
ucts, aggregation operators are supposed to be executed after the join.

2 The join predicate has the form R.attr1 = S.attr2 for some relations R and S
and relation attributes attr1 and attr2.

3

Problem formulation We concentrate on optimizing simple SQL queries
of the form:

SELECT . . . FROM R1, R2, . . . ,Rn
WHERE p1 AND p2 AND . . . AND pm

This query involves n relations R1, R2, . . . ,Rn and m uncorrelated predicates
p1, p2, . . . pm. A predicate pk is either a local predicate on some Ri, if it refer-
ences only Ri, or a join predicate between two relations Ri and Rj. Each local
predicate pk on some Ri can be safely ignored, if we replace Ri by δpk(Ri),
where δ denotes the relational select operator. Thus, each query Q can be
represented as a pair (R,P), where R is the set of participating relations
R = {R1, R2, . . . , Rn} in Q and P = {p1, p2, . . . pm} is the set of used join
predicates.

We adopt the notion of a (valid) query processing tree to identify a member
of the search space [17]:

Definition 1: A query processing tree for a query Q = (R,P) over the
relational algebra has the following syntax: PT ::= Ri (Ri ∈ R) or PT ::=
PT1 ./pred PT2 where PT1 and PT2 are query processing trees and pred is
either true (Cartesian Product) or it is a conjunction of join predicates that
reference the relations in PR1 and PR2 exclusively.

Definition 2: A valid query processing tree, shortly processing tree, for
Q is a query processing tree that uses each relation Ri ∈ R exactly once and
each join predicate in P at least once. We do not allow sharing of predicates or
relations in the expression for the clarity of our explanation, and we are aware
that though an expression with sharing may result in better performances.

Definition 3: The operator ordering problem is the search for the best
ordering, thus the best processing tree for a given query Q with respect to
some cost function C [17]. In order to solve the operator ordering problem, a
query optimizer has to determine an appropriate search space, search strategy
and cost function [18].

The shape of the processing tree is used to classify the operator orderings
and, thus, the related parallel query processing strategies. Two major forms
are actually distinguished [14], linear- and bushy trees. The definitions are the
given below.

Definition 4: A linear tree, shortly LT, is a processing tree, where at least
one input relation of each join must be a base relation. A bushy tree, shortly
BT, is a processing tree where no restriction on both input relations are im-
posed.

4

LTs execute only one join operator at the same time. Three types of LTs
are actually distinguished: left-deep trees bases on a data-parallel strategy
(only intra-operator parallelism is exploited), right-deep trees bases on a more
pipelined strategy and zig-zag trees allows a base relation to be either left or
right operand for each join in the tree.

BTs allow the processing of two or more join operators lying on different
paths of a query processing tree at the same time. Almost all query optimizers
working on bushy trees have yet considered the complete spawn search space.
Some interesting initial works considered segmented right-deep trees [19], which
are composed of a set of right-deep trees, called segments. They allow the result
relation of a segment to be either the left or the right operand of any of the
subsequent segments. We will discuss this tree form in the next Section 3.

Left−deep tree

Bushy tree
Right−deep tree

Fig. 1. Example Processing trees. Example Processing Trees. From the Left: Left-deep
Tree. Bushy Tree. Right-deep Tree.

Fig. 1 shows on the left hand a left-deep tree, in the middle a bushy tree and
on the right hand a right-deep tree. Supposing that a hash-based join is used
and all hash-tables of the left-input relations are built for a right-deep tree,
the tuples of the right input can be pipelined through the whole tree [20].
This pipelining can be implemented efficiently, if the entire hash table of the
left-input relation fits in main memory. Otherwise, high I/O handling must be
done. In such a situation, if the result relation of a highly selective join can fit
in main memory, a left-deep subtree might be a better choice [21].

An important task of the query optimizer is to select the appropriate search
space for a query. Many uni-processor query optimizers restrict themselves
to linear trees [22,23], because of the more complicated memory management
and the larger search space of BTs (refer to Section 4). However, as pointed
out by several authors [24,25], if resource availability is high, bushy trees
should be considered in order to achieve efficiency. For parallel databases two
supplemental phenomenon are met. First, a too high degree of inter-operator
parallelism can lead to load balancing problems (see [25–28]) degrading the
performance. Second, right-deep segmentation of a BT is hard to do [20].
Experimental studies with the Volcano product showed that parallel pipeline
chains in BTs might degrade performance [29]. In this scope, we propose a

5

new search space, the so called linear-oriented bushy trees to contribute to the
bridging of the gap. The definition is given below.

Definition 5: A linear-oriented bushy tree, shortly LBT, is a processing tree
where for each join operator at least one of its two input relations must be
either a base relation or a single join (a single join takes as its input two base
relations).

Left−deep Tree Bushy Tree
Right−deep TreeLinear−oriented Bushy Tree

Fig. 2. Example Processing Trees. From the Left: Left-deep Tree. Linear-oriented
Bushy Tree. Bushy Tree. Right-deep Tree.

Let us consider Fig. 2 which bases on Fig. 1. It displays an LBT on the second
position from the left. To the right of the LBT, it shows a BT which is not
an LBT (i.e., the left- and right input relation of the last processed join are
neither a base relation nor a single join). Note that only for n > 5 (n number
of relations participating in the query), the LBT space differs from the BT
space.

LBTs unify advantages of both related LTs and BTs: on the one hand right-
deep tree segmentation can be used, both in LTs and LBTs (but not BTs),
because of the proximity of their definitions; on the other hand efficient inter-
operator parallelism can be used, both in LBTs and in BTs (but not in LTs).
However, LBTs exploit inter-operator parallelism more modestly than BTs
and avoid, therewith, load imbalance problems.

3 Previous Works

Early related work in parallel query optimization (e.g., [21,30]) have concen-
trated on linear trees and intra-operator parallelism (e.g., [31,32]). These works
have not yet considered operator orderings including inter-operation paral-
lelism because of its high scheduling complexity and its difficult synchroniza-
tion.

In the last years, several parallel DBMS products, as PARIS [33], Prisma [24]
and the DB2 Parallel edition DBMS [34] have integrated inter-operator paral-

6

lelism into the query execution machine. Performance evaluations demonstrate
that, in the context of sufficient high resource availability (in terms of number
of processors and memory size), inter-operator parallelism should be exploited
for complex queries. In such cases, LT processing strategies risk to utilize the
available resources inefficiently.

