
Integration of Statecharts

Heinz Frank, Johann Eder
Universität Klagenfurt, Institut f¨ur Informatik-Systeme

Universitätsstraße 65-67, A-9020 Klagenfurt
E-mail: fheinz,ederg@ifi.uni-klu.ac.at

Abstract

View integration is an effective technique for develop-
ing large conceptual database models. The universe of
discourse is described from the viewpoint of different user
groups or parts of the system resulting in a set of external
models. In a second step these models have to be integrated
into a common conceptual database schema.

In this work we present a new methodology for integrat-
ing views based upon an object oriented data model, where
we concentrate on the integration of the behaviour of ob-
jects, which is not supported by existing view integration
methods.

1. Introduction

Conceptual modeling of a universe of discourse using an
object oriented data model has two dimensions: the struc-
ture of objects and their relationships are represented in a
static model (or object model), and the behaviour of objects
is documented in a dynamic model ([4], [20], [7]).

Statecharts, introduced by David Harel ([13],[14], [15]),
are a popular method for designing the behaviour of objects.
This concept is used in various design methodologies e. g.
OMT ([20]), OOD ([4]) or UML ([1]).

While the techniques for structural modeling have a long
tradition and are already quite elaborated, conceptual mod-
eling techniques for the dynamics of a mini-world are not
supported as well. In this paper we present a technique for
integrating statecharts which is part of a design methodol-
ogy supporting the view integration approach for all aspects
of object oriented data models. For this method we assume
that models have been developed from different perspec-
tives. Each of these views consists of one structural (or
static) model and several behavioral (or dynamic) models
in form of statecharts of the structural model.

In [8] we made a comparative analysis of various view
integration methodologies, two for extended E-R models
([2] and [18]) and two for object oriented models ([12]

and [11]). We found that these integration methodologies
support the integration of the static models well. How-
ever, none of them considers the integration of the dynamic
models. [12] state that behaviour describes application se-
mantics and, therefore, should not be part of a conceptual
database schema. [11] divide behaviour intooperations and
path methods. The latter are used to access attributes via re-
lationships of types. In their opinion operations should not
be part of the conceptual database schema too.

We do not share these opinions. First, we believe that
path methods are a kind of redundancy, which should be
part of the conceptual database schema for special reasons,
for instance, for comfortable access. Second, in our opin-
ion important common behaviour of objects must be part
of the conceptual database schema and not implemented in
applications.

Our integration methodology consists of two major
phases: theintegration of the static models and theinte-
gration of the dynamic models.

The integration of the static models deals with the struc-
tural parts (types, attributes and their relationships to other
types). The aim of this phase is to identify and solve con-
flicts (naming conflicts or structural conflicts) among the
types of the various views. The result of this integration
phase is the common conceptual static model of the uni-
verse of discourse. Several integration strategies, mainly
for the entity relationship model ([6]), were published in the
past, for instance [2], [12], [11], [18] or [22]. Further com-
parative analysis of view integration methodologies were
made in [3] and [21]. We did not develop another strat-
egy for the integration of the the structural part of types but
use already published methodologies, mainly [18] and [19].

Through the integration of the different static models of
the views we derive an integrated conceptual static model.
Afterwards the integration of the dynamic models of the
views takes place. For each integrated type the correspond-
ing dynamic models (or statecharts) of the views have to be
integrated.

In an earlier paper ([10]) we presented a formalization of
statecharts together with a set of transformation which are

katja
published in: Proceedings of the 3rd IFCIS International Conference on Cooperative Information Systems, IEEE Computer Society, ISBN 0-8186-8380-5, pp. 364-372

proven to keep the semantics of the models and which are
complete in the sense that they suffice to derive any equiv-
alent model from a given one. This forms the basis of the
integration of statecharts, which consists of the following
steps:

First, we formalize the statecharts by formally defining
the range of all states in all statecharts with constraints or
conditions on the given static type. The range of a statechart
is thus defined as a subspace of the object space spanned
by the definition of the type (i. e. all possible object in-
stances of a type). Then we analyze the relationship of the
statecharts on the basis of their ranges and their marginal
states (begin and end states). Relationship classes are dis-
joint, consecutive, alternative, parallel, and mixed.

