Classifying Components by Behavioral Abstraction

Roland T. Mittermeir, Heinz Pozewaunig
Institut fir Informatik-Systeme, Universitit Klagenfurt
Klagenfurt, Austria
email: {mittermeir, hepo}@ifi.uni-klu.ac.at

Abstract

We present an approach for classifying and retrieving
reusable software based on exemplary descriptions of its
functionality. The functionality of reusable components
is described by a set of tuples with each tuple represent-
ing a characteristic input-output (or stimulus-response)
transformation of the component at hand. With careful
choice of these characteristic tuples, information equiva-
lent to conventional formal specifications is given, except
that (re-)users not versed in formal specification can pro-
vide such queries.

The concept just introduced depends on the dis-
criminative potential of the tuples provided and on the
equivalence of behavior representations by the librarian
and by the (re-)user. The former can be assured by
the librarians professionalism, the latter by an adequate
user-interface of the system supporting a dialog, based
on what the system has to offer rather than on guesses
about what the (re-)user is looking for.

1 Motivation

We depart from the assumption that in black box reuse
the user is not interested in retrieving a particular piece
of code from a library of reusable components, but that
his/her interest is the functionality needed. This func-
tionality can be — and usually is — described by natural
language descriptors or, on a more detailed level, by for-
mal specifications. However, the former are in general
too weak to select an appropriate component, and the
latter are in general too complicated to write down for
the requester.

Based on the analogy of checking out books from
open-stock libraries where catalogs provide just rough
guidance and the final decision of the reader is made after
browsing through some books suitable for the question at
hand, we bank on the operational semantics of software.
In contrast to [1] we do not use randomly generated data.
We rather focus on discriminatory tuples.

2 Specifying by Tuples

2.1 Preliminaries

As discussed in [2] we have to distinguish between the
(re-)users intent and the specific representational form
used to describe this intent. Likewise, the component
sought can be described at various levels of abstraction
and in various representational forms.

Considering the component itself, three broad cat-
egories stick out for its description:

o Textual algorithmic description: This is the con-
ventional description of a component’s source code,
written in some compilable programming language.
In general we may assume this textual description to
be procedural code, ready for execution after com-
pilation/interpretation.

e Predicative (intensional) description: This refers to
formal specifications, irrespective of the language
used. While specifications are text too, they are
not linear text but a set of predicates to be inter-
preted by some reasoning mechanism irrespective of
the order in which they are written down.

e Tabular (extensional) description: Whatever a pro-
gram might compute are input-output-transforma-
tions of some sort. Hence, instead of describing
these mechanisms by means of indicating their se-
mantics (specification) or how they are to be derived
(program) one could also explicitly write them down
in a (potentially infinite) table.

These categories to describe functionality apply for
both, the provider and the requester of a component.
Here, we depart from the assumption, that in general, it
is easier to give some characteristic input-output map-
pings of a functionality needed than to describe it by
writing its complete specification or its complete pro-
gram. We also depart from the assumption, that it is
easier to read a specification (or even a program) than
to write it. Therefore, we propose a method where re-
questers of a reusable component select this component
from a repository on the basis of characteristic input-
output-tuples.

For this method to be sound, we assume that each
component stored in the library is represented not only
in its source-code representation, but that it also has a
formal specification as well as a set of such characteristic
tuples attached. To assume existence of a formal specifi-
cation seems fair when dealing with high quality compo-
nents. The effort spent in building it will pay off during
high frequency reuse later. Requiring tuples attached is
specific to this approach. The details of how these char-
acteristic tuples are built in the first place and how the
correspondence between tuples considered characteristic
by the requester and those considered characteristic by
the librarian are established is subject of the following
sections.

2.2 Characteristic tuples

A specification defines a relation between input and out-
put of a component (if needed, state information can be
externalized). This relation can also be given in exten-
sional form. As such, a component’s specification can be
seen as the universal relation defined over the cross prod-
uct of all types figuring in its signature. This universal
relation has an obvious partition into those tuples that
do conform to the specification (belong to its domain)
and those tuples that have their input-part in those por-
tions of the “from-set” that do not belong to the domain
covered by the specification. Within the domain, further
partitioning of the set of tuples conforming to the spec-
ification can be made, so that each of these partitions
can be characterized by some characteristic tuple.

If this approach seems too simple minded, one
should note that domain partition testing rests on ex-
actly this principle to distinguish between software that
conforms to its specification and faulty software, i.e.
software not conforming to this specification. At this
point, it seems arbitrary, which tuple is used to char-
acterize its particular sub-space. Testing theory shows,
that there are particular positions (e.g. boundary values)
that have particular discriminative power. We might fol-
low this argument, specifically if we do not want to recre-
ate those tuples but just rely on those already provided
by the test suite a component had to pass. We will re-
turn to this issue with further arguments in section 4.4
where we focus on the discriminative power of tuples in
the search process.

