
Service Channels - Purpose and Tradeoffs

Helfried Pirker, Roland T. Mittermeir, Dominik Rauner-Reithmayer�

Universität Klagenfurt
Institut für Informatik-Systeme

Universitätsstraße 65-67, 9020 Klagenfurt, Austria
fhelfried, mittermeir, dominikg@ifi.uni-klu.ac.at

Abstract

Claims concerning the maintainability of object oriented
software usually refer to encapsulation and inheritance
mechanisms. However, if objects are perceived only from
the code level, potentials for higher level maintenance op-
erations are missed. Moreover, classical maintenance fo-
cussing just on code destroys the relationship that once ex-
isted between specification and implementation.

We present service channels as mechanisms to support
maintenance requests on the specification and, for a sub-
stantial class of requests, the propagation to the implemen-
tation keeping the relationships between specification and
implementation consistent.

Keywords: Software Re-engineering, Maintenance and
Customization

1. Motivation

To keep evolving software from structural deterioration,
special effort is needed [10]. If evolution is not enforced
by a very rigid maintenance process, it results in a diver-
gence of the product from the requirements- and design doc-
uments used for its original development. Parnas [19] refers
to this phenomenon as ”software aging”. Albeit encapsula-
tion and other beneficial features, ”objects” too are not im-
mune against aging. Thus maintenance support for object-
oriented systems appears desirable. In [17] service channels
are suggested as an approach to software evolution that will
keep the aging process relatively benign. The substance of
this claim is due to keeping a firm relationship between the
model (specification) of an object (resp. class) and its real-
ization in some programming language.

The motivation behind our approach is, that maintenance

�This work was partially funded by the Austrian Science Fund (FWF),
grant Nr. P 11.340-ÖMA.

of complex (and/or large) objects � is far from trivial. How-
ever, since objects not only encapsulate their state with
respect to their environment but have their methods built
around this state, following some common and coherent
concept, maintenance can be supported to a higher degree
than in plain procedural code.

The concept a software object represents is concisely rep-
resented in the object’s specification. There, the state space
and the methods reporting and manipulating it are given in
an implementation independent form. As each method is
coded as implementation of its respective specification, part
of the common concepts will become implicit in the imple-
mentation. Nevertheless, they remain in the form of the spe-
cific realization of the state space or in the form of other
interdependencies of methods. Thus, constraints, that have
been obvious to the initial implementor might need to be
painfully uncovered by the maintenance programmer (cf.
assumptions in [11]).

To alleviate the maintenance programmer from much of
the burden to uncover implicit implementation constraints,

� code and specification of objects should co-evolve;

� maintenance activities are to be supported by relating
the specification (model level) to the respective repre-
sentation on the implementation level.

The principles mentioned above are uncontested, but never-
theless unresolved. So we propose that,

� for a class of maintenance operations the relationship
between a modified specification to the respective code
can be automatically maintained via service channels.

Thus, for large existing object-oriented software systems
maintenance will become easier and certain reverse engi-
neering operations will be even unnecessary or could be per-
formed automatically.

The consequence of the approach is, though, that ob-
jects are formally specified and that maintenance activities

�When using the term ”object”, we refer to the class description.

should be planned and performed first on the specification-
or model level. From there, one can identify, whether the
implementation needs to be modified ”by hand” or whether
a change on the model level can be automatically propagated
to the implementation level.

In the rest of this paper we first present our considerations
on performing maintenance operations on objects by object
model evolution. Service channels are proposed as a mech-
anism to support these maintenance operations. Then pos-
sible realizations of service channels and their purpose are
discussed using an illustrative example.

2. Maintenance operations on objects

2.1. Object model evolution

As outlined in [17], object evolution [1, 18, 4, 12, 13] is
usually investigatied during the development process. But
in contrast to object evolution during development, object
evolution in the maintenance phase mostly happens just on
the implementation level. Hence, the initial object model is
becoming less and less a documentation or specification of
the system. So its value decreases with each evolutory step.

Assuming that maintenance on the model (specification)
level is less costly than maintenance on the implementation
level and certainly less costly then any reverse engineering
activity, the process described by the dashed line in Figure
1 is wasteful in the long run.