The second phase is called theintegration-in-the-large,
where we develop an integration plan with the goal of min-
imizing the integration effort. The integration plan con-
sists of integration operators for the different relationships
of statecharts. For mixed relationships, a further analysis is
necessary where all states and events of two models have
to be analyzed to integrate the models. For the other rela-
tionships, integration operators only consider the marginal
states. A crucial part of the development of an integration
plan is to determine the relationships between an integrated
statechart and all other statecharts without actually perform-
ing the integration.

Third, in theintegration-in-the-small phase the integra-
tion is performed by executing the integration plan.

In the next sections we concentrate on the integration of
statecharts. In section 2 we present an overview of the used
data model. In section 3 an example from the domain of a
library is presented to demonstrate our methodology. The
integration process for statecharts is shown in section 4 and
illustrated by the library example. However, in this paper
we give an overview of our integration approach in a more
descriptive way without presenting all the formal details and
proofs. Interested readers are refered to [9] and [10].

2. The data model

Our integration methodology is based upon an object
oriented data model such as ODMG ([5]) orT QL��
([16], [17]). A conceptual database schema (and therefore
the views too) consists of a set of types, describing the
structural properties of objects (the static model or object
model). Each type may have a behaviour which is described
with a dynamic model (or statecharts according to [13],[14]
and [15]).

For the integration methodology we useT QL�� for
designing the static model (types with their attributes and
relationships to other types) of the views and statecharts for
describing the behaviour of objects. However, for the inte-
gration we made some extensions to statecharts to formalize

the semantics. Here we briefly summarize the formalism.
Details can be found in [10].

A statechart of a type consists primarily ofstates and
events. Events triggertransitions which causes a state
change of an object. An object which is in a stateS� can
react to a transitiont triggered by an evente and changes
its state toS�. We callS� thesource state of the transition
t andS� thetarget state of the transition.

To reduce the complexity and to make dynamic models
more readable, states can be structured to state hierarchies:
state generalizations to express alternatives, andstate ag-
gregations to express parallelism.

States are provided with conditions which an object must
fulfill to be in the state. These conditions, we call them the
range of a state, are based upon the attributes and relation-
ships of the type. The range of a stateS� can be regarded
as a logical expression resulting intrue if a given object is
in the stateS�, in false otherwise. Statecharts have a range
too, which is defined as the disjunction of the ranges of all
its states.

States may be marked asstart andend states (“marginal”
states). For instance, the initial and final states are start and
end states. However, the designer is allowed to mark any
further state too.

Transitions have pre- and postconditions, which again
are logical expressions. Thepreconditions of a transition
are the conditions an object must comply to enable the tran-
sition causing a state change. The precondition of a transi-
tion is defined as the conjunction of the range of its source
states and its guard.

The postcondition of a transition are those conditions
an object must fulfill after the application of the transition.
Therefore, the postcondition of a transition must imply the
ranges of its target states.

As specification language for these conditions (the range
of states, pre- and postconditions and guards of transi-
tions) we use T QL�� . For addressing these addi-
tional characteristics, we use meta methods of statecharts,
states or transitions. WithS��Range�� the conditions (the
range) of the stateS� is meant. We writet�P reC�� to
get the preconditions of a transitiont. As these condi-
tions are logical expressions we may combine them by dis-
junction, conjunction or negation. For instance the pre-
conditions of a transitiont is computed by the conjunc-
tion of the range of its source state and its guard, that is
t�Source State�Range�� � t�Guard.