In order to manage the operator ordering problem for the BT space, random-
ized search or greedy heuristics are proposed. Randomized search has mainly
been used in [9,14]. The performance of this method is hard to predicate, as
the local transformations are chosen randomly out of the set of the possible
ones. If the BT space has to be searched, it could not be guaranteed that, for
the most cases, the search ends in a low cost partition of the search space.
More recently, heuristics for the BT space have been proposed [10,35,36]. For
example, [10] defines a greedy algorithm which constructs a complete process-
ing tree, iteratively, from an initial set of trees consisting only of base relations.
In each iteration, the algorithm obtains greedily a new (sub)tree that has the
lowest costs from all possible combinations of joining two elements not yet con-
sidered in the set of subtrees. This greedy heuristic achieves, however, good
quality orderings only for the special case of join graphs which are loosely
inter-connected. Another example is the Sybase commercial optimizers [37]
which is tuned especially for star queries.

Real-life applications can contain queries with very different types of join
graphs, they may range from strings to highly inter-connected graphs. This
is why several authors proposed to extend the Decision Support Benchmark
Serie of the Transaction Processing Performance Council, to ’surprising real-
life queries’ 3 . An optimizer implementing heuristics for some query types risks
to fail for an application introducing queries with many different join graphs.
Thus, an important quality feature of a query optimizer is its capability to
generate good solutions for a wide variety of input query types. Optimizers
investigating always the complete BT space, if some of the already described
conditions of resource availability are given, risk to get lost in the immense
search space.

To the best of our knowledge, only two initial works, to build subspaces of the
BT space, have yet been considered. First, the above mentioned segmented
right-deep tree space [19]. The main drawback using this space is that an
optimizer risks to have higher estimation errors for intermediate relation sizes,
than with LBTs. The reason is that LBTs offer the advantage that at least
one subtree is a single join or a base relation. Thus, we can expect rather fidel
estimations about the intermediate relation sizes. Oppositely, in segmented

3 For instance, consider the article of Richard Winter, entitled: ”Summing Up:
How the VLDB scene has changed”, to be found at http://www.wintercorp.com/
rwintercolumns/vldb_summing.html.

7

right-deep trees, the left-, and right input of a join may be a segment containing
more than two relations. This leads, obviously, to less fidel estimations in the
relation sizes, than using LBTs.

Second, a right-deep tree oriented subspace of the LBT space has been con-
sidered, for some performance tests, in the parallel database PRISMA [24]
(project conducted by P. Apers). They have found out that a simple extension
of right-deep trees with a supplement parallel join delivers better performances
(using the Wisconsin benchmark executed on a 40 processors shared nothing
system) than right-deep trees. However this work has never considered query
optimization, nor the complete LBT space.

Let us finally remark that we recognized support for our original LBT strategy
in the works of W. Hong for the XPRS shared memory prototype. He has
claimed in [38] that running one CPU and one I/O bound tasks in parallel
can use the available resources more efficiently. However, W. Hong has not
considered a classification of the search space, nor any optimization issues.

4 Search Space Sizes

In this Section, we calculate lower and upper bounds for the LBT space and
compare them to that of the LT and BT space. In order to compute the lower
bounds, the submitted query must be a string query, and for the upper bounds
a clique query. Fig. 3 shows both query types. In a clique query, the join graph
is completely connected. In a string, the join graph is linear. The following
identifiers denote the upper and lower bounds in dependency of n, the number
of participating relations:

vn upper bound and wn lower bound for the LT space
xn upper bound and yn lower bound for the BT space
rn upper bound and sn lower bound for the LBT space.

Relation

Joinable
String

CliqueStar

Fig. 3. Query types: string, star and clique.

In order to calculate the lower and upper bounds, the following representation
must be introduced. Each bushy tree that identifies the order of evaluating the
joins in a multi-way join query of n participating relations can be represented
as a triple (Tk, r, Tn−k) where r is a distinguished node called the join result
of the complete bushy tree Tn. Tk is the processing tree of k relations for some
1 ≤ k ≤ n−1, called the left bushy subtree of Tn ; Tn−k the right bushy subtree
of Tn.

8

Known upper and lower bounds
The number of possible BT orderings xn for clique queries with n relations
expresses by the recurrence relation [39] (x1 = 1): xn =

∑n−1
k=1

(
n
k

)
xkxn−k.

The solution of this recurrence is [8]:

xn = (2n−2)!
(n−1)!

.

The number of possible BT orderings, yn, for string queries expresses as the
recurrence: yn =

∑n−1
k=1 2 · ykyn−k. The expression explains as the string can

be partitioned into n − 1 places, but either partition may be left child. The
relationship yn = 2n−1 · xn/n! holds, which may be verified by substitution in
the recurrence. The solution of this recurrence is [8]:

yn = 2n−1

n
·
(

2n−2
n−1

)
.

The number of possible LT orderings, vn, for clique queries computes as [8]:

vn = n! 2n−2,

as there exists 2n−2 different tree forms modulo the join permutations.

The number of possible LT orderings, wn, for string queries computes, based
on the number of possible string partitions, as [8]:

wn = 22n−3.

Upper and lower bounds for linear-oriented bushy trees
We will calculate the upper and lower bounds for the space size of the LBTs
based on the introduced identification of an LBT as a triple (Tk, r, Tn−k), where
r is a distinguished node called the join result of the complete Tn.

The BT space and the LT one distinguishes only from n ≥ 6. The first BT
which is not an LBT can be constructed, when the last processed join has two
input subtrees, each containing two joins. This is the case for n ≥ 6 (refer to
Section 2). The number of possible LBT orderings rn for clique queries in the
case n < 6 is, thus, identical to xn⇒ r1 = 1,r2 = 2,r3 = 12,r4 = 120,r5 = 1680.

The number of possible LBT orderings for clique queries, rn for n ≥ 6, calcu-
lates as a recurrence:

rn =
(
n
1

)
r1rn−1 +

(
n
2

)
r2rn−2 +

(
n
n−1

)
rn−1r1 +

(
n
n−2

)
rn−2r2

The first term
(
n
1

)
r1rn−1 refers to a processing tree, where the last join has as

left input a base relation, where in the third term
(

n
n−1

)
rn−1r1, it has as right

input a base relation. For the second term
(
n
2

)
r2rn−2, the last processed join

9

has one join to the left and for the fourth term
(

n
n−2

)
rn−2r2 one to the right.

The expression facilitates with r1 = 1 and r2 = 2 to:

rn = 2nrn−1 + 2n(n− 1)rn−2

The closed formulae can be obtained by applying a well-known method, see
e.g., in [40]:

rn = (n!/2n−1) ∗ (A ∗ (2 + 2
√

3)n − B ∗ (2 − 2
√

3)n) with A = 40d−224b
ad−bc and

B = 40c−224a
bc−da , where a = (2 + 2

√
3)4, b = (2 − 2

√
3)4, c = (2 + 2

√
3)5 and

d = (2− 2
√

3)5.