Therefore, we propose an approach for software mainte-
nance on the model level as illustrated by the solid line in
Figure 1. Here maintenance activities are done on the ob-
ject model OM. The resulting object model OM� is then the
basis for the derivation of a corresponding object implemen-
tation OI�. In accordance to the object evolution step (from
OI to OI�) we call the step from OM to OM� object model
evolution.

OI

OM

OI’ OI’’

Model Level

Implementation Level

OM’
Maintenance

Activity
Maintenance

Activity

OM’’

Figure 1. Object model evolution

The benefits of model evolution can be seen on the model
level itself as well as between model and implementation
level.

Co-evolution of model and implementation will yield a
set of “benefits of discipline”. They fall in one of the fol-
lowing categories:

� Model evolution provides a network of related object
models that define a road-map of object evolution and
thus also a possibility for specification based software
retrieval [2, 14] and other forms of focussed software
reuse.

� Model evolution provides guidance concerning the se-
quence of maintenance steps necessary to consistently
build OM� out of OM. By maintenance activity steps
we refer to changes such as described in [15, 8, 7].
Taking the hierarchical structure of Kungs classifica-
tion [7], it is possible to describe the distance between
OM and OM� on different levels of granularity. Kung et
al. use three levels of granularity in their classification.
E.g. when considering changes on classes, they distin-
guish between component changes, like add (delete) a
defined data attribute, and relationship changes like add
(delete) a subclass.

� Making explicit constraints that are (implicitly) as-
sumed as given in (parts of) the implementation. Thus,
one can relate those constraints and reason about them
and it will become possible to decide whether a mainte-
nance step violates a constraint in the object model that
is only hard to find or even not explicitly represented at
the implementation level. Constraints of this kind are
a main source of the difficulty of program comprehen-
sion and hence a recurring source of maintenance and
testing problems.

2.2. Service channels to support model evolution

A service channel is a mechanism relating a sequence of
transformations on the model level to the code level. To
do so, they instrument the relationships between model- and
implementation level

In its most powerful version, as adaptive service chan-
nel, model level changes are propagated automatically to the
implementation level. Such propagations are safe against
introducing inconsistencies or violations of constraints ex-
pressed in the object’s model. Thus, a safe transformation
from OI to OI� can be guaranteed. These automatic code
adaptions are only possible, if the service channel can be
sure that there are not any hidden implicit constraints re-
maining.

When this is not possible, service channels can still as-
sume an observing role as verificative service channels.
Based on the difference between OM and OM� they can be
used to generate test-cases [20] for checking OI� against the
changes in the specification. The specific benefits from fo-
cussed testing in class structures can be seen from [6].

Certainly, one can express modifications on the model
level that are beyond the provisions foreseen by any service
channel. This applies notably when OM and OM� seem to

be unrelated from a tool’s perspective. Then, the respective
modifications to OI� have to be performed unsupported and
no safe transition from OI to OI� can be guaranteed. The
maintainer has, however, still the benefit to work in a for-
ward looking manner and does not need to start the task with
a reverse engineering activity.

Figure 1 could be interpreted just as a methodological ad-
vice. As such, it might already help in lots of situations and
be in line with what is currently seen as “best practice”. With
rush-jobs, it seems counterintuitive to do stressful mainte-
nance on both, code and specification. But neglecting spec-
ification level maintenance is quite often coupled with negli-
cence to clean up later what has been postponed initially.
The argument of doing the same work twice (on the model
level and on the implementation level) is raised as an excuse.
This excuse – it might never have been valid – is rendered in-
valid if the sum of work on the horizontal and the downward
pointing arrow is less than the work one would have to do
on the bent arrow representing implementation level main-
tenance. Machine support for the vertical arrow will help to
turn the economics to where the technical perfection rests.
Service channels are proposed as adequate mechanisms to
achieve this.