Ranges of states as well as pre- and postconditions
of transitions are additional characteristics of statecharts,
which are used to define the semantics of statecharts. In [10]
we defined the semantics of statecharts and a complete set
of schema transformations to transform a statechart into any
other equivalent statechart. As an example we have trans-
formations to decompose and to construct state hierarchies,

Book on Loan

(b) View of the Book Service Desk

Book available
 (S)

Book lost (E)

(a) View of the Book Ordering Department

 Book
request (S)

Book on Stock
 (E)

t1: new

t2: checking

t3: ordering

t4: reject

t5: place

t7: loosing

t8: return
[reserved = false]

t9: loosing

Book reserved

Educational
 Book

(c) View of the Educational Book Department

Book in the
 Library (S) t11: return

t12: reserve
[status = borrowed]

t13: lending

Book controlled

 Request
rejected (E)

Book ordered

t6: lending
[reserved = false]

t10: lending
 [status = in library]

Figure �� The statecharts of the type Book�

to split and to combine states, and to shift transitions within
state hierarchies.

In the next sections we discuss the process of integrat-
ing the statecharts of an integrated type. We assume that
the integration of the static models has already been fin-
ished. Therefore, we have to deal with one integrated type
and several statecharts describing the behaviour of objects
of the type to integrate. We start with a short example fol-
lowed by a discussion of each integration step.

3. The example

Let us introduce a short example from the domain of a li-
brary showing the behaviour of books from the viewpoint of
three different departments. Assume that the integration of
the static models results in an integrated typeBook having
the following T QL�� syntax:

Book = [
Isbn: str,
Title: str,
Authors: fAuthorg,
reserved: bool,
status: (requested, ordered, lost, in library, borrowed,

in textbook collection)]

The behaviour of a book from the viewpoint of theBook
Ordering Department is shown in figure 1(a). The depart-
ment treats incoming book requests, checks for doublets,
and orders books. Delivered books are registered and placed
into the library.

book request this.Isbn is UNKNOWN� this.status = requested
book controlled this.Isbn is KNOWN� this.status = requested
request rejected this.Isbn IN book.Isbn� this.status = rejected
book ordered this.Isbn # book.Isbn� this.status = ordered
book on stock this.status = in library� this.reserved = false

Table �� State speci�cation of the Book Order�

ing Department�

Books can be borrowed at theBook Service Desk if they
are available. Books may get lost. The dynamic model of a
book from the viewpoint of the Book Service Desk is shown
in figure 1(b).

At least theEducational Book Department is responsible
for the administration of educational books, which are nec-
essary for a lecture during a certain period. Such books may
not be borrowed by anyone until the end of the lecture. If
the book in question is out of stock it can be reserved by the
department. Reserved books may not be borrowed by any-
one except the educational book department. The behaviour
of a book from the viewpoint of this department is shown in
figure 1(c).

For the integration of dynamic models we demand the
specification of states which are shown in tables 1, 2 and 3.
The postconditions of the transitions are either equivalent
with the range of their target states or shown in table 4. Start
and end states are marked with (S) and (E) in the views.

book available this.status = in library� this.reserved = false
book on loan this.status = borrowed
book lost this.status = lost

Table �� State speci�cation of the Book Service

Desk�

book in the (this.status = in library� this.status = borrowed)
library � this.reserved = false
book reserved this.status = borrowed� this.reserved = true
educational
book

this.status = in textbook collection

Table �� State speci�cation of the Educational

Book Department�

4. The process of integrating statecharts

The integration of the static models results in an inte-
grated conceptual static model, a common agreement about
types, their internal structure (attributes) and their relation-
ships between them. Afterwards the integration of the stat-
echarts takes place. The input parameter are an integrated
type and its various statecharts from the different views.
The aim of this integration phase is to obtain a common
behaviour described within one statechart of this type. To
integrate the statecharts of a type we propose two phases:

� Integration-in-the-large: In this integration phase an
overall structure of the integrated statechart is devel-
oped. Based upon relationships between the state-
charts, therelationship graph is constructed. On the
basis of this graph theintegration plan is computed.
The integration plan consists of a tree ofintegration
operators. An integration operator has two statecharts
as input and the integrated statechart as output.

� Integration-in-the-small: In this phase the integration
takes place. According to the integration plan the inte-
gration operators are carried out step by step. The in-
tegration operators can be applied automatically. Only
the integration operator for mixed related statecharts
(see later) requires a more detailed analysis of the
states and events of both statecharts and probably de-
signer decisions.