Approximately: rn = (n!/2n−1) ∗ (0.0458 ∗ (2 + 2
√

3)n− 0.1708 ∗ (2− 2
√

3)n).

The number of possible LBT orderings for string queries, sn, computes as fol-
lows. There exists only two possible partitionings of the input relation set into
two fully connected partitions of given sizes, therefore, sn expresses as (n ≥ 6):

sn = 2s1sn−1 + 2s2sn−2 + 2sn−1s1 + 2sn−2s2 = 4sn−1 + 8sn−2,

with the initial values: s1 = 1,s2 = 2,s3 = 8,s4 = 40,s5 = 224.

The solution of this recurrence is (n ≥ 6):

sn = A ∗ (2 + 2
√

3)n − B ∗ (2− 2
√

3)n with A = 40d−224b
ad−bc and B = 40c−224a

bc−da ,

where a = (2 + 2
√

3)4, b = (2− 2
√

3)4, c = (2 + 2
√

3)5 and d = (2− 2
√

3)5.

Approximately: sn = 0.0458 ∗ (2 + 2
√

3)n − 0.1708 ∗ (2− 2
√

3)n.

Comparing the computed formulae for sn, rn on the one side, and for vn, wn,
xn, yn on the other hand, one may derive the following Property:

Property 1: The following holds true for n ≥ 1:
sn
rn

=
vn
wn

=
xn
yn

=
n!

2n−1

Proof: Compute the respective ratios and compare them.

Summary
Table 1 summarizes the formulae for the different space size bounds (n ≥
6) and shows respective orders of magnitudes for the lower bounds. Table 1
demonstrates clearly that the LBT search space size is in between that of the
LT and the BT one, and that it contributes, therefore, to the bridging of the
gap between these spaces.

10

Lower Bound Order for Upper Bound

Lower Bound

LT 22n−3 O(4n) n! 2n−2

LBT 0.0458 ∗ (2 + 2
√

3)n O((2 + 2
√

3)n) (n!/2n−1) ∗ (0.0458 ∗ (2 + 2
√

3)n

−0.1708 ∗ (2− 2
√

3)n ≈ O((5.4641)n) −0.1708 ∗ (2− 2
√

3)n)

BT 2n−1

n · (2n−2
n−1

)
O(8n) (2n−2)!

(n−1)!

Table 1
Upper and lower bounds of the LBT and BT spaces.

5 Enumerative Search Technique

Enumerative search techniques are a broadly used strategy for complex par-
allel query optimization. For instance, they are employed in Microsoft SQL
Server [1]. This technique explores a search space by using transformation
rules, i.e., apply all possible rules on each alternative (a group of processing
trees) and terminate when no new alternatives can be produced. A memoizing
structure, the so-called MEMO-structure, has been proposed in [1] to improve
the efficiency of the enumerative search technique [41,42]. The main idea of
the MEMO-structure is to avoid replication of subtrees involving the same set
of relations. The definition of the MEMO-structure is given below.

Definition 4: The MEMO-structure for a query Q is organized as a net-
work of equivalence groups (shortly groups). Each group is a set of logical
equivalent multi-expressions which generate the same intermediate results.
A multi-expression is an operator whose two operands are groups. Logical
equivalence of two multi-expressions is defined as logical equivalence of any
processing tree corresponding to these multi-expressions. We assume that two
processing trees are logical equivalent if they involve the same set of relations.

For convenience, the groups are labeled with the relations that are being
joined. The simplest group involves only a base relation and its processing
tree is the base relation itself. The process of generating all multi-expressions
in a group is called the group enumeration.

Example: Throughout the remainder of the paper we use as example a multi-
way join query over the TPC-D 4 benchmark schema (related to the Q5 Local
Supplier Volume Query):

4 http://www.tcp.org/. Let us note that for the time being of this habilitation,
November 2001, the TPC-D is no longer supported by the Transaction Processing
Performance Council. However, its successor, TPC-H, includes Query Q5 again.

11

SELECT N Name, sum(L extendedprice*(1-L discount)) as revenue

FROM Customer C ,Order O ,Suppliers S ,Lineitem L ,Nation N ,Region R

WHERE O .Custkey = C .Custkey AND

L .Orderkey = O .Orderkey AND L .Suppkey = S .Suppkey AND

S .Nationkey = N .Nationkey AND N .Regionkey=R .Regionkey AND

C .Name=’customer’ AND R .Name=’region’

GROUP BY N Name

This query lists the revenue volume (sum(L extendedprice*(1-L discount)) as rev-

enue) that resulted from lineitem transactions in which a certain customer
orders parts and the part supplier fills them within a certain region. For fur-
ther considerations, we discard the group by and the selection operations and
concentrate on the multi-way join part. The corresponding join graph is cyclic
with S , L ,O ,C arranged in a square, and R ,N being connected as a string
to the S . Table 2 displays the interesting parts of the MEMO-structure for
n, the number of relations to be joined. We display the cases n = 3, 4 and 6.

n Enumerated Groups

3 [S L O]= {[S L] ./ [O], [O] ./ [S L], [L O] ./ [S], [S] ./ [L O]}
[L O C]= {[L O] ./ [C], [C] ./ [L O], [O C] ./ [L], [L] ./ [O C]}
[L S C]= {[S L] ./ [C], [C] ./ [S L], [S C] ./ [L], [L] ./ [S C]}
[L S N]= {[S L] ./ [N], [N] ./ [S L], [S N] ./ [L], [L] ./ [S N]}
[R S N]= {[N R] ./ [S], [S] ./ [N R], [S N] ./ [R], [R] ./ [S N]}
[C S N]= {[S N] ./ [C], [C] ./ [S N], [S C] ./ [N], [N] ./ [S C]}

4 [S L O C] = {[S L O] ./ [C], [C] ./ [S L O], [L O C] ./ [S],

[S] ./ [L O C], [L S C] ./ [O], [O] ./ [L S C],

[O C] ./ [S L], [S L] ./ [O C], [L O] ./ [S C], [S C] ./ [L O]}
[C S N R] = {[C S N] ./ [R], [R] ./ [C S N], [R N S] ./ [C],

[C] ./ [R N S], [N R] ./ [S C], [S C] ./ [N R]}
[L S N R] = {[L S N] ./ [R], [R] ./ [L S N], [R N S] ./ [L],

[L] ./ [R N S], [N R] ./ [S L], [S L] ./ [N R]}
5 [S L O C N] = . . .

[S C O R N] = . . .

[S L O R N] = . . .

