
Uncertainty Aspects in Component Retrieval

R� T� Mittermeir� A� Mili R� Mili

H� Pozewaunig Dept� of Computer Science School of Engineering
Institut f�ur Informatik�Systeme� and Electrical Engineering and Computer Science

Universit�at Klagenfurt� West Virginia University� University of Texas at Dallas
Austria Morgantown� WV ����� Richardson� TX 	��
� USA

froland� hepog�i�uni�klu�ac�at amili�cs�wvu�edu rmili�utdallas�edu

Abstract

Successful software reuse depends on many
factors� adequate description of reusable soft�
ware is one of them�

This paper focuses on some of the inherent
problems in adequately describing software
for later focussed retrieval� Out of these
considerations� a hybrid approach� combin�
ing well known techniques from library sci�
ence with techniques based on the inherent
property of software� its executability� is pre�
sented�

� Introduction � Motivation

Software reuse has many facets and several motivators
and inhibitors ���� ��� have been discussed in the lit�
erature� Some leading gures derive from these lists of
inhibitors� even that software reuse is just a social and
organizational problem and technical solutions should
be held back before those issues are solved�

We do not buy into such advice� as technology is in�
termittingly coupled with the social eld in which it
is applied� Hence� what might be considered inappro�
priate� given some technology might well be accept�
able on the basis of a di�erent �not necessarily bet�
ter� technology� Further� we point out that the eld
has changed within the last decade� On one hand�
the discussion of �object�oriented� patterns and frame�
works has brought new substance to the discussion
of software reuse ����� On the other hand� the quick
adaption of the internet as provider of various infor�
mation� amongst them as provider of reusable soft�
ware ��� �� brought new motivation for re�considering
schemes to support component based reuse� Overviews
of various attempts for reusing software can be found
in �	� ��� ����

Here� we focus on the basics of the software�retrieval

�and by the reverse side of the same token� the
software�description� issue� In section �� we will ad�
dress the problems involved with description of infor�
mation on a more compact� and hence more abstract�
general level� We will see that this leads to uncertainty
problems� where di�erent persons at di�erent times are
required to make identical abstractions to lead to an
adequate match� In section � we will consider a dis�
tinguishing factor between software and other forms
of information� the fact that software is executable�
This will open up new avenues for software descrip�
tion� avenues that are almost orthogonal to conven�
tional attempts to describe the semantics of software
assets� Based on these considerations� we discuss var�
ious approaches that benet from the executability of
software� the context in which these apply� nally� we
sketch several approaches to render these multidimen�
sionality operationally�

To arrive at this point� we rst discuss the seman�
tic problems resulting from matching descriptors while
one actually is looking for matching concepts� Based
on these re�ections� various approaches to describe
software are considered and uncertainty problems re�
lated to descriptive� operational� and structural ap�
proaches are discussed� As consequence� we propose
a hybrid approach� combining the concepts discussed
so far with aspects developed in the eld of software
testing� The paper concludes by discussing some open
problems and further extensions of this approach�

� Issues of Uncertainty

We refer to the well known correspondence between
the information retrieval problem in general and soft�
ware retrieval in particular ��� �� ���� Thus� we ac�
knowledge the fact that a query into a repository of
software components will in general yield a set of com�
ponents that more or less qualify with respect to the
intent of the requester� while another set of component
that might also �more or less� qualify are not retrieved�

This �more or less qualied� refers to the fact that the
set of components qualifying with respect to the de�
velopers needs is actually a fuzzy set� The fuzziness
of this set is hidden by the specic interpretation of
the query� Whether this query is rather restrictive or
rather open species in fact the level of the ��cut�

Information retrieval literature uses di�erent terminol�
ogy� The membership function of a component is not
quantitatively formalized for each element of the repos�
itory� Instead� the query is qualied with respect to

� recall� the ratio of relevant retrieved components
relative to the number of relevant components
held in the repository� and