In the next sections we discuss the steps of both integra-
tion phases. However, we omit formal details and proofs.
Interested readers are refered to [9].

t6: lending this.status = borrowed� this.reserved = false
t11: return this.status = in library� this.reserved = false

Table �� Postconditions of the transitions�

���� Integration�in�the�large

The aim of the integration-in-the-large is mainly to
prepare for the integration which actually is done in the
integration-in-the-small phase. Starting point is an inte-
grated type and its statecharts, the result is the integration
plan. To develop the integration plan we have

� to determine the relationships between the involved
statecharts

� to represent the relationships in the relationship graph

� to compute the integration plan

������ Relationships between statecharts

The ranges of states and the ranges of statecharts are the
basis for relationships between statecharts. We have defined
five classes of possible relationships between statecharts.
For the formal definitions we refer to [9], at this point we
concentrate on the idea behind these relationships:

� parallel statecharts: an object of the integrated type
has to pass both statecharts in parallel. The ranges of
the statecharts have to be equivalent and orthogonal.
Orthogonal means for any two stateZ� of the state-
chartM� andZ� of the statechartM� the ranges ofZ�

andZ� must not be disjoint.

� disjoint statecharts: an object of the integrated type
has to pass either the first or the second statecharts.
The ranges of the dynamic models must be disjoint.

� consecutive statecharts: an object of the integrated
type has to pass first the one and second the other stat-
echart. Beyond some start and end states the ranges of
both statecharts must be disjoint.

� alternative statecharts: an object of the integrated type
has to pass the statecharts alternatively. Beyond some
start and end states the ranges of both dynamic models
have to be disjoint.

� mixed statecharts: an object of the integrated type has
to pass a “mixture” of both statecharts.

Let us discuss the consecutive relationship more de-
tailed. Consider the example in figure 2, where you can see

M1

M2

1Z Z2

Z3 Z4

Z5 Z6

Z7

1m m 2

1n n2

disjoint

object

overlapping
 area

Figure �� An example for a consecutive rela�

tionship�

the statechartsM� andM�. Except an overlapping area be-
tween “marginal” states (end states ofM� and start states of
M�), the ranges of the statecharts have to be disjoint. The
ranges of the “marginal” states must either be equivalent.
or the range of one state has to imply the range of the other
state. Figuratively spoken, an object travels first through
M�, reaching for example the end statem� of M�. As the
range ofm� is equivalent (or implies) the range of the start
staten� of M� the object gets into the statechartM�.

For each relationship class between statecharts we have
developed anintegration operator. An integration opera-
tor gets two statecharts to integrate and results in the inte-
grated statechart. The integration operatorIPar integrates
two parallel dynamic models into a state aggregation.IDis,
which integrates disjoint dynamic models, is very simple as
there is nothing to integrate. It simply computes the union
of both statecharts.ICons integrates consecutive related
statecharts by merging the “marginal” states of the overlap-
ping area to single states.IAlt does the same with alter-
native related statechart. However,IMix, which integrates
mixed related statecharts, is much more complicated. A de-
tailed analysis of the states and events of both statecharts is
necessary and will be discussed later on.

In our example of figure 1, we determine the following
relationships between the statecharts. The statecharts of the
Book Ordering Department andBook Service Desk arecon-
secutive. The end statebook on stock from theBook Order-
ing Department and the start statebook available from the
Book Service Desk are equivalent, the remaining states are
disjoint (compare the state specifications in the tables 1 and
2). The statecharts of theBook Ordering Department and
Educational Book Department areconsecutive too, because
the range of the statebook on stock implies the range of the

Book Service
 Desk

Book Ordering
 Department

Educational Book
 Department

mixed

consecutive: Book on Stock
Book available

consecutive: Book on Stock
Book in the Library

Figure �� The relationship graph of the library

example�

statebook in the library (compare tables 1 and 3). The state-
charts of theBook Service Desk and theEducational Book
Department aremixed related (compare tables 2 and 3).