6 [S L O C N R] = {[S L O C N] ./ [R], [R] ./ [S L O C N], [S C O R N] ./ [L],

[L] ./ [S C O R N], [S L O R N] ./ [C], [C] ./ [S L O R N],

[S L O C] ./ [N R], [N R] ./ [S L O C], [C S N R] ./ [L O],

[L O] ./ [C S N R], [L S N R] ./ [C O], [C O] ./ [L S N R]}

Table 2
MEMO-structure for the example query (n > 2).

The MEMO-structure of the LBT space differs from the LT space starting
with n = 4, e.g., the group [S L O C] contains multi-expressions where both
input groups involve two relations, such as [S C] ./ [L O]. For n = 6 the
LBT and BT space differs the first time. The group [S L O C N R] does not
contain the multi-expressions [L O C] ./ [S N R] and [S N R] ./ [L O C],

12

because their corresponding processing trees are not LBTs (the two input
relations of the final join are neither a base relation nor a single join).

The MEMO-structure encoding a space is build by enumerating recursively the
input groups of all multi-expressions of the group actually under consideration.
Enumerating a group is done by applying transformation rules to generate all
alternative multi-expressions starting from an initial one. We are aware of
at least three parallel database systems which use this enumerative strategy:
the commercial Microsoft SQL Server [1] and Tandem ServerWare [43] and
the prototype MIDAS, developed at the Technical University Munich and
University Stuttgart [13].

Fig. 4 displays the core strategy of the exploration algorithm. It is composed
of a main program and a recursive procedure FindOptimal(). The MEMO-
structure is a global structure to the main program and FindOptimal().

/* Procedure FindOptimal(group) */

FindOptimal(group)

if group not already visited then

/* Generate alternatives with a duplicate-free transformation set */

foreach enumerated mexpr of group

mexpr = [left group] ./ [right group]
if number of relations in left group > 1 then

FindOptimal(left group) end(if)

if number of relations in right group > 1 then

FindOptimal(right group) end(if)

end(foreach)

write enumerated group to the MEMO-structure;

end(if)

end(FindOptimal)

/* Main: Enumerate groups involving one relation */

Groups1 = {[R1], . . . , [Rn]} ;

Initialize the MEMO structure with Groups1;

/* Call of the recursive FindOptimal */

FindOptimal([R]);

end

Fig. 4. The core search strategy of the exploring algorithm.

The principle task of the main program is to enumerate groups containing
only a base relation. Afterwards, the main program calls FindOptimal([R])
where R denotes the set of participating relations. The procedure FindOpti-
mal(group) exploits the input group by calling itself recursively for the input-
groups of each generated multi-expression until the trivial case (group con-
tains only a base relation) is reached. In order to avoid multiple visits of the
same multi-expression, the group enumeration processes must be realized by

13

a duplicate-free transformation-rule system. Such a rule system for LBTs will
be developed in Section 6.

The major difference in the exploring processes for LBTs and BTs is the
number of recursive calls of FindOptimal(group). In the case of BTs, there
are, in general, two recursive calls, one for the right operand and one for the
left operand of the actually enumerated multi-expression. However, for LBTs,
we have to perform at most one recursive call for the multi-expression actually
under consideration. Let us see why.

In order to account for LBTs, the main program has to be extended to group
enumeration not only involving base relations, but also single joins. The recur-
sive procedure FindOptimal(group) is modified in a way that the recursive call
for an actual considered group is only performed when its involved number
of relations is greater than 2. As for LBTs, only one of the two input groups
can contain more than two relations, consequently, only one recursive call is
required.

Example: Let us consider the enumeration of [P L O C] for LBTs. The main
program first enumerates the groups containing one relation and then those
containing single joins. With respect to the connectivity of the join graph,
we first obtain [P] = P , [L] = L , [O] = O and [C] = C , and second
[P L] = {[P] ./ [L], [L] ./ [P]}, [L O] = {[L] ./ [O], [O] ./ [L]} and
[O C] = {[O] ./ [C], [C] ./ [O]}.

Let the initial processing tree be ((P ./ L) ./ O) ./ C . The main program
calls FindOptimal([P L O C]). As the group has not been visited yet, we
start by exploiting the multi-expression which represents the initial processing
tree: [P L O] ./ [C]. The procedure FindOptimal is recursively called on the
input group [P L O]. This group has not yet been visited and we generate a
first multi-expression [P L] ./ [O]. As both input groups contain only a base
relation or a single join, the recursion terminates.

The next enumerated multi-expressions are [O] ./ [P L] , [L O] ./ [P] and
then [P] ./ [L O] for which the recursion terminates immediately as their
operands contain not more than two relations. Now all multi-expressions in
[P L O] are enumerated. The next multi-expression to be enumerated for the
group [P L O C] is [C] ./ [P L O]. Applying a join exchange leads to the
following multi-expression [L O C] ./ [P]. Here, we should call recursively
FindOptimal on the left-input group [L O C]. In this recursive call we will
enumerate the multi-expressions: {[L O] ./ [C], [C] ./ [L O], [O C] ./
[L], [L] ./ [O C]}. Finally we consider the multi-expression [P] ./ [L O C]
for enumeration. [L O C] has been already enumerated, thus the recursion
terminates and [P L O C] is completely enumerated.

The described control flow leads to the following call-hierarchy of FindOptimal.

14

Starting with [P L O C] → [P L O] → [P L O](again) → [L O C] →
[L O C](again). Thus, we have in all five calls, and we visit two groups twice.

6 Duplicate-Free Transformation Set for LBT Group Enumeration

In order to achieve efficiency, transformation-based query optimizers should
implement a duplicate-free transformation rule set for the generation of all
multi-expressions in a group, i.e., each multi-expression is visited only once
during enumeration. Pellenkoft et al. [41] have shown that the application of
the join associativity rule (for BTs and LTs) let the number of duplicates
outgrow the number of unique multi-expressions already for n > 4. Thus, we
have to develop a duplicate transformation set for the LBT group enumeration.

Transformation rules for group enumeration are described as left-hand side
multi-expression (input) to right-hand side (output) with a rule condition
when to fire the transformation. The transformation rule describes a map-
ping from an input multi-expression to a set of output multi-expressions
by the following means. For each binding of the term variables which satis-
fies the input multi-expression, an output multi-expression is generated. The
transformation-rule system for group enumeration performs as follows: pick
out an initial valid multi-expression of the group actually under consideration
and then apply all transformations where the left-hand side matches the ini-
tial multi-expression and the rule condition is true. Apply the transformation
rules for all results of the former process until no more rules can be applied.

Example: Let G1, G2, G3 be three enumerated groups and let the sample
transformation rule be the left join associativity rule taken from the set of rules
generating the BT space. The rule expresses as: G1 ./ (G2 ./ G3) → (G1 ./
G2) ./ G3. Let R = {S , L ,O ,C }, i.e., a subset of the relations involved
in our example query. The left-associativity rule applied to [S L] ./ [O C]
generates two multi-expressions [S L C] ./ [O] and [S L O] ./ [C], as each
split of the right input group [O ,C], i.e., [O] ./ [C] and [C] ./ [O], is a
valid binding.

