
Behavior Abstractions to support Reverse Engineering�

Dominik Rauner-Reithmayer and Roland T. Mittermeir
Institut für Informatik-Systeme, Universität Klagenfurt, Österreich

fdominik, mittermeirg@ifi.uni-klu.ac.at

Abstract

Most approaches for recovering objects from procedural
code are exclusively based on static information. These ap-
proaches have the advantage to build on information easily
available. However, with code that is not built around very
strong and ubiquitous data structures, substantial portions
of this code cannot be clearly assigned to one of the objects
the object-oriented system is made of.

Here, we discuss an approach where the uncertainties
that necessarily appear with purely data-structure driven
approaches can be reduced by establishing in addition to
the static object model a dynamic object model. The mer-
its of the approach extend object recovery though. We con-
sider the creation of event-state diagrams also useful for
software redocumentation as well as for general program
understanding.

keywords: object recovery, program understanding, re-
documentation, software reuse

1. Motivation

One of the key question that links software maintenance,
software reverse engineering, and software renovation is to
uncover and finally understand the principles used by the
original developers of the legacy software at hand. Here
we approach the issue from the background of the CORET-
project, a project aiming at the conversion of procedural
legacy code to object-oriented code.

The transformation from the procedural to object-
oriented code is meant to be not only on a syntactical level,
but in order to enhance the evolvability of the renovated
code, semantically coherent objects are to be formed.

In order to achieve this semantic coherence and to ar-
rive at software with structure conformant to the standards
of well designed modern object-oriented software, a coarse
object-oriented application model is developed in a conven-
tional forward engineering manner. This object-oriented

�This work is funded by the Austrian Science Fund (FWF), grant Nr. P
11.340-ÖMA.

application model (OOAM) defines the target architecture
and serves as reference point, against which the procedu-
ral legacy code is mapped. The ensuing transformation pro-
cess has to transform and regroup the contents of the various
legacy procedures in a semantics preserving manner into the
new structure (see Figure 1) [8, 14]. To achieve this aim,

application model

decision

network

additional information

abstraction

time

object mapping

object-oriented target patterns

le
ga

cy
 p

at
te

rn
s

source system
procedural

target system
object oriented

design

code

level

level

analysis

level

Figure 1. CORET Structure

one first has to identify object candidates in the legacy code
and match them to the classes identified in the forwardly de-
veloped OOAM. Such candidates can be found in the basic
data structures of the legacy code. Various strategies exist
to do so [2, 3, 4, 5, 11, 13, 18]. These are relatively suc-
cessful. However, there remain problems due to the fact that
the basic conception of the old, procedural software and the
new object-oriented structure is different and also due to the
fact that different levels of abstraction and different naming
strategies are followed [7]. Therefore, the relationship be-
tween forwardly defined and reversely identified objects can
initially only have the quality of a proposal. Whether this
proposal will conform to a well-designed object-oriented
structure can be seen only, when it is possible to suitably
group the “executable” part (body) of the legacy source code

“around” those candidate objects in the form of semantically
coherent methods.

Since one has to assume that the procedural legacy code
has been structured according to criteria that are quite differ-
ent from those one uses when developping object-oriented
code, this “grouping code around objects” is a non trivial
task. In general, one cannot take procedures readily avail-
able and simply redefine them, so that they conform to the
syntax of methods. The procedures found in the legacy code
will relate to several candidate objects. Hence they have
to be split in such a way that single minded methods re-
sult. This has to be done by chunking this “ececutable” part
into independently comprehensible pieces [1] and assigning
those to the candidate objects in such a way that finally the
resulting object oriented system is behaviourally equivalent
to the old legacy system [15].

As this chunking depends on the set of object candidates
identified in the previous step, the performance of this pro-
cess depends on the quality of the original object identifi-
cation. As mentioned, various approaches have been de-
scribed to identify object candidates in legacy code [4, 3, 2,
18, 5, 11, 13]. In spite of their differences, however, they all
focus just on static information i.e. on information provided
in the declarations part of the legacy code. Method construc-
tion, and hence the assignment of the “executable” portion
of the legacy code, however, has to do with the dynamic
properties of objects, i.e. their behavior. Here, we present
an approach to uncover the behavior of “objects” hidden in
non-object-oriented legacy code. Although we discuss this
from the perspective of object recovery, the ideas behind this
approach seem also to be adequate for program understand-
ing of non-object-oriented code in general.