������ The relationship graph

The relationships between the statecharts of an inte-
grated type are represented with therelationship graph. The
nodes of this graph are the statecharts, the edges represent
the relationship between them. In the case of an alternative
or consecutive relationship between statecharts, the edges
are annotated with the corresponding “marginal” states of
the statecharts. The relationship graph of our library exam-
ple is shown in figure 3.

������ The integration plan

The aim of an integration plan is to determine an integra-
tion sequence with minimal integration effort without actu-
ally integrating the statecharts. The integration plan states
which statecharts have to be integrated with which particu-
lar integration operator. Therefore, we have to consider the
consequences of each integration step. Suppose we would
like to integrate two statechartsM� andM� with an inte-
gration operator. This results in a statechartMI , the rela-
tionship graph must be changed.M� andM� have to be
replaced withMI . But which are the relationships ofMI to
other statecharts of the relationship graph?

According to the definition of the relationships between
statecharts, the answer to this question depends on the range
of the integrated statecharts and its start and end states. For
each integration operator, exceptIMix, which integrates
mixed related statecharts, we know the range as well as the
start and end states of the integrated dynamic model.

Consider a small example. Suppose we integrateM� and
M�, which are disjoint, toMI . Suppose further thatM� is
consecutive toM� but disjoint toM�. Obviously,MI and
M� will be consecutive too. Another example, suppose we
integrateM� andM� with a mixed relationship. This cannot

be done automatically. We may conclude only the range of
the integrated statechartMI , but not the “marginal” states
of MI . Therefore, if there is a relationship between another
statechartM� andM� (except a disjoint relationship)M�

andMI will be mixed too.
It is possible to compute the consequences of the integra-

tion operators for the relationship graph. Interested readers
are refered to [9], where changes of the relationship graph
due to the application of an integration operator are proven.

The integration plan determines an integration sequence
with minimal integration effort, which depends on the au-
tomation possibilities of the integration operators. Integrat-
ing mixed related statecharts with the integration operator
IMix requires an additional analysis and cannot be done
fully automatically. Therefore, the integration effort for the
application ofIMix is high. Furthermore, the more states
the statecharts have, the higher is the integration effort. In
contrast toIMix the other integration operators can be per-
formed automatically, their integration efforts are low. This
leads to a sketch of a rule based algorithm to compute the
integration plan:

1. Integrate mixed related statecharts as soon as possible,
as long as the integration does not destroy “cheap” re-
lationships.

2. Integrate statecharts when the integration does not de-
stroy “cheap” relationships.

3. Integrate statecharts whose integration preserves as
much “cheap” relationships as possible.

Back to our example from figure 1. If we would inte-
grate the statecharts of theEducational Book Department
and Book Service Desk, which are mixed related, the in-
tegrated statechart would have a mixed relationship to the
statechart of theBook Ordering Department. We would
need another usage of the “expensive” integration operator
IMix. However, if we first integrate the statecharts of the
Book Ordering Department and theBook Service Desk with
the integration operatorICons to M� and afterwardsM�

model with the statechart ofEducational Book Department
to MI we would needIMix only once. Our integration
plan looks like as follows:

ICons (Book Ordering Department, Book Service Desk,M�)
IMix (M�, Educational Book Department,MI)

���� Integration�in�the�small

We start the integration-in-the-small after the develop-
ment of the integration plan. The integration plan is exe-
cuted step by step, the statecharts are integrated with the
corresponding integration operators.

 Book
request

Book on Loan

the integrated state

Book on Stock −
Book available

t1: new

t2: checking

Book controlled

Request
rejected (E)

t4: reject

t3: ordering

t5: place

Book ordered

t7: loosing

t9: loosing

t6: lending
[reserved = false]

t8: return
[reserved = false] Book lost (E)

Figure �� The integrated statechart M��

Book on Stock −
Book available

Book on Loan Book reserved

Book in the
 Library

overlapping

subsuming

subsuming

Figure �� The state relationship graph�

According to the integration plan of our library example,
we have to integrate the statecharts of theBook Ordering De-
partment and theBook Service Desk using the integration
operatorICons. The operatorICons simply combines the
annotated states on the edge of the relationship graph, that
are Book on Stock and Book available, to one state. The
integrated statechartM� is shown in figure 4.