Duplicate free rule sets:
Let the initial multi-expression have as left operand a group containing only
one relation. Two rule sets have to be distinguished, one for n < 6 and one for
n ≥ 6. The LBT transformation rules for n < 6 are equal to the BT ones [41]:

Swap: G1 ./0 G2 → G2 ./1 G1

with G1, G2 already enumerated groups and the rule condition: Disable Swap
and Left Join Associativity on the new operator ./1.

15

Left Join Associativity: G1 ./ (G2 ./ G3)→ (G1 ./ G2) ./ G3

with G1, G2, G3 already enumerated groups.

For n ≥ 6, four different transformation rules are required:

Rule 1: Swap: G1 ./0 G2 → G2 ./1 G1

with G1, G2 already enumerated groups. Disable Rules 1,2,3,4 on the new
operator ./1.

Rule 2: Left Join Associativity1: [Ri] ./ ([Rj] ./ G)→ ([Ri] ./ [Rj]) ./ G
with Ri, Rj base relations and G an already enumerated group and the rule
condition that [Ri] and [Rj] are joinable .

Rule 3: Left Join Associativity2: [Ri] ./ (G ./ [Rj])→ ([Ri] ./ G) ./ [Rj]
with Ri, Rj base relations and G an already enumerated group and the rule
condition that [Ri] and G are joinable.

Rule 4: Left Join Associativity3: [Ri] ./ (G ./ ([Rj] ./ [Rk])) → ([Ri] ./
G) ./ ([Rj] ./ [Rk])
with Ri, Rj, Rk base relations and G an already enumerated group and the
rule condition that [Ri] and G are joinable.

The specified rule conditions ensure that the complete LBT space is spawn
and that no duplicates are generated. In the following, we will proof these
properties for the case of clip queries. For acyclic queries, the correctness of
the rule set can be shown in a similar way.

Lemma: The rule set generates for cliques only valid multi-expressions in the
LBT space without duplicates.

Proof. For the case n < 6 we refer to Pellenkoft’s works [41] (including the
completeness proof). We consider hereafter n ≥ 6.
For the given input multi-expression [Ri] ./ G, with Ri a base relation and
G a group, all four rules are applicable. Rule 1 generates an output multi-
expression where the right operand contains only one relation. All rules are
disabled on the newly generated multi-expression. Rule 2 generates multi-
expressions from the initial expression where the left operand involves a single
join containing as left input the base relation Ri. None of Rules 2,3,4 can be
applied to the output multi-expressions, as they require that the left operand
contains a base relation. Now, by applying Rule 1 on these multi-expressions,
the generation process stops for this case. Rule 3 generates multi-expressions
where the right operand contains a base relation. This relation cannot be Ri.
As the left operand contains at least a single join none of Rules 2,3,4 applies.
Rule 1 generates the mirror images and the generation process stops for this
case. No duplicates are generated, as the right input of the mirrors is not Ri.
Finally, Rule 4 generates multi-expressions where the right operand contains a

16

single join. This single join does not contain the relation Ri. Rule 1 generates
once again the mirror images and the generation process stops for this case.
No duplicates are generated, as the right input of the mirrors does not contain
the base relation Ri.

Theorem 1: The presented rule set applied to an initial multi-expression
where the left operand contains only one relation, enumerates correctly groups
for cliques.

Proof. In a fully enumerated group that references n relations, the number of
multi-expressions is n2 + n (see below). With respect to the lemma above, it
shall only be proven that our rule set generates exactly n2+n multi-expressions
including the initial multi-expression.

From the initial multi-expression, where the left operand contains only one
relation, Rule 1 generates one mirror image. Rule 2 generates n − 1 new
multi-expressions (possible join combinations with Ri), counting the further
generated mirrors we obtain 2(n− 1). Rule 3 generates also n− 1 new multi-
expressions (the base relations excluding Ri), with the mirrors we count 2(n−
1). Rule 3 generates

(
n−1

2

)
new multi-expressions (possible join combinations

excluding Ri), counting the mirrors and rewriting leads to (n − 1)(n − 2).
Summing up the number of newly created multi-expressions plus the initial
multi-expression we obtain: 1+2(n−1)+2(n−1)+(n−1)(n−2)+1. Rewriting
shows that this is equal to n2 + n.

7 Size of the MEMO-Structure

In this Section, we compute a lower (string queries) and an upper (cyclic
queries) bound for the size of the MEMO-structure encoding the LBT space,
and then compare these sizes to respective sizes for BTs and LTs. These con-
siderations are important, because the size of the MEMO-structure is an indi-
cator for the computational complexity of the enumerative search technique.
Exact computational models depend on the utilized data-structures to realize
the MEMO-structure [44].

Theorem 2, known from related works [41], summarizes lower and upper
bounds for the MEMO-structure size encoding the BT and LT space. The-
orem 3 is a new contribution. It computes lower and upper bounds for the
MEMO-structure size for LBTs. We will show that the MEMO-structure size
for LBTs is in the same order of magnitude as for LTs and significantly smaller
than for BTs. The experimental results confirm these theoretical results: the
running time of our optimizer, when LBTs are considered, is close to the

17

running time required for optimizing LTs.

Theorem 2: The size of the MEMO-structure considering BT for a clique
is: 3n − 2n+1 + n+ 1 (O(3n)) and for a string is: (n3 − n)/3 + n (O(n3)). The
size of the MEMO-structure considering LT for a clique is: n2n − n (O(2n))
and for a string is: 2n2 − 6n− 4 (O(n2)).

Theorem 3: The size of the MEMO-structure considering LBT (n > 6) for a
clique is: 2n2n−1 +n(n− 1)2n−2−n− 2n(n− 1)−n(n− 1)(n− 2)− 1/4n(n−
1)(n− 2)(n− 3) (O(2n)) and for a string is: 4n2 − 15n+ 20 (O(n2)).

Proof. Let us start with the cliques and denote by m(k) the number of multi-
expressions enumerated for all groups containing k (1 < k ≤ n) relations. Since
each possible subset of R (the set of base relations) containing k relations will

occur in a group, the number of generated groups is
(
n
k

)
.

How many multi-expressions are generated now in each of these groups ?

We must distinguish three cases, k ≥ 6 (LBTs differs from BTs), 1 < k < 6
and the special case k = 1.
For k ≥ 6, m(k) is equal to the number of partitions of all possible subsets
of R containing k relations into a left-and right non-empty subset, where one
of the subsets contains exactly one or two base relations. m(k) evaluates as(
n
k

)
(k2 + k).