In the rest of this paper, we first discuss briefly object-
oriented modelling. Then we explain how a dynamic object
model can be recovered from classical procedural legacy
code and described in OMT terms. Performing such re-
coveries, one realizes that the direct approach described in
section 3.1 reaches its limits, when the implementer of the
legacy code decided to encode static aspects in procedu-
ral interdependencies. These aspects, referred to as indirect
state changes, are sketched in section 3.2. Having thus ob-
tained a complete and coherent dynamic model, integration
issues and issues of how to deal with different abstractions
on the source code and in the high level OOAM are dis-
cussed. Before concluding, the paper gives an outlook on
how the dynamic model can also be useful in the construc-
tive phases of renovation projects.

2. Object-Oriented Modelling

To describe object-orientation in a nutshell, one generally
refers to the concepts of state spaces, of state encapsulation,
message passing and inheritance. Object oriented modelling

techniques cover these in different ways. We discuss them
here on the background of OMT, the Object-oriented Mod-
elling Technique [17].

In OMT, a system is described in terms of three differ-
ent “models”. The static model defines the state space in
terms of the various attributes constituting state space di-
mensions, and the methods (names of methods and their ar-
guments) encapsulating this state space. The dynamic model
shows under which conditions (events) changes in the actual
state occur and which sequences of states (and state transi-
tions) are permissible. The functional model, complemented
by scenarios, finally, shows how certain application func-
tions can be achieved by sequences of method invocations.
Thus, the three models can be considered as different views
on parts of the same system. Certain redundancies one can
identify among these models are important to check for in-
ternal model consistency.

In this context, the dynamic model has particularly the
role to show, under which conditions certain state transitions
might be performed. As the state space of OMT-objects is
usually complex, the dynamic model will also show, which
state dimensions can be modified independently. In this ca-
pacity, it becomes an important device for reviewing the
static model. E.g., if there is no interaction among some
state dimensions, the question might be raised, why these as-
pects pertain to the same object. If the state transition dia-
gram is not a connected graph, the modeller knows that the
model is either incomplete or contains information pertain-
ing to different objects or at least to objects considered from
different role-perspectives.

Nonconnected state transition diagrams are never shown
in textbook examples, as they are inconsistent. In real anal-
ysis situations, information elicited from different subjects
might quite often lead to such situations though. They have
to be resolved later by the modeller. In object recovery,
the problem is to identify code that “belongs” to object
candidates. As this identification and mapping problem is
plagued with uncertainties and has to proceed from partial
information, the same problems can and will occur.

The approach we are describing rests on this very princi-
ple: A well defined state space is described not only by its
dimensions (attributes) but as well by the coherence of its
state transition, the information captured in OMT’s dynamic
model. If, for a set of candidate objects, no consistent dy-
namic models can be derived, this set is apparently dynami-
cally inconsistent. If though, consistent dynamic models can
be derived from the legacy code for all candidate objects, a
basis for chopping up this legacy code and regrouping the
chops into methods is given.

How such a dynamic model can be derived is explained
in the next section.

3. Dynamics on the Code Level

3.1. Basic Idea

Like other researchers dealing with object recovery, we
consider the overall state space of a system represented by
the variables declared within this system. Hence, the state
space of an object is defined by the variables bound to the re-
spective candidate object. Hence, state transitions are modi-
fications of the value of defined variables. Events, triggering
such state transitions are all those programming constructs
that potentially lead to changes of the value of the respec-
tive variables. On an elementary level, this can be done in
imperative programming languages only by an assignment
statement.

In actual code, the assignment performing a state change
need not be directly visible. It can be contained in whatever
form deeply nested in some procedure. Hence, procedure
invocations have at least the potential to lead to state transi-
tions if the variable in question is in the scope of this proce-
dure. For the further discussion, one has to note though, that
the actual invocation of a procedure (and likewise the exe-
cution of an assignment) can be identified only at run time.
On the basis of the source code, we can only identify proce-
dure calls and assignment statments that, depending on the
context in which they appear, might lead to an invocation.

To simplify the discussion, we will refer to the vari-
able (or variables) capturing the state of an object as state-
variable. This leads to the definition:

A call of a procedure that defines (modifies) or
uses the state-variable constitutes an event on the
respective object.

This definition implies that we consider state changes only
on the level of procedures. The occurence of an assignment
statment itself within the body of a procedure is not referred
to as event, since it is too fine grained, i.e. it has no coun-
terpart on the level of the OOAM. As consequence of this
decision, we cannot say that each occurrence of a definition
of the state-variable leads necessarily to a state transition.
Whether such a state transition will occur depends on the
context of the respective assignment. With context, we re-
fer here to structual considerations as much as to aspects of
the actual values variables might hold. We refrain from an
in depth discussion of this issue though, since it seems fair to
assume, that whenever a variable is (re-)defined, this redef-
inition has the semantics of a potential value change, hence
a state change.

For reasons of simplification and for pragmatic reasons
explained in section 4.2, we assume in the rest of this paper
that definitions (modifications) of the state-variable princi-
pally occur within procedures. Thus the definition of events
as given above and the definition of events as defined in

OMT can be considered equivalent. Therefore, the follow-
ing categorization of events can be made:

� State changing event: On each possible execution path
through the procedure, at least one attribute of the state-
variable is defined.

� State preserving event: On none of all possible execu-
tion pathes an attribute of the state-variable is defined,
i.e. the variable is only used.

� Complex event: There are execution pathes on which
the state-variable is defined, and others that leave the
state-variable without (re-)definition.

We will see later, that the occurrence of a complex event
will always lead to a complex state, i.e. a state consisting
of more than one substates and their generalization. Hence,
the choice of this term.

3.1.1 Primitives

Independently from the event classification based on its ef-
fects, one can classify events based on how they are identi-
fied within the source code:

� creation: The initialization of the state-variable usually
happens in an initialization procedure. However, as
initialization (and deletion) are key aspects to obtain a
consistent dynamic model, we will relax our definition
for these two events in so far, as we consider initial-
ization (and deletion) activities as events irrespective
of the specific syntactic form in which they are made.
In an OMT diagram, the creation will lead to a wellde-
fined start of a state transition diagram (see Fig. 2).

creation
state

Figure 2. Object creation

� deletion: Is seen in the source code only, if such oper-
ations as ‘dispose’ are used. Otherwise, it is implicit
when the extent of the state-variable is finally left. It
leads to a terminating node in the OMT diagram (see
Fig. 3).

state deletion

Figure 3. Object deletion

� basic event: This is either a state changing or state pre-
serving elementary event. It is identified in the source
code whenever a procedure call that directly and singu-
larly uses or defines the state-variable appears. In the

OMT diagram it is represented as single arc. In case of
a state changing event, this arc will connect different
states. In case of a state preserving event, it will loop
back to the same state (see Fig. 4). To identify the code
pertaining to an event, a one-to-onecorrespondencebe-
tween event names and procedure names is required.

state
before

event 1
state

before

event 1

state 1

state changing state preserving

 call proc1

events

...

...

events events

Figure 4. Basic event

3.1.2 Models for Control Structures

Here, we consider initially just control structures over state
changing events or over state preserving events.

� sequence of events: This is identified, if within a com-
pound statement a series of events on the same state
variable occur. The effect is, that the state-variable will
repetitively be defined or used. In an OMT diagram,
the sequence of state changing events is represented as
a chain of state transitions connected by the respective
events, while state preserving events are represented as
loops on the same state (see Fig. 5).

state
before

event 1state
before

event 1

state 1

state changing state preserving
events

...

...

events events

 call proc1

state 2

event 2

event 2
 call proc2

...

Figure 5. Sequence of events

� alternative occurrence of events: This is identified, if
the event(s) occur within the branch of an alternation
construct (IF, CASE, ..). Fig. 6 shows, that an alter-
native involving state changing events always leads to
a generalization of states. If in all alternative branches
state changes occur, the final state of the alternative will
be the generalization of the (final) states resulting from
the branches. If a branch without state changing event

exists, the state reached on entry into the alternative
construct is part of the generalization.

state
before

state
before

if condition then

else

end if

state changing
event event

state preserving

state 1 state 2

[not condition]