In the next step we have to integrate the statechart
M� and the statechart of theEducational Book Depart-
ment. However, integrating statecharts whose relationship
is mixed is much more complicated, a further detailed anal-
ysis is necessary. Furthermore, this integration step cannot
be done automatically. We are only able to support the de-
signer by computing integration recommendations.

Just as statecharts the states of different statecharts have
relationships too. For instance, the ranges of states may
be equivalent or disjoint, or the range of a state may imply
the range of another state (we say a statesubsumes another
state). Ranges of states may beoverlapping. Once more
a graph, thestate relationship graph, is used to represent
the relationships between states. The nodes of this graph
are the states of the statechart. An edge between a state of
one model and a state of another model exists if there is a
relationship other than disjoint between them.

A part of the state relationship graph which is computed

by the usage ofIMix in our library example is shown in
figure 5. The ranges of the other states of the statecharts to
integrate are disjoint.

As we do not consider disjoint relationships in the state
relationship graph, the graph must not be fully connected.
The states of a connected subgraph have to be integrated.
For the integration we use the schema transformations de-
fined in [10].

1. State hierarchies are decomposed using appropriate
schema transformation.

2. The states of a fully connected subgraph of the state
relationship graph are transformed by schema trans-
formations so that they are disjoint.

3. The transformed states are combined according to
several heuristics to single states or state hierarchies
(schema restructuring). An appropriate heuristic for
the combination of states are, for instance, the transi-
tions. For example, states which are source states of
transitions triggered by the same event may be com-
bined to a single state.

The first and the second step can be done automatically
by using appropriate schema transformations. However,
for combining states there are several integration possibili-
ties. According to some heuristics a set of integration rec-
ommendations could be computed, but the designer has to
choose one.

The transformation of states of a subgraph of the rela-
tionship graph depends on the involved states and the rela-
tionships between them. In our example we have several
states of both statecharts and the relationship classessub-
suming andoverlapping. In such a case we construct dis-
joint states according to the following algorithm:

1. For each stateZ of the first (second) statechart, which
is not subsumed by a state of the second (first) state-
chart, we construct a stateZ. The range of this state
results in the conjunction of the range of the stateZ

and the negation of the disjunction of the ranges of all
states of the second (first) statechart. All transitions,
havingZ as source or target state, are copied andZ

is replaced byZ in the source or target states of the
copied transition. The postcondition of transitions hav-
ingZ as target state is replaced with the conjunction of
the original postcondition and the range ofZ.

2. For each stateZ� of the first statechart and stateZ� of
the second statechart, which are not disjoint related,
we construct a state�Z with the rangeZ��Range��
� Z��Range��. All transitions havingZ� or Z� as
source or target states are copied.Z� andZ� are re-
placed by�Z in the source or target states of the copied

transition. The postcondition of transitions having�Z
as target state is replaced with the conjunction of the
original postcondition and the range of�Z.

3. All states of the subgraph and all transitions having
states of the subgraph as source or target state are
deleted.

For the construction of disjoint states we use schema
transformations, which preserve the equivalence of the stat-
echarts according to [10]. It is possible that some of the
constructed disjoint states have ranges resulting in false.
Such states and all transitions having such states as source
or target states are deleted. Furthermore, the preconditions
or postconditions of some copied transitions may result in
false and can be deleted without changing the semantics of
the statecharts as shown in [10].

To conclude our library example, we transform the in-
volved states of the state relationship graph into disjoint
states. According to the above approach, we have to con-
struct five states, two states because of the first rule and
three state because of the second rule.

The first state to construct (according to the first rule)
has the conditionBook in the Library.Range() � � (Book on
Stock - Book available.Range() � Book on Loan.Range()).
However, this condition results in false (compare tables 2
and 3). The second state to construct has the conditionBook
on Loan.Range() � � (Book in the Library.Range() � Book
reserved.Range()), which is false too (compare tables 2 and
3).