For 1 < k < 6, m(k) is equal to the number of partitions of all possible
subsets of R containing k relations into a left-and right non-empty subset.
m(k) evaluates as

(
n
k

)
(2k − 2).

m(1) evaluates as n.
Summing up all the partial results, we obtain:

∑n
k=2m(k) + m(1). Rewriting

results in 2n2n−1 +n(n− 1)2n−2−n− 2n(n− 1)−n(n− 1)(n− 2)− 1/4n(n−
1)(n− 2)(n− 3).

Let us now consider the case of strings. As for cliques, we first calculate the
number of groups containing k relations (1 < k ≤ n). Each string with n
relations can have exactly n− k+ 1 substrings containing k relations. Second,
we compute the number of multi-expressions m(k) enumerated for all groups
containing k (1 < k ≤ n) relations.

We must again distinguish three cases, k ≥ 6 (LBTs differs from BTs),
1 < k < 6 and the special case k = 1.
For k ≥ 6, m(k) computes as the number of partitions of all strings containing
k relations in left- and right subsets, where one of the subsets contains exactly
one or two base relations. m(k) evaluates as 8(n− k + 1).

18

For 1 < k < 6, there are 2(k− 1) partitions of all the possible strings contain-
ing k relations in non-empty left- and right subsets (remember each relation
except the terminal ones are connected to two relations in the string). Thus,
m(k) evaluates as 2(k − 1)(n− k + 1).
m(1) evaluates again as n.
Summing up all the partial results, we obtain:

∑n
k=2m(k) + n. Rewriting re-

sults in 4n2 − 15n+ 20.

8 Experimental Results

This Section summarizes the significant part of the experiments we performed
in order to evaluate the impact of the LBT space. We compare the quality of
the generated execution plans and the running time of the optimizer (shortly
optimization time) for LTs, LBTs and BTs. A prototype top-down optimizer
for join enumeration, using a parallel cost function derived from [24], has been
implemented. The optimization strategy bases on the enumerative exploring
algorithm proposed in Section 5 and is, for instance, used in the Microsoft
SQL Server [1].

In addition to the basic algorithm, each group is augmented with information
about optimality with respect to the parallel cost function. For each group,
one optimal multi-expression is retained (as it is done in similar projects [42]),
as well as its cost and its corresponding processing tree. Therefore, all multi-
expressions correspond to one unique processing tree. Hence, at the end of the
optimization process, when the group containing all participating relations
has been enumerated, only one processing tree, the best, has been selected.
Additional and efficient pruning is achieved by maintaining an upper-bound
on the multi-expression cost and discarding multi-expressions of the actually
enumerated group which exceed this bound.

8.1 Experimental Settings

The test reported here are executed on a PC with an Intel III processor, 450
MHz, 128 MB memory, running Linux. The query optimizer is implemented
in JAVA using jdk1.2 (JIT-compiler included).

Parameter Settings In all, 1800 different queries are run. The queries vary
in two basic parameters: in the number of relations (6,8,10,12,14 and 16) and
in the shape of the join graph (string, one-cycle and two-cycle). The cyclic
graphs are realized once as a one-cycle and once as a two-cycle graph. A graph
of type one-cycle contains one cycle, and the rest of the graph is unspecified
with the constraint that globally only a single cycle exits, respective definition

19

for the two-cycle graph. Such query graphs shapes are representative for a
wide range of applications [45]. For each parameter setting, we generate 100
different queries with different join selectivities (uniform distribution between
0 and 1) and different relation cardinalities (between 1 and 1000 MB), thus in
all 6x3x100=1800 queries are run.

Cost Function The realized parallel cost function bases on the intra-operator
computation model of the PRISMA parallel database [24]. The degree of intra-

operator parallelism for a relation (R) is calculated as
√
|R|c
a

, where c is an esti-
mation of the processing time per tuple, a is an estimation of the initialization
time per processor and |R| denotes the cardinality of R, i.e., the number of tu-
ples in R. The degree of inter-operator parallelism is given by the shape of the
actual considered processing tree of the optimization algorithm. The parallel
cost model assumes uniform relation partitions over processors and consid-
ers no pipeline parallelism. Furthermore we suppose a shared disk model. For
simplicity of the cost function, we suppose that the intermediate relations are
reloaded for processing from the shared disk. Therefore, no communication
costs are encountered and well balanced partition sizes can be assumed.

Our parallel cost function is a simple, but commonly employed model [4,10].
The cost of a processing tree is computed recursively over the tree structure.
Let PT1 ./ PT2 be the actually considered join operator with its left input
subtree PT1 and its right input subtree PT2. Furthermore denote by |PT1 ./
PT2| the cardinality of the intermediate relation generated by this join. The
parallel cost of this join costpar(PT1 ./ PT2) is then computed as (with d
the degree of intra-operator parallelism as computed above): costpar(PT1 ./
PT2) = |PT1 ./ PT2|/d+max(costpar(PT1), costpar(PT2)). The trivial case is
costpar(R) = 0 for some base relation R.

8.2 Performance Evaluation

The performance evaluation of the LBT is given in two parts. In the first part,
we will demonstrate that the quality of the generated LBT execution plan is
almost as good as the quality of the generated BT plan and significantly better
than the quality of the generated LT plan. In the second part, we will show
that the mean optimization time for LBTs is close to the optimization time
for LTs.

Comparison of the Execution Plan Costs Fig. 5 gives the execution
cost ratio LBT/BT for all three query graph shapes and for 6 ≤ n ≤ 16.
Fig. 6 displays the execution cost ratio LT/LBT. Each point on the curve
represents the average of 100 experiments.

20

6 7 8 9 10 11 12 13 14 15 16
1

1.05

1.1

1.15

1.2

1.25

Number of Relations

P
ar

al
le

l C
os

t D
is

tr
ib

ut
io

n
(L

B
T

/B
T

)

String
One−Cycle
Two−Cycle

Fig. 5. Execution Plan Cost Ratio LBT/BT.

6 7 8 9 10 11 12 13 14 15 16
1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

Number of Relations

P
ar

al
le

l C
os

t D
is

tr
ib

ut
io

n
(L

T
/L

B
T

)

String
One−Cycle
Two−Cycle

Fig. 6. Execution Plan Cost Ratio LT/LBT.

One sees clearly that the costs of the generated LBT execution plans are
only slightly above the costs of the BT ones. The mean cost ratio LT/LBT
for strings is 1.119, for one-cycles 1.098 and for two-cycles 1.081. The reason
for the good quality of LBT execution plans compared to BT ones is the
higher load imbalance introduced in BT. We measured that the sum of time
differences in the input relations arrival for all joins in BT was on average 10%
higher than in LBT.