[condition]

event 1
[not condition]

event 1 event 2
event 2

[condition]

 call proc1

 call proc 2

events

Figure 6. Alternative occurrence of events

� iterative occurrence of events: This is identified, if
an event occurs within a repetitive construct (WHILE,
FOR, recursion, ...). With repetitive constructs, there is
always some repetition- (loop-)invariant. This invari-
ant state is also the final state of the repetitive construct.
Whether the before-state is in the same generalization
or not depends on the particular semantics of the repet-
itive construct (see Fig. 7 and Fig. 8). One might note
that the WHILE-construct with state changing events
builds actually a link to complex events, since, in case
the while-condition is initially false, before-state and
after-state are in the same class and hence general-
ized to a higher level state comprising both (primitive)
states.

state
before

state 1

state
before

event 1

state changing
event event

state preserving

 call proc1

events

repeat

until condition

event 1

[condition]

[not condition]

event 1

[condition]

Figure 7. Iterative occurrence of events: REPEAT

3.1.3 Complex Events

Complex events result from control structures involving al-
ternations with branches leading to state changes and other
branches that leave the initial state unchanged. In the sim-
plest version, such situations will occur with a one-sided
IF-THEN-construct or with an IF-THEN-ELSE-construct
where one branch is state changing and the other one state

state
before

state 1

state
before

state changing
event event

state preserving

 call proc1

events

while condition do

end while

[condition]

event 1

[condition]

event 1

[condition]

[not condition]

[not condition]

event 1

Figure 8. Iterative occurrence of events: WHILE

preserving. If, in an IF-THEN-ELSE only one branch con-
tains the state variable, it might be considered from this per-
spective as a one-sided IF-THEN-construct. The mapping
of these situations to OMT-diagrams is shown in Fig. 9 and
Fig. 10.

state 1

if condition then

 call proc1

events
proc1 ... state changing event

state
before

event 1
[condition]

end if

Figure 9. Complex Event resulting from IF-THEN

One might note, that in both cases the before-state of the
IF and its final state are to be generalized to a higher level
state. From this perspective, the situation is similar to the
model of a WHILE-construct. With the WHILE, the seman-
tics of this generalization is due to the loop invariant. Here,
the generalization encompassing before state and final state
seems to be rather ad-hoc.

state 1

if condition then

else

end if

 call proc1

 call proc 2

events
proc1 ... state changing event
proc2 ... state preserving event

state
before

event 1
[condition]

event 2

[not condition]

Figure 10. Complex Event resulting from different usage
of State Variable

Fig. 11 shows how such complex events are modelled on
higher level of abstractions. Assuming a sequence of calls to

procedures proc1, proc-c, and proc3, where proc1 and proc3
are state changing events, while proc-c represents a com-
plex event. As in this case, before- and final state of proc-c
are generalized to the same state, the complex event event-
c vanishes at the higher level of abstraction. It is hidden in
this generalized state.

state 1

events

...

...

 call proc1

...

...

 call proc-c

proc-c ... complex event

event 1

state
before

event c
event c

state 2

state 3

event 3

 call proc3

proc1, proc3 ... state changing events

Figure 11. Sequence with Complex Event

3.1.4 Nesting

Here, two situations are discussed. One deals with calls,
where the respective event occurs only at a lower level of
abstraction, the other one deals with raising the level of ab-
straction of the generated OMT-model to raise it to the level
of an analysis- or design document.

� indirect occurrence of event: This is identified, when
one reaches a procedure call such that the called pro-
cedure itself does not use or define the state-variable.
However, the called procedure (directly or indirectly)
calls another procedure that performs such use or mod-
ification. For the OMT model, only those procedures
are relevant, in which direct events occur. Procedures
that might be called on the path to such procedures
leading to direct events do not figure in the OMT dia-
gram. They are relevant though in the process of code
assignment to methods.

� composite event: This is an aggregation of a strongly
connected subgraph of a dynamic model. It is not di-
rectly identified in the source code, but an abstraction
needed to relate “low level events” identified in the
source code to “high level events” expressed in the
OOAM. Since the state diagrams defined above are all
single entry-single exit structures, the subnet to be col-
lapsed into a composite event can always be consid-
ered as lattice structure. The composit event thus leads
from the before state in this lattice to its final state. One
might note that, due to the before-final-generalizations
of complex events, intermediate states/events can oc-
cur (e.g. with: IF cond THEN BEGIN proc1; proc2;

proc3 END;). These intermediate states are lined up on
a path starting at the generalization and leading back to
this generalization. Hence, it seems adequate to drop
also this path in the model expressed on a higher level
of abstraction.