The next three states must be constructed according to
the second rule, these are the states:

� Book in the Library - not reserved with the condition
Book on Stock - Book available.Range() � Book in the
Library.Range().

� Book borrowed - reserved with the conditionBook re-
served.Range() � Book on Loan.Range().

� Book borrowed - not reserved with the conditionBook
in the Library.Range() � Book on Loan.Range().

The specification of these states are shown in table 5. All
transitions of the involved original states have to be copied,
and their source and target states as well as their postcondi-
tions are adapted. Lets take a closer look on the first con-
structed stateBook in the Library - not reserved, which is
shown in figure 6.

The state is constructed as the “intersection” of the states
Book on Stock - Book available andBook in the Library. The
transitions of both states are copied and become transitions
of the constructed state. However, the precondition of the
transition t12(1) triggered by the eventreserve, which is
computed as the conjunction of the guard of the transition

book in the library - not
reserved

this.status = in library� reserved = false

book borrowed - not re-
served

this.status = borrowed� this.reserved =
false

book borrowed - re-
served

this.status = borrowed� this.reserved =
true

Table �� State speci�cations after the transfor�

mation�

Book in the
 Library −
not reserved

Book order Book lost

Educational
 Book

t5(1): place

t12(1): reserve
[status = borrowed]

t7(1): loosing

t11(1): return
t8(1): return
 [reserved = false]

t6(1): lending
 [reserved = false]

t10(1): lending
[status = in library]

Figure �� The state Book in the Library - not re-
served�

and the range of its new source state, results in false (com-
pare table 5). Therefore, this transition can be deleted.

All other states are constructed similarly. The con-
structed states are shown in figure 7 (not involved states are
dotted). The original states of the subgraph of the state re-
lationship graph with their transitions are deleted.

In the second step we may consider combining some of
the states or creating state hierarchies. For instance, we may
build a state generalization based upon the statesBook bor-
rowed - not reserved andBook borrowed - reserved as they
have some transitions triggered by the same event in com-
mon, e. g.loosing.

As all states of the state relationship graph of our exam-
ple are integrated, we finish the integration with the inte-
gration operatorIMix and return to the integration plan.
The integrated statechart can be obtained just by merging
the statecharts from the figures 4 and 7.

5. Conclusion

In this work we have presented a methodology for in-
tegrating object oriented views with the main contribution
to the integration of behaviour models. The behaviour of
objects is represented with statecharts according to [14].

Our methodology of integrating behaviour models con-
sists of the phases: integration-in-the-large and integration-
in-the-small. The aim of the first integration phase is to

Book borrowed −
 reserved

Book in the
 Library −
not reserved

Book lost

Educational
 Book

Book order

Book borrowd −
 not reserved

t11(1): return

t8(1): return
 [reserved = false]

t5(1): place

t7(1): loosing

t10(1): lending
 [status = in library]

t12(1): reserve
 [status = borrowed]

t9(1): loosing t9(2): loosing

t13(1): lending

t6(1): lending
 [reserved = false]

Figure 	� The integrated states�

determine an overall structure of the integrated dynamic
model. Based upon relationships between statecharts, in-
tegration operators, which integrate the statecharts, are de-
fined. The result of the integration-in-the-large is the inte-
gration plan stating an integration order with minimal effort.

Within the integration-in-the-small phase the integration
of the statecharts takes place. Most of the defined integra-
tion operators can be performed automatically. However,
for mixed related statecharts a further detailed analysis of
states and events is necessary.

It was our aim to relieve the designer by automating the
integration as much as possible. In some situations the in-
tegration of statecharts can be done without the aid of a de-
signer. Even the integration of mixed related statecharts
could be computed by using additional heuristics for the
combination of states. However, the designer is invited to
make changes in order to improve quality.

We see the main advantages of our approach in the for-
mal treatment of the integration process, which allows a
highly automatic integration, while giving the designer the
possibility to make decisions and carry out their conse-
quences in the model automatically.

References

[1] Rational Software et.al. Unified modeling language (uml)
version 1.1. http://www.rational.com/uml, Sept. 1997.