If we compare LBT execution plan costs with those of LT plans (see Fig. 6),
a significant higher cost difference, than between BT and LBT plans, can be
remarked. The mean cost ratio LT/LBT for strings is 1.459, for one-cycles is
1.400 and for two-cycles is 1.347.

21

Comparison of the Optimization Times Let us compare now the opti-
mization times for LTs, LBTs and BTs. Fig. 7 displays the mean optimization
time for strings and Fig. 8 shows the mean optimization time for two-cycles
(over 100 query runs). One-cycle queries show similar characteristics as the
two-cycles ones and results are, therefore, omitted.

6 7 8 9 10 11 12 13 14 15 16
0

500

1000

1500

2000

2500

3000

3500

Number of Relations

O
pt

im
iz

at
io

n
tim

e
im

 m
s

fo
r S

tri
ng

LT
LBT
BT

Fig. 7. Optimization Times in Milliseconds for Strings.

6 7 8 9 10 11 12 13 14 15 16
0

2

4

6

8

10

12
x 10

4

Number of Relations

O
pt

im
iz

at
io

n
tim

e
in

 m
s

fo
r T

w
o−

C
yc

le

LT
LBT
BT

Fig. 8. Optimization Times in Milliseconds for Two-cycles.

The optimization times for LTs, LBTs and BTs remain small for query com-
plexities ≤ 10 relations. For queries involving more than 10 relations, the
distinction between the spaces becomes important:

• for 14 relations, the BT optimization time for strings remains small, i.e.,
under 1.5 seconds, but the optimization time for two-cycles is already above
1 minute and is clearly more than double the LBT optimization time. The

22

optimization time ratio LBT/LT flavors at two and this for all query graph
shapes ;
• for 16 relations, the BT optimization time shows a sharp increase, e.g., for

cyclic queries the optimization time is more than 3 times higher than the
LBT optimization time. The BT optimization time reaches for two-cycles
almost 2 minutes. This expects even higher BT optimization times for more
complex queries.

In summary, considering LBTs, approximately, double the optimization time
compared to LTs, however they reduce the execution plan costs by about
40%. Considering LBTs instead of BTs let fall the costs of the generated
plans slightly, in mean by about 10%, however let reduce the optimization
time considerably, in mean by about a factor of 3 for query complexities > 10
(in the worst case the BT optimization time was nearly 2 minutes, as it was
35 seconds for LBTs).

9 Conclusion and Future Works

The operator ordering is one of the principle tasks of a query optimizer in par-
allel databases. This task is accomplished by defining an appropriate search
space and a search strategy with respect to some parallel cost function. There
has been a lot of work invested in search strategies for query optimization
(among others enumerative, heuristic and randomized search). However, a
structuring of the search space is half-heartened investigated. Research and
commercial products rely mainly on two space classes, linear trees (more of-
ten left-deep linear trees) and bushy trees. This is astonishing, as the two
classes are far away from each others in terms of search space size and search
complexity.

In this context, we proposed a new search space, the so-called linear-oriented
bushy trees (LBT) which contributes to the bridging of the gap. In order
to validate the introduction of LBTs, we calculated the different spaces sizes,
proposed modifications for an enumerative search strategy to consider LBTs,
and finally developed and proved a duplicate-free transformation rule set for
LBT group enumeration.

The experimental results, performed on more 1800 queries using an enumera-
tive search strategy, showed that the running time of our optimizer, considering
LBTs, is close to the running time of an optimizer that only considers LTs.
Furthermore, we noted that the quality of the generated LBT execution plans
was, in mean, almost as good as the quality of the best plan found in the space
of BTs. These experimental results coincide well with the theoretical results
obtained in the first part of this paper.

23

Future works concerns the integration of the new search space LBT in an avail-
able DBMS. We plan to participate at the PostgreSQL Open Source DBMS.

References

[1] Goetz Graefe. The Cascades Framework for Query Optimizatiom. Bulletin of
the IEEE Technical Committee on Data Engineering, 18(3):19–29, September
1995.

[2] A. Silberschatz, M. Stonebraker, and J. Ullman. Database research:
Achievements and opportunities. Into the 21st century. SIGMOD Record,
25(1):52–63, March 1996.

[3] Paul Krill. NCR boosts Teradata decision support database. Teradata News,
April 1998.

[4] B. Vance and D. Maier. Rapid Bushy Join-order Optimization with Cartesian
Products. In Proceedings of the ACM SIGMOD International Conference of
Managment of Data, pages 35–46, Montreal, Canada, June 1996.

[5] M. T. Özsu and P. Valduriez. Distributed and Parallel Database Systems, pages
1093–1111. CRC Press, 1997.

[6] W. Hasan, D. Florescu, and P. Valduriez. Open issues in parallel query
optimization. SIGMOD Record, 25(3):28–33, September 1996.

[7] D. Taniar and Y. Jiang. A high performance object-oriented distributed parallel
database architecture. In HPCN Conference 98, pages 498–517. Springer Verlag,
April 1998.

[8] K.-L. Tan and H. Lu. A Note on the Strategy Space of Multiway Join Query
Optimization Problem in Parallel Systems. SIGMOD Record, 20(4):81–82,
December 1991.

[9] M. Spiliopoulou, M. Hatzopoulos, and Y. Contronis. Parallel Optimization
of Large Join Queries with Set Operators and Aggregates in a Parallel
Environment Supporting Pipeline. IEEE Transactions on Knowledge and Data
Engineering, 8(3):429–445, June 1996.

[10] Leonindes Fegaras. A new heuristic for optimizing large queries. In International
Database and Expert Systems Applications Conference, pages 726–735, Vienna,
Austria, August 1998. Springer Verlag LNCS 1460.

[11] D.D. Straube and M.T. Ozsu. Query optimization and execution plan
generation in object-oriented database systems. IEEE Transactions on
Knowledge and Data Engineering, 7(2):210–227, April 1995.

[12] H. Lu and K.-L. Tan. Load-Balanced Join Processing in Shared-Nothing
Systems. Journal of Parallel and Distributed Computing, 23:382–398, 1994.

24

[13] C. Nippl and B. Mitschang. TOPAZ: a Cost-Based, Rule-Driven, Multi-Phase
Parallelizer. In Proceedings of the International Conference on Very Large
Databases, pages 251–262, New York City (NY), USA, August 1998.

[14] M. Zäıt, D. Florescu, and P. Valduriez. Benchmarking the DBS3 Parallel
Query Optimizer. IEEE Parallel and Distributed Technology: Systems and
Applications, 4(2):26–40, 1996.