3.2 Indirect State Changes

The state transition model as defined above is based on
explicit state changes of the object in question. Certainly,
the majority of state transitions will occur in the way ex-
pressed above, however several cases of indirect state tran-
sitions have to be considered and identified by means of a
slightly more involved analysis of the source code.

An example should demonstrate the class of problems we
are referring to: Consider a system that distinguishes be-
tween active and inactive business partners. To avoid re-
dundancies and to optimize access time, active and inac-
tive business partners are kept in different files. Whenever
the state of a partner changes from active to inactive (or
vice versa) its business record is just moved from one file
to the other. In this case, which is representative for situa-
tions in which the categorization of a set is realized by phys-
ical partitioning, the event one can identify from the source
code pertains to the respective partition (removal of an ac-
tive partner and subsequent insertion of inactive partner).
The “partner record” itself is not changed, as its state of ac-
tivity is not represented explicitly.

This case cannot be found completely by the mechanisms
described in section 3.1. However, a few conditions have to
be met by the legacy application to ensure that it dealt with
such partitions correctly. These are that removal and inser-
tion need to be done in some form of transaction. Hence,
some physical or logical closeness of the two operations can
be assumed. Further, it needs to be ascertained, that the op-
eration never leads to duplications. Hence, the removal op-
eration has to be explicit. Whether this is done by some form
of explicit dispose operation or by some index or pointer op-
eration is immaterial. What matters, is that a pair of comple-
mentary operations in both containers need to exist and that
the programmer will have followed some standardized pat-
tern to perform such tricky operations without risk of faults.
These patterns will be either recognized by a human [9], or
could also be recognized by some pattern matcher, if such
patterns are already known by the system. State preserv-
ing events will serve as starting points in the search of such
a pattern matcher, as all of these indirect state changes we
identified so far require at least one read operation of the
state-variable.

The example just discussed is just one example where
state information is not represented explicitly by means of
a state-variable. It is hidden in the interaction between the
dynamics of execution and some partial state representa-

tion. On first glance, one might consider such interactions
as a limitation to our approch. At hindsight, one recognizes
though, that only the consideration of the dynamic model
will help to identify such implicitly represented state infor-
mation. To identify it in reverse engineering ventures is im-
portant though, since the OOAM, which is developed on the
basis of the application domain and in ignorance of partic-
ular implementation tricks used long times ago, will con-
tain such transitions that cannot be uncovered from analyz-
ing just declarations.

To show the breadth of the spectrum of this interaction
between static and dynamic aspects we give another exam-
ple. Here, naive observation will show a host of unmoti-
vated state transitions, or at least state transitions at an un-
motivated part of the program. To demonstrate this class of
problems, we use again an example:

Assume somebody implements – based on the transac-
tion frequency – a set by means of a multi-set, ensuring that
upon deletion all equivalent instances (instances represent-
ing the same element) are removed and that upon counting
duplicates are also removed. Thus, some form of “dynamic
garbage collection” is performed on this set. Here, appar-
ently not each insert operation (identified on first glance as
state changing event) will actually be state changing from
the OOAM perspective. Delete operations are state chang-
ing on both, the code level and the OOAM perspective.
Count operations though, will obviously be state preserving
on the OOAM perspective, but appear to be state changing
from the implementation perspective.

Again, such effects will lead initially to wrong reversely
generated dynamic models. The problems in these models
can be identified though and hence an appropriate mapping
to the OOAM can be obtained. One problem invariant com-
mon to all these cases is, that the programmer of the legacy
code had to have (at least implicitly) some transaction model
in mind. This transaction model will provide patterns and
clues to uncover such situations. An inventory of such situ-
ations will improve the recovery process.

4. Bridging Levels of Abstraction

4.1. Hierarchies of Events

In toy-examples, one might aim for direct mappings be-
tween what is given on the OOAM level and what has been
recovered as object model from legacy code. In realistic
cases though, the OOAM and the object model directly re-
covered from code will be separated by several levels of ab-
straction, a problem alluded to already several times in the
previous discussion. Here we give some hints on how one
can deal with those problems.

Focussing on the different levels of abstraction between
code and the OOAM one has also to consider that the pro-

cedural legacy code and the new OOAM are developed ac-
cording to different development paradigms. This has the
consequence, that the dynamic model one obtains directly
from the code, is not necessarily a coherent and strictly con-
nected graph, a prerequisite for a formally correct dynamic
model. Different strings of event sequences need to be con-
nected and states where such connections might be made
have to be identified.