Model
Evolution

Object
Implementation

Object
Evolution Implementation

Adapted
Object

Service
Channel

Object
Model

Changes in
Requirements

Model
Object

Adapted

Plain
Programming

Generation
Testcase

Checking
Model

Figure 2. Maintenance using model evolution

Figure 2 summarizes the idea of object evolution through
model evolution using service channels. Whether object
evolution is fully supported by adaptive service channels,
only ex-post supported by a test data generator (verificative
service channel), or even basically not supported at all so
that just the benefits of model checking remain, depends on
a classification of the changes on the model level resulting
from respective requirements changes.

3. Realizations of service channels

So far, the purpose of service channels has been pre-
sented. Now we introduce two quite different options to

realize them. Our considerations how to realize service
channels are driven by the question, how much of the sys-
tems ability to evolve should be represented inside the sys-
tem (built-in service channel) or outside the system within a
maintenance environment (external service channel).

3.1. Built-in service channels

A built-in service channel (BI-SC), as shown in Figure 3,
is a modification mechanism inside the system developed to
cover a fixed set of changes. These changes are formulated
as change requests on the model level and are propagated
automatically on both the model and implementation level,
by the built-in service channel.

To do so, the built-in service channel has to know about
all relationships between OM and OI and of all implicit con-
traints hidden in the implementation, which are necessary to
perform the change automatically.

Hence, the object model, its corresponding implementa-
tion and the built-in service channel together represent a set
of possible solutions within the application domain. Con-
ceptually, the invocation of a built-in service channel with
a certain change request determines the suitable solution in
the set of possible solutions.

BI-SC

OM

OI

OM’

OI’

system

Change request

Figure 3. Built-in service channel

For example, built-in service channels can be realized
as special methods written specifically for the object under
consideration, implemented as “service methods”, not ac-
cessible to the regular “clients” of this object. Such service
devices are not a new concept in conventional engineering.
We find them as extra functionality due to the engineering
knowledge of the developer, built beyond any users request.

Examples one might think of range from water pipes built
into buildings for use by the fire brigade via staircases or ele-
vators in hotels marked by “personal only” to plugs in cars,
where special diagnostic equipment can be connected and
test-busses on highly complex VLSI-chips. These examples
show already a breadth of purpose as well as the fact, that

there is an engineering decision as to how much one builds
into the specific object (pipes etc.) and how much one leaves
outside for instrumentation on demand (service–plug).

As can be seen from the engineering examples, built-in
service channels are designed with full knowledge of the
design of the artefact they are built into. This applies to
software service channels too: They “know” the object’s
model, and for the spectrum of changes they are to sup-
port also the relationship between model and implementa-
tion. Of course, each such service channel is limited to its
spectrum of changes. Hence, it needs to know the relation-
ships between OM and OI that are relevant for change re-
quests falling into this spectrum.

For an obvious example we refer to the relationship be-
tween the state space, its implementation and its realization
in various methods. Assume a requirements change leads
to an extension of the state space. The service channel sup-
porting this change will identify all those parts in the imple-
mentation that need to be changed. In case the change can be
performed in a simple way (e.g. changing a constant), it will
check for ripple effects, perform this change on the source
code level and after recompilation, the object’s implemen-
tation will be consistent again.

3.2. External service channels

The example given above demonstrated that normal op-
erations of an object and operating its service channel are
quite different operations. While during normal opera-
tion, its state will be changed, operating its service channel
changes its state space. Hence, it is not an operation on the
instance level, but – to borrow data base terminology – on
the schema level. Since we are dealing with software, re-
compilation is the normal consequence.

This very different usage pattern motivates the question
why such an operation has to be built-in and not kept sep-
arate from the object as an independent tool. Obviously,
this is a valid alternative. We are referring to such spe-
cial tools as external service channels (EX-SC), whose re-
lation to the system to be maintained is shown in Figure
4. Their main difference to built-in service channels can be
seen again from an analogy: Considering the fire brigade, a
fire-man on a ladder sprinkling water out of a hose to a burn-
ing building would be the “external” alternative to the built-
in pipes and sprinklers.

External service channels are specific maintenance tools,
designed independently of the specific object they are oper-
ating on. Their purpose is to identify change, change propa-
gation and limits to change propagation. An external service
channel consists of general tools for program understand-
ing and reverse engineering such as slicers (e.g. [9]), ER- or
structure charts generators [21] etc. With them, support can
be given for change categories not anticipated and therefore

OM

OI

OM’

OI’

EX-SC

old system evolved system

Change request

Figure 4. External service channel

infeasible to deal with by built-in service channels. With
the external service channel, the conceptional network that
is preestablished in the internal service channel will be de-
fined on the fly. A consequence is, that the maintenance sup-
port they provide will be reduced. To improve their perfor-
mance, special service plugs, such as explicit links between
identifiers used at the model level and identifiers used in the
implementation can be provided.

4. An illustrative example

The following example demonstrates the usefulness of
object model evolution even in the seemingly trivial case
of modifying constant values. We use (a part of) a system
to display the temperature measured by a thermometer to
sketch the basic ideas of the concept.

The thermometer, as originally designed, measures and
supplies the temperature in centigrades. It covers a range be-
tween -50 and 50 centigrades. The system then displays the
temperature using a two-digit display and a sign indicating
wether the temperature is below 0 or not.

4.1. The object model

As basis for the discussion, the object specification in our
object model is represented using Object-Z [3, 5]. It consists
of two objects, TempDisplay and Thermometer.

The Thermometer-object is the interface to the physical
thermometer. The history invariant represents the temper-
ature range of the physical thermometer. GetTemp obtains
the temperature from the physical thermometer and stores it
in the state variable temp, YieldTemp presents this value on
request to the caller of this method. TempDisplay, for the
sake of presentation modelled as a distinct object, requests
the current temperature from Thermometer and prepares it
for output on a two-digit display.

Thermometer
�INIT�GetTemp� YieldTemp

temp � Z

GetTemp
��temp�

temp� � ���

/* stores temperature supplied by
physical thermometer */

YieldTemp
temp out� � Z

temp out� � temp

INIT

temp � �

����� � temp � ���

/* temperature range of physical ther-
mometer */

TempDisplay
�INIT� ShowTemp
SignDigit ��� 	
 	 j 	� 	

digit�� digit� � Z
sign � SignDigit

ShowActTemp
��digit�� digit�� sign�
temp � Z

� � temp �

temp � Thermometer�YieldTemp

temp � ��
�digit�� � temp mod ��
digit�� � temp div ��
sign� � 	
 	�

temp � ��
�digit�� � �temp mod ��
digit�� � �temp div ��
sign� � 	� 	�

INIT

digit� � digit� � � � sign � 	
 	

��� � digit� � �

��� � digit� � �

4.2. Implementation rationale

Due to the simplicity of this object model, the corre-
sponding implementation is not given here. But the follow-
ing points should be considered.

The behaviour of both objects is restricted by some in-
variants. The TempDisplay-objects invariants

A � � � temp �

(in the sequel referred to as constraint A) and

B � � � � � digit� � � � � � � � digit� � �

(both summarized as constraint B) are driven by the require-
ment of a two-digit display and are interrelated in the follow-
ing way. Knowing one of them and the way to calculate the
values of the two digits (digit1, digit2), implies the other one

A � B and B � A�

The Thermometer-object has only one invariant

C � � ���� � temp � �� �

(in the sequel referred to as constraint C) representing some
physical limitations of the thermometer.

Implementing this specification, one notes that the value
of the variable temp in the Thermometer-object (restricted
by constraint C) determines the value of the variable
temp in TempDisplay (restricted by constraint A). Thus,
Thermometer�temp can be substituted for temp in C and be-
cause under this substitution C is stronger than A, the chain
of implications

C � A � B

holds. Therefore, it is safe and efficient to check in the im-
plementation only for C. There is no actual need for con-
straints A and B to appear within the implementation of the
TempDisplay-object.

This reasoning will be done by any programmer look-
ing for performance and for compact code. If, however, the
algorithmic transformations would have been much more
complex than those between Thermometer�temp and digit�
or digit� it might have been hard for the maintenance pro-
grammer, to see, why this system functions correct even
with out-of-range input. Here, an explicit link between the
identifiers used in the implementation and those of the spec-
ification, that can be traced by the machine might already
prove to be a valuable aid and constitute a minimal service
channel.

We will now consider such a service channel when dis-
cussing two requirements changes.

4.3. Changing the temperature range

One possible change in the requirements could be the
fact, that our thermometer should be able to measure tem-
peratures in the range between -80 and 80 centigrade.

4.3.1 Considerations on the model level

This change influences the Thermometer-object, as the his-
tory invariant has to be changed as follows:

C� � � ���� � temp � �� �

(referenced as constraint C�). As C� remains stronger than
A the change can be done locally in the Thermometer-object
without any consequence for TempDisplay. The unique spot
of modification can be identified safely, by proving that no
other constraint on the model level is inflicted.

4.3.2 Considerations on the implementation level

To support the change of the temperature range on the im-
plementation level, the service channel has to know about
the implementation of the Thermometer object. The service
channel has to take care of the following:

� the implementation of the variable temp and

� the checking of constraint C in the implementation.

Other objects are not to be considered, as the service channel
has proved on the model level, that the requested change has
no effect on the TempDisplay object.

One can easily imagine several possible implementations
of the variable temp (subrange, enumeration, integer, ...)
within the Temperature object and their automatic adaption
according to the requested change as long as basic restric-
tions (e.g. range of the implementation types) are not vio-
lated.

A more powerful service channel might even directly
perform the modification as long as

C� � A � B

holds. One might conceive of many variations of this exam-
ple. Among those, variations of the last implicant so that the
whole chain of implications still holds.

Although this seems not very realistic in this example, it
might lead to situations, where changing the respective spot
on the model level and running an automatic proof would
be all that is needed. To figure this out on the basis of an
unsupported implementation might be quite hard.

4.4. Changing the thermometer

Obviously, not all changes are that benign that they can
be (almost) fully taken care of on the model level and via
service channels. Nevertheless, some help is provided.

As example of such a change, assume the physical ther-
mometer supplying centigrades is exchanged to one supply-
ing temperature measured in degrees Fahrenheit over the
same temperature range. In this case the physical ther-
mometer will provide values in the range between -112 and
176 degrees Fahrenheit (corresponding� to the range be-
tween -80 and 80 centigrades).

4.4.1 Considerations on the model level

This change on the model level again concerns only the in-
variant in the Thermometer-object. Thus, from a naive per-
spective it is of the same nature as the previous one, a simple
change of constants such that the new constraint C�� is now

C�� � � ����� � temp � ��� ��

If this change is straight done on an implementation, de-
veloped according to the rationals mentioned in section 4.2,
the object TempDisplay cannot display all values supplied
by the Thermometer-object. As constraints A and B are not
checked in the implementation it will show undefined be-
haviour at very low or relatively high values. Although this
problem should at least be identified during boundary value
testing, not all test strategies might catch it.

Performing this change on the model level though, one
will easily see that constraint C�� is no longer stronger than
A. This violates the assumption

C�� � A � B

and since the connection between the implementation and
specification does not show any direct check for compliance
with A, an open proof-obligation for A will figure and a rip-
ple effect from the Thermometer object to the TempDisplay
object will be diagnosed.

In this case a service channel will not automatically in-
sert code for dealing with a third digit and modifying A and
B appropriately. It will however clearly point to the fact that
A is violated and that TempDisplay needs to be modified in
consequence of the modification in Thermometer. Thus, fo-
cussed modification “by hand” is possible. Likewise, the set
of test data can be automatically extended (or even modi-
fied).

� x centigrade = (x * 1.8) + 32 degrees Fahrenheit

5. Discussion

5.1. Discussion of example

The maintenance activities described above show that
even simple requirements changes may lead to severe dif-
ferences in implementations. Doing maintenance only on
the implementation level might cause inappropriately high
effort and allows the implementation to drift away from its
specification. It can also cause undefined behaviour of the
system. Therefore, we propose to perform object model
evolution before stepping down to the implementation level.

Doing more elaborate changes than the simple change
of constants sketched above can also lead to violations of
system invariants possibly not mentioned in the implemen-
tation (e.g. a change of the calculation of the digits such
that measurements obtained in centigrade are displayed in
Fahrenheit can also violate constraint B).