[15] M. N. Garofalakis and Y. E. Ioannidis. Multi-dimensional Resource Scheduling
for Parallel Queries. In Proceedings of the ACM SIGMOD International
Conference of Managment of Data, pages 365–376, Montral, Canada, June 1996.

[16] N. Kabra and D.J. DeWitt. OPT++ : An Object-Oriented Implementation
for Extensible Database Query Optimization. The VLDB Journal, 8(1):55–78,
1999.

[17] Yannis E. Ioannidis. Handbook of Computer Science and Engineering, chapter
Query Optimization, pages 1038–1057. CRC Press, 1997.

[18] S. Ganguly, W. Hasan, and R. Krishnamurthy. Query Optimization for Parallel
Execution. In Proceedings of the ACM SIGMOD International Conference of
Management of Data, pages 9–18, San Diego, California, USA, 1992.

[19] M.-S. Chen, M.-L Lo, P.S. Yu, and Y.C. Young. Using Segmented Right-
Deep Trees for the Execution of pipelined Hash Joins. In Proceedings of the
International Conference on Very Large Databases, pages 15–26, Vancouver,
BC, Canada, August 1992.

[20] D. Schneider and D.J. DeWitt. Tradeoffs in processing complex join queries
via hashing in multi-processor database machines. In Proceedings of the
International Conference on Very Large Databases, pages 469–490, Melbourne,
Australia, August 1990.

[21] M. Ziane, M. Zäıt, and P. Borla Salamet. Parallel Query Processing with ZigZag
Trees. Very Large Databases Journal, 2(3):277–301, March 1993.

[22] S. Cluet and G. Moerkotte. On the complexity of generating optimal left-
deep processing trees with cross products. In Proceedings of the International
Conference on Database Theory, Prague, Czech Republic, January 1995.
Springer Verlag, LNCS 893.

[23] W. Scheufele and G. Moerkotte. On the complexity of generating optimal plans
with cross products. In ACM Symposium on Principles of Database Systems,
pages 238–248, Tucson, Arizona, USA, May 1998. ACM Press.

[24] A.N. Wilschut, J. Flokstra, and P.M.G. Apers. Parallel Evolution of Multi-
Join Queries. In Proceedings of the ACM SIGMOD International Conference
of Management of Data, pages 115–126, San Jose, California, USA, May 1995.

[25] L. Bouganim, D. Florescu, and P. Valduriez. Load balancing for parallel
query execution on NUMA multiprocessors. Distributed and Parallel Databases,
7(1):99–121, 1999.

25

[26] K.A. Hua, M. Lo, and H.C. Young. Considering Data Skew Factor in Multi-
Way Join Query Optimization for Parallel Execution. The VLDB Journal,
2(6):303–330, March 1993.

[27] H. Kosch, L.Brunie, and W. Wohner. From the modeling of parallel relational
query processing to query optimization and simulation. Parallel Processing
Letters, 8(1):2–14, March 1998.

[28] S. Bonneau and A. Hameurlain. Hybrid simultaneous scheduling and
mapping in SQL multi-query parallelization. In LNCS 1677 Springer Verlag,
editor, International Conference on Database and Expert Systems Applications
(DEXA), pages 88–99, Florence, Italy, August-September 1999.

[29] Goetz Graefe. Iterators, schedulers, and distributed-memory parallelism.
Software - Practice and Experience(SPE), 26(4):427–452, April 1996.

[30] M.-S. Cheng and P.S. Yu. Scheduling and Processor Allocation for Parallel
Execution of Multi-Join Queries. In Proceedings of the International Conference
on Data Engineering, pages 58–67, February 1992.

[31] M. Mehta and D.J. DeWitt. Managing Intra-operator Parallelism in Parallel
Databases. In Proceedings of the International Conference on Very Large
Databases, pages 382–394, Zurich, Switzerland, September 1995.

[32] E. Rahm and R.Marek. Dynamic Multi Resource Load Balancing in Parallel
Database Systems. In Proceedings of the International Conference on Very
Large Databases, pages 395–406, Zurich, Switzerland, September 1995.

[33] A. Hameurlain and F. Morvan. Scheduling and Mapping for Parallel Execution
of Extended SQL Queries. In ACM CIKM 95, pages 197–204, Baltimore, MD,
USA, November 1995.

[34] C.K. Baru, G. Fecteau, A. Goyal, H. Hsiao, A. Jhingran, S. Padmanabhan, G.P.
Copeland, and W.G. Wilson. DB2 Parallel Edition. IBM Systems Journal,
34(2):292–323, 1995.

[35] H. Lu, B.-C. Ooi, and K.-L. Tan, editors. Query Processing in Parallel
Relational Database Systems, chapter Parallel Query Otimization. IEEE
Computer Society Press, 1994.

[36] M. Steinbrunn, G. Moerkotte, and A. Kemper. Optimization for the join
ordering problem. The VLDB Journal, 6(3):191–208, 1997.

[37] E. Ding, L.A. Diminio, G. Gopal, and T.K. Rengarajan. Parallel processing
capabilities of Sybase Adaptive Server Enterprise 11.5. Data Engineering
Bulletin, 20(2):35–43, 1997.

[38] Wei Hong. Exploiting Inter-Operation Parallelism in XPRS. In Proceedings of
the ACM SIGMOD International Conference on Management of Data, pages
19–28, USA, June 1992.

[39] R.S.G. Lanzelotte, P. Valduriez, M. Zäıt, and M. Ziane. Invited project review:
Industrial-strength parallel query optimization: issues and lessons. Information
Systems, 19(4):311–330, 1994.

26

[40] G. Myerson and A.J. van der Poorten. Some problems concerning recurrence
sequences. The American Mathematical Monthly, 102(8):698–705, October
1995.

[41] A. Pellenkoft, C.A. Galindo-Legaria, and M.L. Kersten. The Complexity of
Transformation-Based Join Enumeration. In Proceedings of the International
Conference on Very Large Databases, pages 306–315, Athens, Greece,
September 1997.

[42] L. Shapiro and D. Maier. Pruning in the Columbia query optimizer. Information
about the Columbia Query Optimization Project at:http://www.cs.pdx.edu/.

[43] Pedro Celis. The query optimizer in Tandem’s Serverware SQL Product. In
Proceedings of the International Conference on Very Large Databases, page 512,
Bombay, India, September 1996.

[44] W. Scheufele and G. Moerkotte. Efficient dynamic programming algorithms
for ordering expensive joins and selections. In International Conference on
Extending Database Technology, pages 201–215, Valencia, Spain, March 1998.
Springer Verlag, LNCS 1377.

[45] Florian Waas. Handling non-deterministic data-availability in parallel query
execution. In Proceedings of the International Workshop on Database and
Expert Systems Applications, pages 61–65, Florence, Italy, September 1999.
IEEE CS Press.

27