This problem seems analogous to problems dealt with
in the database community in the realm of schema integra-
tion. For integrating object-oriented schemata, several ap-
proaches that extend concepts from relational schema inte-
gration exist. These approaches focus on the integration of
the static part of the schemata involved. Surveying the lit-
erature dealing with the integraton of dynamic aspects of an
object-oriented schema also leads only to fewer works. One
of the most advanced among them is H. Frank’s dissertation
[6]. It can serve as a reference point for our work, but one
has to note, that Frank’s work considers data bases, while
we consider software systems. Hence, when he considers
aggregations and relationships between models on differ-
ent levels of abstraction, state aggregations are obtained.
This allows him to stay fully conformant with the modelling
primitives provided by OMT. We, on the contrary, focussing
on the “executional part” of a program, have to consider
events as elements that can be expressed at different levels
of abstraction and that therefore need to have the potential of
being composite events, a concept not forseen in OMT and
generally rejected in process oriented literature. In spite of
these differences, the subtle event categorization and the for-
mal model, defining the conditions under which events can
be considered either equivalent or a generalization of some
other event make Frank’s work an important basis for our
considerations.

4.2. Model Matching

To understand matching of the dynamic model obtained
from the code level to the dynamic model contained in the
OOAM, we have to consider different naming conventions
and different levels of granularity. On the OOAM level,
events are considered equivalent to method invocations. To
relate these to events seen on the source code level, we de-
cided to define only procedure invocations as events. This
has the advantage that we are not concerned with the low-
est level of granularity one can see in source code, the as-
signment statement. Further, we have a chance to label the
events by some more or less speaking identifier. The linguis-
tic problem involved with matching those are not further dis-
cussed in this paper. It is similar to the linguistic problem
one has between state-variable and object designator, an is-
sue dealt with in [7].

In contrast to the static similarity checks, model match-

ing in the dynamic model can use much richer structural in-
formation, since two nontrivial graphs are to be matched
against each other. Whether this matching will be driven
by state (node) comparisons or by event (edge) comparisons
is theoretically irrelevant. Practically, though, one has to
consider that both, state and event information is plagued
with some noise. Thus, even after having reached the ad-
equate level of abstraction, chances for incomplete matches
exist (of course the reasons for such imperfections have to
be further investigated). Whether one uses the state space
or the event sequences to perform the match is a tactical de-
cision, depending on which seems to be more important for
the application being reverse engineered. One might have
the heuristic, that the aspect of primary concern is more elab-
orated on both levels. Hence the clues for an initial match
are easier to be found. Once such clues have been found,
one can progress by raising the level of abstraction of the re-
versely generated dynamic models by operations similar to
those described in [6].

5. Outlook

So far, we described the usage of generating an object-
oriented dynamic model from legacy source code only from
the perspective of improving the selection of candidate ob-
jects. As such, creating such a model can be also seen as a
general device to support program understanding. Notably,
a person not versed in implementation tricks, common some
decades ago, might see connections one would not identify
with conventional control- or data flow analysis or slicing, as
the dynamic model will establish relationships among por-
tions of code not directly related by these techniques.

The aspect, that the dynamic model relates portions of
code that is in no other close relationship in the non-object-
oriented legacy system, can be used also at a later phase of
our program renovation effort, during the construction of the
object-oriented target system.

A full discussion of target system construction would be
beyond the scope of this paper. We will refer here only to
two basically different strategies:

1. Recreation of the target system from legacy code: This
concept has been the leading concept behind COREM
[12]. The advantage of this approach is a certain degree
of confidence that “it is still the old code, just structured
in a better way”. If the legacy code is already at least
nicely procedurally structured, one might hope that big
chunks of code can be moved this way. Here, the dy-
namic model will be an important indicator, where ex-
actly those portions can be found in the old code.

2. Development of the target system with new technology:
This avenue is opened up, when a very strong object-
oriented model can be recovered from the legacy sys-

tem. Such a model has to contain more than just
static information. With static and dynamic informa-
tion though, the model seems to be strong enough, to
recognize them as design patterns [10, 16]. Once those
have been fully identified, the new object-oriented sys-
tem can at least partly be built from code contained in
some pattern library. In doing so, several questions to
ascertain semantic equivalence remain still to be an-
swered.