Of course, given the simplicity of the example one
might wonder, why we need service channels to deal with
changes a smart programmer might have solved by ap-
propriate parameterization. However, critique of this kind
misses the point, that system generation and system execu-
tion are conceptually different activities. System modifica-
tion has to do with system execution and with service chan-
nels, model consistency can be assured and more powerful
generation/modification-operations can be performed than
with simple parameterization. After all, even this simple ex-
ample and its discussion might have shown the limits of pa-
rameterization, limits that cannot be fully covered even by
very defensive programming.

Using a specialized theorem prover for the ripple ef-
fect analysis discussed seems appropriate. Such a theorem
prover can be considered as an external service channel like
the special analyzer needed to identify the links between
predicates that will be submitted to this analysis.

Consider now extending the example by a Temperature-
tracker. This tracker just consists of a collector, an array
of frequency-countersover the full temperature-range, and a
reporter showing a list of temperature-frequency pairs. As-
sume this array is, based on the original specification, imple-
mented as int collector [101]. Apparently, there is a direct
relation between the bounds of temp in the specification of
Thermometer, the upper bound of the array collector and the
temperature readings to be printed in report. However, since
the array- (and loop-) boundaries are a function of temp’s do-
main boundaries, while the temperature readings are direct
values of the domain at least two different constants, with
one dependent on the other, are needed. An internal service
channel will be a suitable mechanism to take care of this.

The simplicity of the example did not show another im-
portant isssue of using service channels, namely the ques-
tion, whether a change request causes sequencing con-

straints [16] or not. The example demonstrated the use of
service channels to do ripple analysis to isolate the parts of
the object model and of the corresponding implementation
affected by the change request. The issue here is, whether
the modifications can be done in an arbitrary order or not. If
the modifications can not be done in an arbitrary order, there
must be a mechanism to determine the possible order(s).

5.2. Disadvantages of object model evolution

Of course, doing maintenance by the two step approach
described (model evolution before object evolution) might
lead to a higher effort in certain situations. This effort can
be divided into two main parts: The effort spent for adapting
the object model can be balanced when regarding the advan-
tages of our approach and the derivation of the implementa-
tion. The latter effort can be huge, as small changes in the
model can lead to vast changes in the implementation.

We claim though, that proper definition of service chan-
nels will reduce the likelyhood of situations where the two-
step approach leads to measurable higher effort. These cases
might be justified by less effort in other situations or they
might be written off on the ground of better product quality.

5.3. Advantages of object model evolution

Our approach offers advantages on both model level
and implementation level. Describing maintenance require-
ments on the model level is easier and more precise. It is
easier, because the level of abstraction of the object model is
closer to the level of abstraction of the maintenance require-
ments. It is more precise, as the object model is represented
by some formal model, e.g. Object-Z.

The ability to describe maintenance activities on the
model level has two main advantages. As we have a se-
quence of maintenance activities on the model level we can
give a sequence of changes on the implementation level,
having the same semantics.

Having the information, that the activity violates none of
the constraints of the model, we can conclude, that the cor-
responding changes on the implementation level will lead to
no unwanted side-effects. Therefore, it is possible to distin-
guish two possible ways of object evolution: One supported
by a service channel maintaining an already established
level of consistency between implementation and specifica-
tion; the second one is doing the changes by plain program-
ming. Test data generation can support the second way, but
might even have its merits in the first one.

6. Conclusion

This paper discusses concepts to improve maintenance of
object oriented software beyond conventional code-level in-

heritance mechanisms. Based on formal specifications, ser-
vice channels have been proposed as mechanisms relating a
sequence of transformations of the specification to the im-
plementation by instrumenting links between the specifica-
tion and implementation of objects. Thus, specification and
implementation of objects evolve in a consistent manner and
aging processes due to successive maintenance are blocked
or reduced.

The power and generality of service channels depends on
their specific architecture. Hints for the main architectural
choices have been given.

References

[1] J. Banerjee, H.-T. Chou, H. J. Kim, and H. F. Ko-
rth. Semantics and implementation of schema evolu-
tion in object-oriented databases. SIGMOD RECORD,
16(3):311–322, 1987.

[2] N. Boudriga, A. Mili, and R. Mittermeir. Semantic-
based software retrieval to support rapid prototyping.
Structured Progamming, 13:109–127, 1992.

[3] D. A. Carrington, D. Duke, R. Duke, P. King, G. A.
Rose, and G. Smith. Object-Z: An object-oriented ex-
tension to Z. In S. Vuong, editor, Formal Description
Techniques II, FORTE’89, pages 281–296. North Hol-
land, 1990.

[4] E. Casais. Managing class evolution in object-oriented
systems. In O. Nierstrasz and D. Tsichritzis, editors,
Object-Oriented Software Composition, pages 204–
244. Prentice Hall International (UK) Ltd., 1995.

[5] R. Duke, R. King, G. Rose, and G. Smith. The Object-
Z specification language. Technical Report 91-1, Uni-
versity of Queensland, Dept. of Computer Science,
Software Verification Research Centre, May 1991.

[6] M. J. Harrold, J. D. McGregor, and K. Fitzpatrick. In-
cremental testing of object-oriented class structures. In
Proc. 14th International Conference on Software Engi-
neering (ICSE’92), pages 68 – 80, 1992.

[7] D. Kung, J. Gao, P. Hsia, Y. Toyoshima, and C. Chen.
On regression testing of object-oriented programs.
Journal of Sytems and Software, 32(1):21–40, Jan.
1996.

[8] D. Kung, J. Gao, P. Hsia, F. Wen, Y. Toyoshima, and
C. Chen. Change impact identification in object-
oriented software maintenance. In Proc. of the Inter-
national Conference on Software Maintenance, pages
202–211, 1994.

[9] L. Larsen and M. J. Harrold. Slicing object-oriented
software. In 18th International Conference on Soft-
ware Engineering, pages 495 – 505, 1996.

[10] M. M. Lehman. Programs, life cycles and laws of soft-
ware evolution. Proceedings of the IEEE, 68(9):1060
– 1076, Sept. 1980.

[11] M. M. Lehman. Software’s future: Managing evolu-
tion. IEEE Software, 15(1):40–44, Jan. 1998.

[12] K. J. Lieberherr and C. Xiao. Object-oriented software
evolution. IEEE Transactions on Software Engineer-
ing, 19(4):313–343, Apr. 1993.

[13] S. Matsuura, H. Kuruma, and S. Honiden. Eva:
A flexible programming method for evolving sys-
tems. IEEE Transactions on Software Engineering,
23(4):296–313, May 1997.

[14] R. Mili, A. Mili, and R. T. Mittermeir. Storing and
retrieving software components: A refinement-based
system. IEEE Transactions on Software Engineering,
23(7):445–459, July 1997.

[15] R. Mittermeir and K. Kienzl. Intra-object schemas to
enhance adaptive software maintenance. In Austro-
Hungarian Software Engineering Seminar, 1993.

[16] R. T. Mittermeir and H. Pirker. Internal service chan-
nels - principles and limits. In Proc. International
Workshop on Principles of Software Evolution (IW-
PSE98), pages 63–67, 1998.

[17] R. T. Mittermeir, H. Pirker, and D. Rauner-
Reithmayer. Object evolution by model evolution.
In Proc. 2nd EUROMICRO Conference on Software
Maintenance and Reengineering (CSMR98), pages
216–219, 1998.

[18] S. Monk and I. Sommerville. Schema evolution in
oodbs using class versioning. SIGMOD RECORD,
22(3):16–22, 1993.

[19] D. Parnas. Software aging. In Proc. 16th Int. Confer-
ence on Software Engineering (ICSE’94), pages 279 –
287, 1994.

[20] P. Stocks and D. Carrington. A framework for
specification-based testing. IEEE Transactions on
Software Engineering, 22(11):777–793, Nov. 1996.

[21] M. P. Vrbicky. Rekonstruktion von Structure Charts
und intermodularem Datenfluß aus C Quellcode. Mas-
ter’s thesis, Universität Klagenfurt, 1997.