[2] C. Batini and M. Lenzerini. A methodology for data schema
integration in the entity relationship model.IEEE Transac-
tions on Software Engineering, 10(6):650–664, Nov. 1984.

[3] C. Batini, M. Lenzerini, and S. B. Navathe. A comparative
analysis of methodologies for database schema integration.
ACM Computing Surveys, 18(4):323 – 364, Dec. 1986.

[4] G. Booch.Object-Oriented Design with Applications. Ben-
jamin Cummings, 1991.

[5] R. Cattell, D. Barry, D. Bartels, M. Berler, J. Eastman,
S. Gamerman, D. Jordan, A. Springer, H. Stickland, and
D. Wade.The Object Database Standard: ODMG 2.0. Mor-
gan Kaufmann Publishers, Inc, 1997.

[6] P. Chen. The entity-relationship model - toward a unified
view of data.ACM Transaction on Database Systems, pages
9–36, Mar. 1976.

[7] D. Coleman, P. Arnold, S. Bodoff, C.Dollin, H. Gilchrist,
F. Hayes, and P. Jeremaes.Object-Oriented Development:
The Fusion Method. Prentice Hall Object-Oriented Series.
Prentice-Hall, Inc, 1994.

[8] J. Eder and H. Frank. Schema integration for object oriented
database systems. In M. T. et al., editor,Software Systems
in Engineering. ASME, 1994. Procceedings of the ETCE,
New Orleans.

[9] H. Frank. View Integration für objektorientierte Daten-
banken. PhD thesis, Institut f¨ur Informatik, Universität Kla-
genfurt, 1996.

[10] H. Frank and J. Eder. A meta-model for dynamic mod-
els. Technical report, Institut f¨ur Informatik, Universität
Klagenfurt, Mar. 1997. http://www.ifi.uni-klu.ac.at/cgi-
bin/showan abst?1997-05-FrEd.

[11] J. Geller, Y. Perl, E. Neuhold, and A. Sheth. Structural
schema integration with full and partial correspondence us-
ing the dual model.Information Systems, 17(6):443–464,
1992.

[12] W. Gotthard, P. C. Lockemann, and A. Neufeld. System
guided view integration for object-oriented databases.IEEE
Transaction on Knowledge and Data Engineering, 4(1):1–
22, Jan. 1992.

[13] D. Harel. Statecharts: A visual formalism for complex sys-
tems. Science of Computer Programming, 8:231 – 274,
1987.

[14] D. Harel. On visual formalisms.Communications of the
ACM, 31(5):514 – 530, May 1988.

[15] D. Harel and A. Naamad. The statemate semantics of stat-
echarts. ACM Transactions on Software Engineering and
Methodology, 5(4):293 – 333, Oct. 1996.

[16] H. Lam and M. Missikoff. On semantic verification of
object-oriented database schemas. InProceedings of Int.
Workshop on New Generation Information Technology and
Systems - NGITS, pages 22 – 29, June 1993.

[17] M. Missikoff and M. Toaiti. Mosaico: an environment
for specification and rapid prototyping of object-oriented
database applications. EDBT Summer School on Object-
Oriented Database Applications, Sept. 1993.

[18] S. B. Navathe, R. Elmasri, and J. Larson. Integrating user
views in database design.IEEE Computers, pages 185–197,
Jan. 1986.

[19] S. B. Navathe and G. Pernul.Advances in Computers, vol-
ume 35, chapter Conceptual and Logical Design of Rela-
tional Databases, pages 1 – 80. Academic Press, 1992.

[20] J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, and
W. Lorensen.Object-Oriented Modeling and Design. Pren-
tice Hall International, Inc, 1991.

[21] M. Schrefl. A comparative analysis of view integration
methodologies. In R. T. R Wagner and H. Mayr, editors,In-
formationsbedarfsermittlung und -analyse für den Entwurf
von Informationssystemen, pages 119–136, 1987. Fachta-
gung EMISA.

[22] A. P. Sheth. Issues in schema integration: Perspective of an
industrial researcher. InARO-Workshop on Heterogeneous
Databases, Sept. 1991.