Not all test cases used for distinguishing correctly
behaving components from other ones suite our purpose.
In figure 1 tuples for testing the step function are de-
picted as diamonds and circles. Whereas all tuples are
valid test cases, albeit only diamonds are suitable to dis-
tinguish between the step-function and the exponential
one, which is unfortunately also characterized by the cir-
cle tuples. As “good” discriminating tuples discriminate
in the library context as well as in the testing context,
black-box test data can be used to identify such semanti-
cal hot-spots and no particular knowledge of the library
structure is needed at first glance. For later tuning of
the library structure, the librarian can rely on the exe-
cutability of software.

3 Obstacles

While the concepts just described seem to be adequate
to describe software from the librarians (component
provider) perspective, it seems problematic from the re-
questers view. In order to obtain a match between the
characteristic tuples provided by the librarian, the re-
quester would have either to ”guess” the appropriate tu-
ples or to write his own specification of the system from
which discriminatory test data could be derived. Both
arguments seem to defeat the aim of the whole venture.

To overcome these obstacles, one can either fall
back on the executability of software [1, 3] or reverse the
role of requester and system. Since we assume that some
descriptive methods have been used already for coarse
screening of the library, the requester now needs to zero
in only on a rather limited set of eligible components.

o Non discriminating Input ,
< Highly discriminating Input

Figure 1: Quality of discriminating input

For them, the number of discriminating tuples will usu-
ally not be too excessive. Since we further assume, that
(most of) the discriminative tuples have been provided
already from the test suite and that the test suite has
been established with professional care, we rather want
to bank on this asset. If these tuples are organized in
such a way that the discriminatory tuples are presented
on a step by step basis such that the requester can walk
down a path on a search-tree (actually: a lattice) of
available components, the approach becomes feasible.

In doing so, contrarily to behavior sampling, our
concept changes the role of the requester. Now, not he
is responsible for providing the system with meaningful
example values, but the system itself presents interac-
tively characterizing tuples. In choosing the behavior
which solves the problem in question best, the requester
specifies the component incrementally.

This incremental specification of a component is
not to be confused with a full fledged specification one
would write for somebody to build this component from
scratch. It serves rather to distinguish a given com-
ponent (or set of components) from other components
stored in the library but not conforming to the requesters
specification. In general these tuples should suffice.
However, based on the instrumentation of the library,
the requester can always try to test-execute the compo-
nent with further data of his/her choice.

4 Browsing Behavioral Descriptions

4.1 Principles

In general, libraries (and software libraries too) are orga-
nized according to some hierarchical schema. Whether
this is keyword based [4], or whether there is a lattice
of formal specifications [5], seems immaterial. Hence,
to avoid an information overkill of the requester, behav-
ioral abstractions presented by the system have also to
be organized in some hierarchical way. As we have indi-
cated already, we presume that the following considera-
tions take place only after some semantic based, coarse
description has been applied. Only the integrated coop-
eration of orthogonal concepts supports the reuser in a
promising and satisfying manner.

On this base, specifically in fine grained search, a
reuse library is primarily divided into segments X.. The
separation criterion is that the components belong to a
common problem domain and have an equivalent (gen-
eralized) signature [6, 7, 8]. The equivalent interfaces of
components belonging to the same segment are needed
in order to ensure that their extensional specification is a
subset of the universal relation for this particular signa-

ture. On the other hand, there may exist other segments,
specified by the same signature, but attached with other
semantic attributes (Statistic components and financial
components should reside in different segments). Within
these segments all components are structured due to the
refinement criterion provided by the given tuples.

We assume that the set Cx, is the set of all compo-
nents in a segment ¥. A candidate component ¢ € Cyx
is a collection of one or more algorithms a with identi-
cal functionality (E. g., ¢ represents all ascending sorting
algorithms on character lists).

At this point we want to stress, that a certain algo-
rithm a can also be related to two or more components!
Consider sorting algorithms, which are in general imple-
mented as parameterized programs accepting input of
different data types, provided with an ordering relation
for these types. Therefore, such algorithms are related
to different components in different segments according
to their respective signature.

Furthermore, 7y is the set of all tuples in a segment
Y, thus all example tuples t € Ty are in accordance to
the interface specification of ¥. The power-set of Ty is
denominated as II(7yx), and respectively, the power-set
of Cx, is denoted as II(Cx,). For the sake of simplicity, in
the following discussion we do not mention the subscript
for the current segment, ¥, if the meaning is clear.

A component retrieval function is defined as a func-
tion cr : II(T) — II(C).Provided with a set of tuples as
example behavior, the result of ¢r is a set of components
C. Appropriately enlarging T' will increase its discrimi-
native power, thus narrowing the cardinality of C'. Thus,
an iterative scheme is described, so that in the end, the
result of er will be a unitary set C', containing a single
component ¢ € C as result of the search process. The
pragmatics of cr is described as follows:

If a subset of T' € T denotes a subset of components
C € C, we say that T characterizes C. The empty set
characterizes every component in ¥, since the empty set
has no discriminative power. Also, if the cardinality of C
is 1 and there exists no other ¢t € 7 as example of the sole
component ¢ in the set C, we say that T' fully character-
izes C (in fact T characterizes ¢ € C). In this sense every
set T is part of a description and a partial specification
for the components in C. If the cardinality of C is 0,
then either there is at least one tuple ¢ illegally added to
the description set T (T contains contradictory entries,
resp. there are contradictions on the search path), or
the additional tuple t is a valid additional discriminator,
but there is no component satisfying the specification
refined by t. As long as the cardinality is greater than
1 further tuples must be added to raise the characteriz-
ing potential of T'. Hence to decrease to the number of
components in C, the number of tuples in 7" must be in-
cremented. Also it must be considered, if there are more
than one elements in the component set C' and no more
t € T can be added to T, without (1) generating the
empty set, or (2) decreasing the number of candidates,
then the repository seems underspecified.

If such a situation occurs (meaning that no remain-
ing tuple in 7 \ T adds describing capabilities to T'),
(1) the components remaining in C' are indistinguishable
in the sense of input-output behavior, or (2) important
discriminating tuples are missing in 7.

4.2 Search Hierarchy

In order to provide an efficient search strategy, the tuples
t uniquely identifying one ¢ have to be stratified. This
stratification uses the fact, that the various sets T; de-
scribing component specifications C; are in general not
disjunct. The overlap between these sets can be used
to build a search hierarchy. To define this hierarchy, we
note, that the unpartitioned set C will be retrieved by
the empty set of candidate tuples, T° = {).

Adding one (or several) tuples to T raises its dis-
criminative power, so that C will be split into (disjunct)
subsets C} with each C} containing components ¢ con-
forming to 7;' with 7' C T"'. Further refinement of T}
by adding more tuples ¢t € 7 further raises its discrimina-
tive power. Let’s refer to those additional tuples by 7},
then T? = T}Ur}! and T7 assumes on C; the same role T'*
assumed on the full set of not discriminated components
C'. The result of this discrimination will be component-
sets C7; with each component in C7; conforming to T7;.
The reader can immediately verify, that this describes
level-sets in a tree and the procedure sketched for the
levels next to the root can be iteratively expanded till
the leaf nodes of the tree are reached. Hence, we will fo-
cus in the further discussion just on the immediate par-
ent child relationship in this search tree. As the 7! are
the sets leading to further discrimination within a given
set C;, the tuple-sets Tilj are distinct only in those parts

they obtain distinct to 7}; ' from 7/. One might also

note, that the set leading to the initial split, 7" could as
well be referred to as 7° (seen from a procedural point).

We call a pair (C;,T;) a candidate r;. For a candi-
date the set T; characterizes all elements of C;. Within
the tree structure thus established, the following rela-
tions must hold between a father candidate p and its n
successors s;, 1 <1t < n:

e (U, Cs,) = Cp means, that the component-set of
all direct offsprings build the component set of the
father candidate.

o Ve,Vi# j:(c€C, = c¢gCs;) means, that no off-
spring candidate shares a component with its sib-
ling. An direct implication of this postulation is

ﬂ;; Csi = 0.

e NL,Ts;, = T, means, that every successor adds
one or more new input-output tuples to its example
value set T, which helps to distinguish the compo-
nent set from its father component set.

o Vt,Vi,j: (t g Tyt €T, Nt € T,; = i = j) means,
that the items in the tuple-set of a candidate but
not in the tuple-set of the ancestor of this candi-
date have key-property. The reader might note, that
these are tuples taken from the set of additionally
discriminating tuples 7,.

. U?:O T]ilmkn = T™, thus, the tuples collected over
those parts of the various incremental discrimina-
tory sets on the path from the root of the search
tree to the candidate at hand form exactly the set
of discriminatory tuples of this candidate.

4.3 An example

Here the signature f : char — bool designates a seg-
ment containing the following component set C from the
ANSI C-standard library (modified for readability):

1 bool isalnum(char c); 7 bool islower(char c);
2 Dbool isalpha(char c); 8 bool isupper(char c);
3 bool iscntrl(char c¢); 9 bool ispunct(char c);
4 bool isdigit(char c); 10 bool isspace(char c);
5 bool isgraph(char c¢); 11 bool isxdigit(char c);
6 bool isprint(char c);

The requester searches for a predicate checking
if a given character is a hexadecimal digit. Initially,
the set C = C' contains all eleven components of the
segment, whereas the tuple set T is empty. The sys-
tem offers two options to the requester, 7¥ =(’0’, T)
and 79 =(’0’, F). Obviously, the latter option does
not meet the demand. Therefore, (°0’, T) is added
to the initial empty set T and the component set C
is reduced by 2, 3, 7, 8, 9, 10, generating the candi-
date k1 = ({1, 4, 5, 6, 11},('0',T)). . In the next step

the system offers the examples (*a’, T) and (’a’, F),
once more with the first example as correct offer. Hence,
function isdigit should be excluded by the searcher and
all other functions are added to C>. In the next itera-
tion (examples (*Z>, T), resp. (’Z’, F)) the choice of
the second alternative clearly identifies the component
isxdigit, which provides the effect the reuser wanted.

Figure 2: Classification Tree

Figure 2 shows the tree structure of this exam-
ple in detail. The set C' for every candidate is de-
picted as rectangular, whereas the set 7' is build as
union of all tuples from the current candidate back to
the root of the classification tree. After three itera-
tions in interacting with the system, the reuser identifies
the component in question without the need for spec-
ifying the semantics exactly. The resulting candidate
is ({11},{Co0’, T),Ca’, T),(°Z’, F)}) which is in-
deed an element of the component retrieval function cr.

4.4 Discussion

The illustrative example has been kept very simple from
many perspectives. One simplistic assumption was to
use just binary partitions based on simple tuples. In
general, the discriminative set will consist of more than
a single tuple, and thus, the librarian has to make a
conscious judgment in optimizing depth and breadth of
the search tree. This decision will involve the selection

of particular tuples in the overlapping areas of charac-
terizing tuples (T}, if considered from a bottom-up per-
spective). This bottom-up perspective will be necessary,
when considering maintenance of the library by including
new candidates to a library defined and in use already.

The librarian, in contrast to the test expert, might
also be worried about the executional cost of a tuple.
Tuples should not only be selective, they should also be
easy to compute and to verify. This argument holds be-
cause even if the repository has pre-stored results, the
requester has to be able to verify that he/she actually
wants the results stipulated by the various discrimina-
tory tuples presented at a given level.

A further consideration, beyond the scope of this
paper, is treatment of interactive software or software
encapsulating state information. Here, the concept of
precanned tuples as presented here, does not hold. The
general principle of the ideas presented in this paper do
apply though.

5 Conclusion

An approach to classify software on the basis of tuples,
representing snapshots of its “petrified” behavior has
been presented. The approach aims to allow for soft-
ware description and software retrieval “by example”.

References

[1] A. Podgurski and L. Pierce. Retrieving Reusable
Software by Sampling Behavior. ACM Transactions
on Software Engineering and Methodology, July 1993.

[2] R. T. Mittermeir, H. Pozewaunig, A. Mili, and
R. Mili. Uncertainty Aspects in Component Re-
trieval. In 7t* Int. Conf. on Information Processing

and Management of Uncertainty in Knowledge-Based
Systems — IPMU98, pages 564-571, July 1998.

[3] R.J.Hall. Generalized Behaviour-based Retrieval. In
Int. Conf. on Software Engineering — ICSE93, Balti-
more, MD, May 1993. IEEE Computer Society Press.

[4] W. B. Frakes and P. B. Gandel. Representing
Reusable Software. Information and Software Tech-
nology, 32(10):653 — 663, December 1990.

[5] R. Mili, A. Mili, and R.T. Mittermeir. Storing
and Retrieving Software Components: A Refinement
Based System. IEEFE Transactions On Software En-
gineering, 23(7):445 — 460, July 1997.

[6] A. Moormann Zaremski and J. M. Wing. Specifica-
tion matching of software components. ACM Trans-
actions on Software Engineering and Methodology,
6(4):333 — 369, October 1997.

[7] R. T. Mittermeir and E. Kofler. Layered Specifica-
tions to Support Reusability and Integrability. Jour-
nal of Systems Integration, 3(3/4):273-302, sep 1993.

[8] Y. Chen and B. H. C. Cheng. Formalizing and Au-

tomating Component Reuse. In 9" Int. Conf. on
Tools with Artificial Intelligence — TAI 97, pages 94
— 101, Newport Beach, California, November 1997.