6. Conclusion

An approach to extract an object-oriented dynamic model
from classical legacy code has been presented. The merits
of this approach lie in object recognition and in general pro-
gram understanding per se. In addition to these aspects, that
have been the key considerations leading to this work, the
dynamic model will play also an important role in the gen-
erative steps of software renovation.

References

[1] Ilene Burnstein, Abdul Mirza, Katherine Roberson,
Floyd Saner, and Abdallah Roberson. Knowledge
engineering for automated program recognition and
fault localization. In Proceedings of the �

th In-
ternational Conference on Software Engineering and
Knowledge Engineering SEKE’ 96, pages 85–91, Lake
Tahoe (Nevada), June 1996.

[2] G. Canfora and A.Cimitile. An improved algorithm for
identifying objects in code. Software Practice and Ex-
perience, 26(1):25–48, January 1996.

[3] G. Canfora, A. Cimitile, and G. A. Di Lucca. Re-
covering a conceptual data model from cobol code.
In Proceedings of the �

th International Conference
on Software Engineering and Knowledge Engineering
SEKE’ 96, pages 442–449, Lake Tahoe (Nevada), June
1996.

[4] G. Canfora, Aniello Cimitile, M. Munro, and C.J. Tay-
lor. Extracting abstract data types from c programs: A
case study. In Proceedings of the International Confer-
ence on Software Maintenance 1993, pages 200–209.
IEEE Computer Society Press, September 1993.

[5] Doris L. Carver. Reverse engineering procedural code
for object recovery. In Proceedings of the �

th In-
ternational Conference on Software Engineering and
Knowledge Engineering SEKE’ 96, pages 442–449,
Lake Tahoe (Nevada), June 1996.

[6] Heinz Frank. View Integration für objektorientierte
Datenbanken. DISDBIS Bd. 32. infix, 1997.

[7] Harald Gall and Johannes Weidl. Object-model driven
abstraction-to-code mapping. Technical Report TUV-
1841-97-23, Technical University of Vienna, Decem-
ber 1997.

[8] Harald C. Gall, René R. Klösch, and Roland T. Mit-
termeier. Long-term information systems evolution
via object-oriented re-architecturing. In �

th European
Software Engineering Conference, ESEC ’95, 1995.

[9] Harald C. Gall, René R. Klösch, and Roland T. Mitter-
meier. Pattern-driven reverse engineering. In Proceed-
ings of the �

th International Conference on Software
Engineering and Knowledge Engineering SEKE’ 95,
Rockville, Maryland, June 1995.

[10] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. De-
sign Pattern: Elements of Reusable Object-Oriented
Software. Addison-Wesley, 1995.

[11] I. Jacobson and F. Lindström. Re-engineering of old
systems to an object-oriented architecture. In OOP-
SLA, pages 340–350, 1991.

[12] René R. Klösch and Harald C. Gall. Objektorientiertes
Reverse Engineering. Springer–Verlag, Berlin, Hei-
delberg, 1995.

[13] S. Liu and N. Wilde. Identifying objects in a conven-
tional procedural language: an example of data design
recovery. In Proceedings of the International Confer-
ence on Software Maintenance 1990, pages 266–271.
IEEE Computer Society Press, 1990.

[14] Roland T. Mittermeir, René R. Klösch, and Harald C.
Gall. Using domain knowledge to improve reverse
engineering. International Journal of Software Engi-
neering and Knowledge Engineering, 6(33), 1996.

[15] Roland T. Mittermeir and Dominik Rauner-
Reithmayer. Applying concepts of soft computing
to software re(verse)-engineering. In Proceedings
of the Workshop on Migration Strategies for Legacy
Systems, at ICSE’97, Boston, USA, May 1997.

[16] Wolfgang Pree. Design patterns for object-oriented
software development. ACM Press, 1994.

[17] James Rumbaugh, Michael Blaha, William Premer-
lani, Frederick Eddy, and William Lorensen. Object-
Oriented Modeling and Design. Prentice Hall, Engle-
wood Cliffs, New Jersey, 1991.

[18] Harry M. Sneed. Migration of procedural oriented
cobol programs in an object-oriented architecture. In
Proceedings of the International Conference on Soft-
ware Maintenance 1992, pages 105–112, Orlando,
Florida, November 1992.