� precision� the ratio of retrieved relevant compo�
nents relative to the total number of retrieved
components�

Before further elaborating on this relationship between
fuzzy membership in a set of qualifying components
and the standard quality indicators for information re�
trieval� we list some premises of our work�

� reuse in the large� We address the issue of soft�
ware reuse across project�team and across orga�
nizational boundaries� This implies that the in�
dividual reuser has little or no tacit knowledge
about the context and purpose in and for which a
component has been developed�

� abundance of components� As we consider
reuse across organizational boundaries� it seems
fair to assume that there is an abundance of
�even relatively specialized� components avail�
able� Whether these will stem from some compo�
nent vendor or from some �managed� repositories
distributed over the internet will not be discussed
further in this paper�

� dominance of precision� Literature on software re�
trieval is to a large extent biased towards high re�
call� With small repositories� this seems justied�
The reuser has rst to nd one or two components
potentially qualifying� to check� whether they re�
ally qualify can be done later o� line� With the
assumption of an abundance of components one
can almost be sure that several �more or less�
qualifying components are available and that one
will get several of them� However� one does not
want to invest too much time in o� line verica�
tion �testing��� whether the components yielded
will really satisfy the intended purpose� Hence�
precision becomes the dominant criterion�

� library analogy� The above premises match well
to the premises a manager of a large library �of

books� has when searching for some information�
One is almost sure� the library contains books
where this information can be found and several
books might provide the right answer� albeit at
di�erent degrees of intellectual accessibility� The
key question is how to nd the book where the
sought information is contained in a proper form�

��� Information Retrieval in a Library

It seems that the discussion of software reuse is laden
with so many implicit arguments and hidden hopes
that we rst present our arguments in the context of
using a classical library� The analogy to retrieving
reusable components from a software repository will
immediately become obvious�

If we go to a library� we are in general not interested
in a particular book� We are interested in the spe�
cic information contained in this book� Likewise with
software� we are generally not interested in a partic�
ular piece of software but in the functionality �in the
broadest sense of this word� encompassing also various
performance� security� ��� considerations�� With the
book �assuming you are looking for a scientic book�
the presentation �order� font� even arrangement of the
line of arguments� might be immaterial� Likewise� the
particular algorithms used in the software might be im�
material� Both arguments hold� as long as the desired
degree of precision �of the information described resp�
the input�output mappings performed� is attained�

Representation
Asset

A
bs

tr
ac

tio
n

Asset

Search Space

Solution
Concept

Representation
SolutionRepresentation match

Conceptual match

Provider’s View

A
bs

tr
ac

tio
n

Development
Step

Requester’s View

Initial
Problem

Problem Space

Figure �� Mapping Problem�Needs to available Assets

Thus� we see that there is essentially a twofold ab�
straction process� One from the desired service to the
artifact �asset� that promises to provide this service�
the other from the asset providing some service to the
surrogate representing or describing this asset�

��� Software Retrieval

Similar arguments hold with software retrieval� The
reuser � in general � is not interested in a specic rep�

resentational form of the component� He�She is in�
terested in the specic functionality a component pro�
vides� Software has many commonalities with written
literature� e�g� the fact that� represented as source
programs� it might be considered as a text or charac�
ter string �as source programs� as a specially encoded
bit string�� Another commonality is� that the patron
of the library�repository is not interested in this char�
acter string per se� With the library� he is interested
in the information conveyed by this string� with the
repository� the reuser is interested in its functionality�
Thus� the main di�erence between books and software
is that software is executable�

In devising a scheme for organizing a software repos�
itory� one can benet from this di�erence� While the
information conveyed by a text is inaccessible to inter�
subjective formal reasoning or description� the func�
tionality a software component provides can be in�
tersubjectively described in form of the input�output
mappings yielded by the component� resp� by a sam�
ple thereof� Thus� while both� literature and software�
require some meta structure to facilitate access to the
items contained in the library�repository� the library�s
meta structure has to rely on agreed upon descriptions
of the works it refers to �such as author name� series�
publisher� etc�� and presupposed very high level ab�
stractions of the �information� contents of the works
�keywords�� The software repository� while directly
beneting from these analogies� can also provide di�
rect representations of functionality� albeit only on the
level of examples� In the next section we will discuss
this topic in detail�

� Abstractions and Uncertainty

Resolving the uncertainty issue as to whether a com�
ponent retrieved is a su�ciently close proxy to the
component sought based on the problem description
at hand thus involves �various� abstraction steps� Cer�
tainly� these are at least the abstraction used by the
�software��librarian when integrating an asset into the
repository and the abstraction used by the requester
when searching or checking out a component� As long
as these two abstractions are made according to iden�
tical rules of abstraction� mappings will be perfect�
except that the information�loss due to the abstrac�
tion might lead from a potential � � ��correspondence
between problem�need and available asset to a � � n�
correspondence� Many cases will not be so constrained
that a direct relation between problem space and
search space will lead to a � � ��correspondence� Sev�
eral� say m� components might be adequate choices�
Hence� assuming an ideal abstraction process on both
sides and several fully qualifying components on the
repository side� we will arrive in the worst case at a

� � m �n correspondence� In other words� out of m �n
components retrieved� m components will qualify� the
remaining m � �n� �� are in the solution of the query
only due to the querie�s inherent ambiguity�

However� the assumption of fully corresponding ab�
stractions is unrealistic for two reasons� First� the
librarian�s and the requester�s abstraction are made
at di�erent times and in a di�erent contexts� There�
fore� they will be subject to di�erent biases� Second�
one can formulate hard and fast rules only for some
abstraction�dimensions� For others � unfortunately�
for the more interesting ones � only relatively vague
rules can be formulated� To explain this in detail� we
consider again the case of a classical library�

��� Abstractions used for classifying books

The success of information retrieval in general depends
largely on the adequacy of the abstraction process used
when describing the respective artifact once it has been
incorporated into the repository� Librarians undergo
a formal training to ensure consistent classication of
the assets they are guarding� As far as this training is
concerned� the adequate and intersubjectively consis�
tent description of properties of the physical artifact
containing the respective information� is quite advis�
able �page numbers� name�s� of author�s�� standard�
ized capture of the book�title� ISBN or LoC number�
etc�� However� in recognition of the fact that readers
are not looking for books but for the information con�
tained in those books� their attempts to bridge this gap
and describe also the contents by standardized means
are less successful�

��� Abstractions used for classifying software

In light of the problems just described in classical li�
brary science� it seems fair to acknowledge the same
limits for software description� a eld that has not been
that deeply explored and where descriptions are just
made by classication amateurs� i� e� in most cases by
software developers�

The problem with content based classication is that
the classication context is di�erent for each requester
and even more so for the librarian �resp� the developer
of the software�� The reader� or software developer
seeking reuse� has a question stemming from some par�
ticular application� The librarian does not have this
context� He�she is neutral with respect of the artifact�
Her training will allow her to extract some keywords
from the title of the book �or in more elaborate cases
from parts of the contents� but we may not assume
that she has read the full book before classifying it��
This passes the burden of classication or of giving
proper hints to the author and there the library exam�

ple and the software repository converge again� The
author of the book might have had a set of complex
criteria for choosing a title� marketing criteria not be�
ing the least important one� The author of a piece of
software will be biased by the application this software
has been written for�

Thus� we notice that descriptive �keyword based or
faceted� schemes are dependent on at least shared cri�
teria for describing artifacts� These criteria can be
assumed within large projects �shared application ter�
minology� or in carefully restricted domains �service
functions�� These are also the domains� where soft�
ware reuse as been successfully practiced in the past
�e�g� ������ When both� the criteria of shared abstrac�
tions due to shared work �project� or shared abstrac�
tions due to shared concepts �service functions� fail
to hold� keyword based abstractions become of lim�
ited use� The recommendation� not to seek software
reuse across domains might be a consequence� Con�
sidering anonymous reuse across the internet will have
little chance if keyword based descriptions are the only
mechanisms to capture the semantics of available com�
ponents� Potential reusers will be drawn away from
the search� since the ratio between recall and precision
will be so poor that the e�ort to verify whether the
components retrieved �or which of the components re�
trieved� satises the needs will not warrant the search
e�ort �for a more detailed discussion� see ������

��� Strata of Abstraction for Software

Description

Referring back to the observation that the content of
software can be described by its input�output behav�
ior� and recognizing� that this input�output behavior
can be described in terms of a formal specication or in
terms of �exemplary� tuples of input�output values� we
come to the following layers of abstraction for software
description�

st
at

ic
dy

na
m

ic
vi

ew

Signature Matching

Split-Elements

Domain Partitioning

Descriptive Approaches

Characterizing Tuples

Figure �� Di�erent Strata of Abstraction

�� Textual Descriptions �Keywords and Facets� pro�
vide a high level description of the semantics of

a component� With facets� this description is
structured according to preconceived categories�
Thus� chances to arrive at matching abstractions
for matching concepts will be improved� Never�
theless� these abstractions rely basically on hu�
man intuition� To perform them automatically
has been attempted �
�� But these attempts soon
reach their limits �����

�� Signature Matching ���� ��� ���� on the contrary�
is rather a formal approach� beneting from the
fact that software� even if considered as text� is
a highly structured text� Basically� it provides a
description on the interface level� If performed
naively� one would arrive at a match according to
the syntax of the interface a component provides�
This� however� will be too constrained� Hence�
various schemes have been proposed to get rid of
irrelevant syntactical constraints� such as order of
parameters� composition of aggregate types� sub�
typing etc� With these relaxations� however� syn�
tactical information is lost� What remains is just
an attempt to use types as indicators for the se�
mantics of the components involved�

�� Domain Partitioning has� to our knowledge� not
been used so far for software retrieval purposes�
It might be considered a natural extension though
of signature matching� as it enriches the descrip�
tion of the semantic content of a component only
vaguely pointed to by the signature� but still
spares much of the e�ort involved in fully describ�
ing the semantics of a component by some formal
specication� Thus� it can be considered as sim�
plied version of the layered specication match�
ing proposed in �����

�� Characteristic Tuples� nally will avoid the ab�
straction involved in domain partitioning� By pro�
viding concrete examples of input�output values
processed by the component at hand �needed by
the problem in question�� requesters can directly
see� to which extent some component will satisfy
their needs�

�� Split Elements are another way to describe com�
ponents by means of example values� The ap�
proach is more involved than the one asking just
for characteristic elements� since here� tuples indi�
cating extreme conditions are required� The moti�
vation to demand them� stem from software qual�
ity assurance� specically from the testing strat�
egy of boundary value analysis�

The rst two strata do not consider the special na�
ture of software as executable text� The third strata
draws indirectly on the executability by providing an

incomplete specication including also some elements
of pragmatism� The fourth strata� represented above
by the fourth and fth item� indicate partial seman�
tics and bank fully on the operational characteris�
tics of software� Operational approaches to software
retrieval have been proposed already by several au�
thors ��
� ��� ��� Their arguments are slightly di�erent
though from the ones we present in the next section�

��� Uncertainty Management in the

individual Abstraction Strata

����� Keyword�based Abstractions

With keyword based abstractions as representatives of
 descriptive methods�� one fully relies on human indi�
viduals using the same frame of reference to coin ab�
stractions� Without this assumption� keyword based
approaches would be highly ridiculous� since in princi�
ple� both� the solution sought as well as the available
assets have to be abstracted into �sets of� string�s� of
the length k� Assuming an alphabet of magnitude a�
ak such strings can be formed� Thus� without such a
common frame of reference� the chance of a successful
match would be as small as �

ak
�

Apparently� in practical cases� one arrives at much
higher match probability� The improvement is due
to the alignment of a frame of reference by common
terminology within a project� a company� or even a
particular domain� This assumption is usually made
implicitly� Justication cannot be assessed without
knowing the specic context and without empirical
analysis� Hence� we cannot give any quantitative ar�
guments here� We can say though� that the deciency
to answer quantitatively to this question can be cited
as a reason� why one cannot directly apply fuzzy rea�
soning to the software�information retrieval problem
by adjusting precision simply by raising the level for
the ��cut referred to in the introduction of this paper�

����� Signature Abstractions

We consider an ordered tuple of identi�er � type pairs
as signature of the component� In this tuple� however�
the actual identier used to denote a particular param�
eter is as irrelevant as the particular order in which the
parameters are listed in the signature� What matters�
though� is whether a parameter serves as input or out�
put argument of the procedure� Hence� the available
information is in essence two bags of types� a bag of
input types and a bag of output types �assuming that
in�out parameters gure in both bags��

Taking the illustrative example of a function f � map�
ping from a pair of integers to an integer� one sees
how little information is provided� What we have for

sure is the information that this function maps from
jinteger j� to jinteger j� Thus� again� the probability
that some integer � integer � integer function found
will be the function sought� can be computed�

Again� this seems to be very little information� How�
ever� it is free from the contextual information needed
with descriptive approaches� There is� however� a de�
sign bias� that is di�cult to deal with in the context
of signature matching� As long as it involves complex
user dened type aggregations �record structures�� dis�
solving these structures and looking for equivalence at
the leaf�level will solve the problems� With object�
oriented subtyping� optional parameters� and generic
parameters� arriving at correct matches will be much
more challenging ���� ��� ����

As a practical observation one might mention though�
that the uncertainties involved with descriptive ap�
proaches and the uncertainties involved with signature
matching seem to be almost orthogonal� Hence� their
combination seems advisable�

����� Domain Partitioning

The arguments to be raised here follow directly from
the arguments raised with signature matching� As do�
mains are partitioned� we no longer have the prod�
uct of the cardinality of the types involved as basic
uncertainty to cope with� but only the sum of the
product of those subsets of the types involved� falling
within a particular domain partition� Depending on
the specics of the software and the complexity of the
individual partitions� this can become relatively ne
grained� Hence� we refrain from indicating a partic�
ular formula for this quantum� The general line of
reasoning and the hint to the combinatorial nature of
the problem should su�ce to demonstrate that rela�
tive to plain signature matching� domain partitioning
a�ords us a dramatic reduction of uncertainty�

To obtain full benet of domain partitioning� one does
not necessarily arrive at extremely ne grained parti�
tions� As key step� it might su�ce to di�er between
the domain of a function and its �from�set� ���� This
simply partitions values in the Cartesian product of
types of input parameters into the set� where a dened
result will be obtained and the one� where no result is
obtained� The rst set can be partitioned further into
values where meaningful results will be obtained� and
in those� where only error messages will result�

����� Example Values

At rst sight� providing example values seems weak�
This may be inferred from the limitations that pro�
gramming by example ���� ran into� In comparison
to and in extension of the �established� approaches� it

becomes interesting though� This holds especially� if
retrieval by example is seen not as exclusive approach
but as complementary to the ones discussed so far�

It is further in line with the arguments that partial
specications are su�cient for software retrieval �����
Example values provide just such a partial specica�
tion� However� their partiality is of di�erent nature
from the partiality a specication has� in which certain
attributes rely on context dependent interpretation�

To assess the partiality of a specication based on
example values� we have to conceive of the function
or procedure described in its extensional form as a
huge �possibly innite� table of input�output map�
pings� The example values indicated are a sample
drawn from this table� Their quality is dependent on
the sampling strategy used�

Podgurski and Pierce ��
� recommend the operational
prole as adequate sampling strategy� We strive rather
at a di�erent strategy stemming from domain parti�
tioning� There are several arguments for this di�er�
ent proposal� One among them is� that the opera�
tional prole is context dependent �and may shift over
time�� while domain partitions considered by a com�
ponent are inherent in both� the problem and its so�
lution and therefore stable� Hence� values dening the
boundaries of the subdomains involved� seem to be
stronger discriminators� They have also benets con�
cerning matching abstractions� because librarian and
requester will follow implicitly similar rules to arrive
at the same �or equivalent� boundary values�

The rationale for the latter claim is given below� If�
for whatever reason� one does not buy into this ra�
tionale� characteristic values from a domain might be
used� Since they will be tool�generated� consistency
can be achieved relatively easily on the librarians side�
To achieve it also at the requesters side might be more
di�cult� Here however� we refer to the fact� that such
values can be used for two di�erent modes of oper�
ation during software retrieval� One is the classical
way� that the repository waits for the requesters query
and reports the assets with descriptions satisfying this
query �searching�� The other is� that� after the set of
candidate assets has been already narrowed down by
some other form of queries� the repository provides
descriptions for those candidates still qualifying for
the requesters inspection �browsing�� Here� no pre�
facto synchronization between the librarian�s and the
request�or�s abstractions is needed� Counter examples
will play a specic discriminatory role in the mode�

��� QA in the Reuse Process

In order to assess both feasibility and desirability of
the approach outlined above� we brie�y look into the

respective processes of the asset provider and the asset
requester� In both cases� we assume that the respective
individuals or teams follow a high quality process�

����� Development For Reuse

As we are not interested in the particular syntactic
shape of a reusable component� we are also not very
interested in the details of its development� However�
we have to assume that the nal executable form of
the component is faithful with respect to its descrip�
tion� To assure such faithfulness� the component must
have been adequately tested� Because the �descrip�
tion� against which the component is tested has noth�
ing to do with its internal structure� such tests must
have been black box tests� In order to do them� the
developer needs both�

� A specication indicating at least the most critical
values it has to be tested against� These values
will result from domain partitioning ��	� ��

� The test suite used during testing � for arriving
at this conclusion�

To include both items with the code of the component
into the repository seems not to require any additional
e�ort on the developer�s side�

����� Development With Reuse

For the requester� we assume that he developed some
solution concept during the initial development step�
We will not make any assumptions as to how this ini�
tial development step is performed� nor in what form
the solution concept �see Figure �� is expressed� How�
ever� we might assume that the developer with reuse
ascertains that the retrieved component really satises
the needs expressed by the problem and captured in
the solution concept� � This� again will be done by
testing�

Whether this testing is done o� line or whether it is
done �partly� already during the retrieval process will
be immaterial from the requester�s perspective� The
only key problem might be� how the requester arrives
at the suite of test data to be run against the compo�
nent� Domain partitioning might be one choice� get�
ting stimulated by the suite of test data provided by
the builder of the component might be another one
that reduces quite a bit of e�ort�

� A Hybrid Approach� resting on

Operational Properties

Based on the considerations raised up to now� we pro�
pose a layered approach to software description�

� Textual description� in spite of its theoretical
weakness� serves to initially narrow down the
search space in the repository� Thus� due to its
practical relevance� we use it for coarse grain dis�
crimination among components�

� Signature matching is used on the next level� The
arguments for signature matching are ���� that it
is relatively inexpensive� and ��� that we need the
techniques from signature matching in order to
perform the next step�

� Matching of input�output to make the nal choice�

Textual descriptions �keywords� facets� and signature
matching need no further explanation� since they are
su�ciently discussed in the literature� Hence we focus
in the rest of the paper on the match between input�
output tuples� knowing that the order indicated above
is to be seen as default strategy that can be broken�
whenever intermediate results suggest to do so� We do
so� by responding to a set of critical questions�

Do tuples adequately describe the semantics of com�
ponents� We consider this to be the wrong question�
Obviously� one can construct arbitrary counter exam�
ples� However� they are unbiased descriptions and
they are descriptions that can be easily rened just
by adding more tuples� Which tuples are worth to be
included follows from the theory of black box testing�
How should the requester 	guess
 the correct tuples�
As explained above� domain partitioning will serve as
a strong clue that at least some tuples in the librarians
description and some tuples in the requesters one are
identical �modulo order of parameters�� The problem
of the order of parameters is dealt with by techniques
related to signature matching� Does the requester need
to 	guess
 the correct tuples� Not really� We consider
several modes of operation of this approach�

� Static matching of tuples� Here� the requesters
tuples are matched against the librarians tuples�
In this case� correct guesses� are important�

� Dynamic matching� Here� the requester provides
input and the retrieval system executes compo�
nents preselected by previous steps with these in�
puts� The requester inspects the resulting output�
Hence� no guessing of identical tuples is needed�

� Browsing� Here� the retrieval system prompts
the requester with tuples stored with �or com�
puted by� the preselected components� We want
to point particularly to the fact that the profes�
sionalism of the developer of the reusable com�
ponents is directly paid back in the system devel�
oped with reuse �Note the power of good counter�
examples���

What about complex types� This is a classical problem
of signature matching� Since the operational approach
has to use concrete values anyway� di�erent abstrac�
tions that might be used on the type levels no longer
matter� What about optional parameters� What about
generic parameters� This� again� is a problem dealt
with in signature matching approaches� It can be seen
in a new light here since it matters particularly with
highly generic components made explicitly for reuse�
Consider e�g� the ANSI C�function qsort� Simple
minded signature matches would have problems in this
case� Textual descriptions would retrieve it though�
Since the hybrid approach is in principle stratied� one
can always go back to a previously selected richer pool
of candidates and choose among them� In the case
of highly default�parameterized functions or functions
with strong generic parameters �or curried functions�
to mention also the other extreme� matches over pro�
jections of the tuple�space will point into the right
direction� Such projections are much stronger as in
plain signature matches� since one has not just a few
types as match arguments� but a set of tuples� that
may be characteristic due to the composition of tuple�
projections remaining� Feasibility of Implementation�
A full discussion of the implementation is beyond the
scope of this paper� We can indicate here only� that
for side�e�ect free procedures using only static types
hashing techniques and internal canonical orders can
bu�er most of the divergences one has to deal with�
Streams and Interaction are not dealt with in our ini�
tial version� Addressing them will be subject of future
research�

� Conclusion

The general semantic problem of retrieving artifacts
for their content and not for their external appearance
has been discussed and related to software reuse and
software retrieval� As consequence of these considera�
tions� a hybrid scheme was proposed� building on the
combination of the strength of descriptive� structural�
and operational techniques� The basic message of the
paper� though� is not the particular combination of
these approaches but the specics of the operational
approach proposed here� combining ideas from soft�
ware retrieval with ideas from software testing�

Here� the approach has been discussed only on the ba�
sis of transient functions� This restriction stems from
the specics of the input�output examples given� An
extension to state�based software as well as to interac�
tive software is subject to further work�

References

��� G� Arango� Software Reusability and the Inter�

net� In M� Samadzadeh and M� Zand� editors�
Proc� SSR ��� ACM SIGSOFT Symposium on
Software Reusability� New York� N�Y�� April �����
ACM Press�

��� B� Beizer� Black�Box Testing� JohnWiley ! Sons�
Inc�� New York� N�Y�� �����

��� A� Diller� Z � An Introduction to Formal Meth�
ods� John Wiley ! Sons� Chichester� England�
�nd edition� �����

��� S� Fickas� Workshop Software on Demand� Issues
for Requirements Engineering� In J� Mylopoulos�
editor� Proc� �rd IEEE International Symposium
on Requirements Engineering� RE ��	� pages ���
� ���� Los Alamitos� CA� January ���	�

��� W�B� Frakes and R� Baeza�Yates� editors� In�
formation Retrieval� Data Structures and Algo�
rithms� Prentice Hall� Upper Saddle River� N�J��
�����

��� W�B� Frakes and P�B� Gandel� Representing
Reusable Software� Information and Software
Technology� ���������� � ���� December �����

�	� W�B� Frakes and C� Terry� Software Reuse�
Metrics and Models� ACM Computing Surveys�
�
������� � ���� June �����

�
� R� Girardi and B� Ibrahim� Automatic Indexing of
Software Artifacts� In W�B� Frakes� editor� Proc�
�rd IEEE International Conference on Software
Reuse� pages ������ Los Alamitos� CA� November
�����

��� R�J� Hall� Generalized behaviour�based retrieval�
In Proc� ��th International Conference on Soft�
ware Engineering� ICSE ��� pages �	� � �
�� Bal�
timore� MD� May ����� IEEE Computer Society�

���� R� Johnson� Components� Frameworks� Patterns�
In M� Harandi� editor� Proc� ACM SIGSOFT
Symposium on Software Reusability� SSR ��� vol�
ume ACM SEN ������ pages �� � �	� New York�
N�Y� May ���	� ACM Press�

���� Ch�W� Krueger� Software Reuse� ACM Comput�
ing Surveys� �����������
�� June �����

���� A� Mili� R� Mili� and R�T� Mittermeir� A Survey
of Software Reuse Libraries� Annals of Software
Engineering� to appear� ���
�

���� H� Mili� F� Mili� and A� Mili� Reusing Software�
Issues and Research Directions� IEEE Trans�
actions on Software Engineering� ��������
�����
June �����

���� R� Mili and R�T� Mittermeir� Ex�ante Assessing
of Reusability� In Mayr Gy�ork�os� Krisper� edi�
tor� Proc� �th Conference on Re�Technologies for
Information Systems� ReTIS ��� number
� in
OCG Schriftenreihe� pages �� � ��� �����

���� R�T� Mittermeir and E� Ko�er� Layered spec�
ications to support reusability and integrabil�
ity� Journal of Systems Integration� ������	������
September �����

���� T� Miura and I� Shioya� On Complex Type Hier�
archy� In IEEE Knowledge � Data Engineering
Exchange Workshop� pages ��� � ���� Newport
Beach� California� November ���	�

��	� G�J� Myers� The Art of Software Testing� John
Wiley ! Sons� New York� N�Y�� ��	��

��
� A� Podgurski and L� Pierce� Behaviour Sampling�
A Technique for Automated Retrieval of Reusable
Components� In Proc� ��th International Con�
ference on Software Engineering� ��� pages ��� �
���� Melbourne� Australia� May ����� IEEE CSP�

���� A� Podgurski and L� Pierce� Retrieving Reusable
Software by Sampling Behavior� ACM Transac�
tions on Software Engineering and Methodology�
������
� � ���� July �����

���� R� Prieto�Di"az� Implementing Faceted Classica�
tion for Software Reuse �Experience Report�� In
Proc� ��th International Conference on Software
Engineering� ICSE� pages ��� � ���� Nice� France�
March ����� IEEE CSP�

���� P� D� Summers� A Methodology for LISP Pro�
gram Construction from Examples� Journal of
the ACM� ��������� � �	�� January ���	�

���� W� Tracz� Software Reuse� Motivators and In�
hibitors� In Proc� COMPCON S���� pages ��
�
���� ��
	�

���� W� Tracz� Collected Confessions of a Used
Program Salesman� Institutionalizing Software
Reuse� Addison�Wesley� Reading� MA� �����

���� A�M� Zaremski and J�M� Wing� Signature
matching� a tool for using software libraries�
ACM Transactions on Software Engineering and
Methodology� �������� � �	�� April �����

���� A�M� Zaremski and J�M� Wing� Specication
matching of software components� ACM Transac�
tions on Software Engineering and Methodology�
�������� � ���� October ���	�

