
Classifying Components by Behavioral Abstraction

Roland T� Mittermeir� Heinz Pozewaunig
Institut f�ur Informatik�Systeme� Universit�at Klagenfurt

Klagenfurt� Austria

email� fmittermeir� hepog�i��uni�klu�ac�at

Abstract

We present an approach for classifying and retrieving
reusable software based on exemplary descriptions of its
functionality� The functionality of reusable components
is described by a set of tuples with each tuple represent�
ing a characteristic input�output 	or stimulus�response

transformation of the component at hand� With careful
choice of these characteristic tuples� information equiva�
lent to conventional formal speci�cations is given� except
that 	re�
users not versed in formal speci�cation can pro�
vide such queries�

The concept just introduced depends on the dis�
criminative potential of the tuples provided and on the
equivalence of behavior representations by the librarian
and by the 	re�
user� The former can be assured by
the librarians professionalism� the latter by an adequate
user�interface of the system supporting a dialog� based
on what the system has to o�er rather than on guesses
about what the 	re�
user is looking for�

� Motivation

We depart from the assumption that in black box reuse
the user is not interested in retrieving a particular piece
of code from a library of reusable components� but that
his�her interest is the functionality needed� This func�
tionality can be
 and usually is
 described by natural
language descriptors or� on a more detailed level� by for�
mal speci�cations� However� the former are in general
too weak to select an appropriate component� and the
latter are in general too complicated to write down for
the requester�

Based on the analogy of checking out books from
open�stock libraries where catalogs provide just rough
guidance and the �nal decision of the reader is made after
browsing through some books suitable for the question at
hand� we bank on the operational semantics of software�
In contrast to ��� we do not use randomly generated data�
We rather focus on discriminatory tuples�

� Specifying by Tuples

��� Preliminaries

As discussed in ��� we have to distinguish between the
	re�
users intent and the speci�c representational form
used to describe this intent� Likewise� the component
sought can be described at various levels of abstraction
and in various representational forms�

Considering the component itself� three broad cat�
egories stick out for its description�

� Textual algorithmic description� This is the con�
ventional description of a component�s source code�
written in some compilable programming language�
In general we may assume this textual description to
be procedural code� ready for execution after com�
pilation�interpretation�

� Predicative �intensional� description� This refers to
formal speci�cations� irrespective of the language
used� While speci�cations are text too� they are
not linear text but a set of predicates to be inter�
preted by some reasoning mechanism irrespective of
the order in which they are written down�

� Tabular �extensional� description� Whatever a pro�
gram might compute are input�output�transforma�
tions of some sort� Hence� instead of describing
these mechanisms by means of indicating their se�
mantics 	speci�cation
 or how they are to be derived
	program
 one could also explicitly write them down
in a 	potentially in�nite
 table�

These categories to describe functionality apply for
both� the provider and the requester of a component�
Here� we depart from the assumption� that in general� it
is easier to give some characteristic input�output map�
pings of a functionality needed than to describe it by
writing its complete speci�cation or its complete pro�
gram� We also depart from the assumption� that it is
easier to read a speci�cation 	or even a program
 than
to write it� Therefore� we propose a method where re�
questers of a reusable component select this component
from a repository on the basis of characteristic input�
output�tuples�

For this method to be sound� we assume that each
component stored in the library is represented not only
in its source�code representation� but that it also has a
formal speci�cation as well as a set of such characteristic
tuples attached� To assume existence of a formal speci��
cation seems fair when dealing with high quality compo�
nents� The e�ort spent in building it will pay o� during
high frequency reuse later� Requiring tuples attached is
speci�c to this approach� The details of how these char�
acteristic tuples are built in the �rst place and how the
correspondence between tuples considered characteristic
by the requester and those considered characteristic by
the librarian are established is subject of the following
sections�

�

��� Characteristic tuples

A speci�cation de�nes a relation between input and out�
put of a component 	if needed� state information can be
externalized
� This relation can also be given in exten�
sional form� As such� a component�s speci�cation can be
seen as the universal relation de�ned over the cross prod�
uct of all types �guring in its signature� This universal
relation has an obvious partition into those tuples that
do conform to the speci�cation 	belong to its domain

and those tuples that have their input�part in those por�
tions of the �from�set� that do not belong to the domain
covered by the speci�cation� Within the domain� further
partitioning of the set of tuples conforming to the spec�
i�cation can be made� so that each of these partitions
can be characterized by some characteristic tuple�

If this approach seems too simple minded� one
should note that domain partition testing rests on ex�
actly this principle to distinguish between software that
conforms to its speci�cation and faulty software� i�e�
software not conforming to this speci�cation� At this
point� it seems arbitrary� which tuple is used to char�
acterize its particular sub�space� Testing theory shows�
that there are particular positions 	e�g� boundary values

that have particular discriminative power� We might fol�
low this argument� speci�cally if we do not want to recre�
ate those tuples but just rely on those already provided
by the test suite a component had to pass� We will re�
turn to this issue with further arguments in section ���
where we focus on the discriminative power of tuples in
the search process�

Not all test cases used for distinguishing correctly
behaving components from other ones suite our purpose�
In �gure � tuples for testing the step function are de�
picted as diamonds and circles� Whereas all tuples are
valid test cases� albeit only diamonds are suitable to dis�
tinguish between the step�function and the exponential
one� which is unfortunately also characterized by the cir�
cle tuples� As �good� discriminating tuples discriminate
in the library context as well as in the testing context�
black�box test data can be used to identify such semanti�
cal hot�spots and no particular knowledge of the library
structure is needed at �rst glance� For later tuning of
the library structure� the librarian can rely on the exe�
cutability of software�

� Obstacles

While the concepts just described seem to be adequate
to describe software from the librarians 	component
provider
 perspective� it seems problematic from the re�
questers view� In order to obtain a match between the
characteristic tuples provided by the librarian� the re�
quester would have either to �guess� the appropriate tu�
ples or to write his own speci�cation of the system from
which discriminatory test data could be derived� Both
arguments seem to defeat the aim of the whole venture�

To overcome these obstacles� one can either fall
back on the executability of software ��� �� or reverse the
role of requester and system� Since we assume that some
descriptive methods have been used already for coarse
screening of the library� the requester now needs to zero
in only on a rather limited set of eligible components�

Highly discriminating Input
Non discriminating Input

Figure �� Quality of discriminating input

For them� the number of discriminating tuples will usu�
ally not be too excessive� Since we further assume� that
	most of
 the discriminative tuples have been provided
already from the test suite and that the test suite has
been established with professional care� we rather want
to bank on this asset� If these tuples are organized in
such a way that the discriminatory tuples are presented
on a step by step basis such that the requester can walk
down a path on a search�tree 	actually� a lattice
 of
available components� the approach becomes feasible�

In doing so� contrarily to behavior sampling� our
concept changes the role of the requester� Now� not he
is responsible for providing the system with meaningful
example values� but the system itself presents interac�
tively characterizing tuples� In choosing the behavior
which solves the problem in question best� the requester
speci�es the component incrementally�

This incremental speci�cation of a component is
not to be confused with a full �edged speci�cation one
would write for somebody to build this component from
scratch� It serves rather to distinguish a given com�
ponent 	or set of components
 from other components
stored in the library but not conforming to the requesters
speci�cation� In general these tuples should su�ce�
However� based on the instrumentation of the library�
the requester can always try to test�execute the compo�
nent with further data of his�her choice�

� Browsing Behavioral Descriptions

��� Principles

In general� libraries 	and software libraries too
 are orga�
nized according to some hierarchical schema� Whether
this is keyword based ���� or whether there is a lattice
of formal speci�cations ���� seems immaterial� Hence�
to avoid an information overkill of the requester� behav�
ioral abstractions presented by the system have also to
be organized in some hierarchical way� As we have indi�
cated already� we presume that the following considera�
tions take place only after some semantic based� coarse
description has been applied� Only the integrated coop�
eration of orthogonal concepts supports the reuser in a
promising and satisfying manner�

On this base� speci�cally in �ne grained search� a
reuse library is primarily divided into segments �� The
separation criterion is that the components belong to a
common problem domain and have an equivalent 	gen�
eralized
 signature ��� �� ��� The equivalent interfaces of
components belonging to the same segment are needed
in order to ensure that their extensional speci�cation is a
subset of the universal relation for this particular signa�

�

ture� On the other hand� there may exist other segments�
speci�ed by the same signature� but attached with other
semantic attributes 	Statistic components and �nancial
components should reside in di�erent segments
� Within
these segments all components are structured due to the
re�nement criterion provided by the given tuples�

We assume that the set C� is the set of all compo�
nents in a segment �� A candidate component c � C�
is a collection of one or more algorithms a with identi�
cal functionality 	E� g�� c represents all ascending sorting
algorithms on character lists
�

At this point we want to stress� that a certain algo�
rithm a can also be related to two or more components�
Consider sorting algorithms� which are in general imple�
mented as parameterized programs accepting input of
di�erent data types� provided with an ordering relation
for these types� Therefore� such algorithms are related
to di�erent components in di�erent segments according
to their respective signature�

Furthermore� T� is the set of all tuples in a segment
�� thus all example tuples t � T� are in accordance to
the interface speci�cation of �� The power�set of T� is
denominated as �	T�
� and respectively� the power�set
of C� is denoted as �	C�
� For the sake of simplicity� in
the following discussion we do not mention the subscript
for the current segment� �� if the meaning is clear�

A component retrieval function is de�ned as a func�
tion cr � �	T
 � �	C
�Provided with a set of tuples as
example behavior� the result of cr is a set of components
C� Appropriately enlarging T will increase its discrimi�
native power� thus narrowing the cardinality of C� Thus�
an iterative scheme is described� so that in the end� the
result of cr will be a unitary set C� containing a single
component c � C as result of the search process� The
pragmatics of cr is described as follows�

If a subset of T � T denotes a subset of components
C � C� we say that T characterizes C� The empty set
characterizes every component in �� since the empty set
has no discriminative power� Also� if the cardinality of C
is � and there exists no other t � T as example of the sole
component c in the set C� we say that T fully character�
izes C 	in fact T characterizes c � C
� In this sense every
set T is part of a description and a partial speci�cation
for the components in C� If the cardinality of C is �
then either there is at least one tuple t illegally added to
the description set T 	T contains contradictory entries�
resp� there are contradictions on the search path
� or
the additional tuple t is a valid additional discriminator�
but there is no component satisfying the speci�cation
re�ned by t� As long as the cardinality is greater than
� further tuples must be added to raise the characteriz�
ing potential of T � Hence to decrease to the number of
components in C� the number of tuples in T must be in�
cremented� Also it must be considered� if there are more
than one elements in the component set C and no more
t � T can be added to T � without 	�
 generating the
empty set� or 	�
 decreasing the number of candidates�
then the repository seems underspeci�ed�

If such a situation occurs 	meaning that no remain�
ing tuple in T n T adds describing capabilities to T
�
	�
 the components remaining in C are indistinguishable
in the sense of input�output behavior� or 	�
 important
discriminating tuples are missing in T �

��� Search Hierarchy

In order to provide an e�cient search strategy� the tuples
t uniquely identifying one c have to be strati�ed� This
strati�cation uses the fact� that the various sets Ti de�
scribing component speci�cations Ci are in general not
disjunct� The overlap between these sets can be used
to build a search hierarchy� To de�ne this hierarchy� we
note� that the unpartitioned set C will be retrieved by
the empty set of candidate tuples� T � ! ��

Adding one 	or several
 tuples to T � raises its dis�
criminative power� so that C will be split into 	disjunct

subsets C�

i with each C�
i containing components c con�

forming to T �

i with T �

i � T �� Further re�nement of T �

i

by adding more tuples t � T further raises its discrimina�
tive power� Let�s refer to those additional tuples by ��i �
then T �

i ! T �

i ��
�

i and T �

i assumes on Ci the same role T �

assumed on the full set of not discriminated components
C� The result of this discrimination will be component�
sets C�

ij with each component in C�

ij conforming to T �

ij �
The reader can immediately verify� that this describes
level�sets in a tree and the procedure sketched for the
levels next to the root can be iteratively expanded till
the leaf nodes of the tree are reached� Hence� we will fo�
cus in the further discussion just on the immediate par�
ent child relationship in this search tree� As the � li are
the sets leading to further discrimination within a given
set Ci� the tuple�sets T

l
ij are distinct only in those parts

they obtain distinct to T l��
ij from � li � One might also

note� that the set leading to the initial split� T � could as
well be referred to as �� 	seen from a procedural point
�

We call a pair 	Ci� Ti
 a candidate �i� For a candi�
date the set Ti characterizes all elements of Ci� Within
the tree structure thus established� the following rela�
tions must hold between a father candidate p and its n
successors si� � � i � n�

� 	
Sn

i�� Csi
 ! Cp means� that the component�set of
all direct o�springs build the component set of the
father candidate�

� 	c�	i
! j � 	c � Csi � c
� Csj
 means� that no o��
spring candidate shares a component with its sib�
ling� An direct implication of this postulation isTn

i�� Csi ! ��

�
Tn

i�� Tsi ! Tp means� that every successor adds
one or more new input�output tuples to its example
value set Ts� which helps to distinguish the compo�
nent set from its father component set�

� 	t�	i� j � 	t
� Tp � t � Tsi � t � Tsj � i ! j
 means�
that the items in the tuple�set of a candidate but
not in the tuple�set of the ancestor of this candi�
date have key�property� The reader might note� that
these are tuples taken from the set of additionally
discriminating tuples �p�

�
Sn

i�� �
i
k����kn

! Tn� thus� the tuples collected over
those parts of the various incremental discrimina�
tory sets on the path from the root of the search
tree to the candidate at hand form exactly the set
of discriminatory tuples of this candidate�

�

��� An example

Here the signature f � char � bool designates a seg�
ment containing the following component set C from the
ANSI C�standard library 	modi�ed for readability
�

� bool isalnum�char c�� � bool islower�char c��
� bool isalpha�char c�� � bool isupper�char c��
� bool iscntrl�char c�� 	 bool ispunct�char c��

 bool isdigit�char c�� �� bool isspace�char c��
� bool isgraph�char c�� �� bool isxdigit�char c��

 bool isprint�char c��

The requester searches for a predicate checking
if a given character is a hexadecimal digit� Initially�
the set C ! C contains all eleven components of the
segment� whereas the tuple set T is empty� The sys�
tem o�ers two options to the requester� ��� !����� T�
and ��

�
!����� F�� Obviously� the latter option does

not meet the demand� Therefore� ����� T� is added
to the initial empty set T and the component set C
is reduced by �� �� 	�
� �� ��� generating the candi�
date �� ! 	f��
� �� �� ��g� 	� �� T

� � In the next step
the system o�ers the examples ��a�� T� and ��a�� F��
once more with the �rst example as correct o�er� Hence�
function isdigit should be excluded by the searcher and
all other functions are added to C�� In the next itera�
tion 	examples ��Z�� T�� resp� ��Z�� F�
 the choice of
the second alternative clearly identi�es the component
isxdigit� which provides the e�ect the reuser wanted�

1,4,5,6,11

1,5,6,11

1,5,6 11

(’Z’, T) (’Z’, F)
4

(’a’, T) (’a’, F)

2,3,7,8,9,10

1, 2, ..., 11
(’0’ , F)(’0’ , T)

Figure �� Classi�cation Tree

Figure � shows the tree structure of this exam�
ple in detail� The set C for every candidate is de�
picted as rectangular� whereas the set T is build as
union of all tuples from the current candidate back to
the root of the classi�cation tree� After three itera�
tions in interacting with the system� the reuser identi�es
the component in question without the need for spec�
ifying the semantics exactly� The resulting candidate
is 	f��g� f����� T�� ��a�� T�� ��Z�� F�g
 which is in�
deed an element of the component retrieval function cr�

��� Discussion

The illustrative example has been kept very simple from
many perspectives� One simplistic assumption was to
use just binary partitions based on simple tuples� In
general� the discriminative set will consist of more than
a single tuple� and thus� the librarian has to make a
conscious judgment in optimizing depth and breadth of
the search tree� This decision will involve the selection

of particular tuples in the overlapping areas of charac�
terizing tuples 	Tp� if considered from a bottom�up per�
spective
� This bottom�up perspective will be necessary�
when considering maintenance of the library by including
new candidates to a library de�ned and in use already�

The librarian� in contrast to the test expert� might
also be worried about the executional cost of a tuple�
Tuples should not only be selective� they should also be
easy to compute and to verify� This argument holds be�
cause even if the repository has pre�stored results� the
requester has to be able to verify that he�she actually
wants the results stipulated by the various discrimina�
tory tuples presented at a given level�

A further consideration� beyond the scope of this
paper� is treatment of interactive software or software
encapsulating state information� Here� the concept of
precanned tuples as presented here� does not hold� The
general principle of the ideas presented in this paper do
apply though�

� Conclusion

An approach to classify software on the basis of tuples�
representing snapshots of its �petri�ed� behavior has
been presented� The approach aims to allow for soft�
ware description and software retrieval �by example��

References

��� A� Podgurski and L� Pierce� Retrieving Reusable
Software by Sampling Behavior� ACM Transactions
on Software Engineering and Methodology� July �""��

��� R� T� Mittermeir� H� Pozewaunig� A� Mili� and
R� Mili� Uncertainty Aspects in Component Re�
trieval� In �th Int� Conf� on Information Processing
and Management of Uncertainty in Knowledge�Based
Systems � IPMU�	� pages ���
���� July �""��

��� R� J� Hall� Generalized Behaviour�based Retrieval� In
Int� Conf� on Software Engineering � ICSE�
� Balti�
more� MD� May �""�� IEEE Computer Society Press�

��� W� B� Frakes and P� B� Gandel� Representing
Reusable Software� Information and Software Tech�
nology� ��	�
����
 ���� December �"" �

��� R� Mili� A� Mili� and R�T� Mittermeir� Storing
and Retrieving Software Components� A Re�nement
Based System� IEEE Transactions On Software En�
gineering� ��	�
����
 �� � July �""��

��� A� Moormann Zaremski and J� M� Wing� Speci�ca�
tion matching of software components� ACM Trans�
actions on Software Engineering and Methodology�
�	�
����
 ��"� October �""��

��� R� T� Mittermeir and E� Ko�er� Layered Speci�ca�
tions to Support Reusability and Integrability� Jour�
nal of Systems Integration� �	���
����
� �� sep �""��

��� Y� Chen and B� H� C� Cheng� Formalizing and Au�
tomating Component Reuse� In �th Int� Conf� on
Tools with Arti�cial Intelligence � TAI ��� pages "�

 � �� Newport Beach� California� November �""��

�

