published in: O. Bukhres, J. Eder, S. Salza (eds.): Proceedings EDBT Workshop on Workflow Management [

Systems, 1998, pp. 3-10

Contributions to Exception Handling in Workflow
Management

Johann Eder, Walter Liebhart
Department of Informatics-Systems, University of Klagenfurt, Austria
email: {eder, walter }@ifi.uni-klu.ac.at

Abstract

We propose a concept for exception handling in work-
flow management systems. An exception arises if
an activity of the workflow does not deliver the de-
sired results due to continuing system failures, envi-
ronmental circumstances or inadequacy of a business
process in some situation. The concept we propose
consists mainly of automatic compensation and pur-
suing alternatives and integration of semi-automatic
at hoc intervention. The goal was to ensure consis-
tent execution of business processes with little extra
effort at build time as well as at runtime.

1 Introduction

Workflow management systems [GHS95, Law97,
WIMO6] support the execution of business processes.
Workflows are technical representations of business
processes which are enacted, controlled and docu-
mented by a workflow management system. A work-
flow typically consists of steps called activities or
tasks and the dependencies between these steps. An
activity represents the performance of some piece of
work by an user and/or an IT-system.

Asg all IT-systems, workflow management systems
have to care for failures and exceptions. By failures
we mean that an I'T-system does not work as expected
(e.g. program error, device failure, communication
failure, etc.). In contrast, exceptions (sometimes also
called semantic failures) arise when activities cannot
be executed as planned or do not deliver the desired
results. Exceptions may be caused by unrecoverable
system failures or by some situation in the environ-
ment. Examples of exceptions are:

e A customer has to be called, but he does not
answer the phone.

e A flight should be reserved, but the plane is fully
booked.

e A program cannot be executed because it has
errors.

e Money should be withdrawn from an account but
the balance is negative.

e Money should be transfered to an account but
the bank got bankrupt.

e The business process demands that billing is
made before shipping but an important customer
with high reputation wants it the other way
round.

From these examples you see that some exceptions
may occur very frequently and are usually treated
explicitly in the business process or workflow model.
Other exceptions might occur very rarely and may
be not thought of at design time, and then there are
exceptions which cannot be dealt with at design time
because they arise as consequences of changes in the
environment (like new laws, regulations, policy deci-
sions from the management).

Reactions to exceptions can be:

e retry: Repeating the failed activity might help
in some cases, but obviously this can only be
applied a restricted number of times.

e ignore: A solution, if the activity is not necessary
for the overall success of a business process

e rollback the business process: If a business pro-
cess cannot be executed to a successful end, it
has to brought to a consistent end state. This
may mean to free resources (e.g. budgets, per-
sonal) assigned to the process, cancel reserva-
tions made, inform people, and so on.

e partial rollback and forward execution: We pro-
pose mainly this reaction. It means to roll back
the process to some point where a decision of the
continuation was made and proceed along an al-
ternative path.

katja
published in: O. Bukhres, J. Eder, S. Salza (eds.): Proceedings EDBT Workshop on Workflow Management Systems, 1998, pp. 3-10

e process the business case outside of the work-
flow system: This reaction is always possible but
should be avoided for obvious reasons.

e find new way to overcome the problem: This
means to change the business process and ac-
cordingly the workflow dynamically, either as in-
dividual workflow for a certain (single) business
case or as a new version of the business process
(resp. workflow).

Common approaches to deal with exceptions in
workflow management systems are explicit treatment
of exceptions in the definition of workflows or ad hoc
treatment at run-time within or outside of the work-
flow management system. In the first approach, the
designer of a workflow takes into account that any ac-
tivity could fail and takes measures to react to such
a failure after each activity. This resembles the task
of a programmer of transactional software who also
has to check after each database access whether there
was no failure, rollback, etc. The problem with this
strategy is that the number of paths in a workflow
will explode making the workflow hard to understand
and maintain. Moreover, this strategy does not help
in situations where the business process itself has to
be changed. On the other extreme, failures are not
considered at build time and exceptions are treated
in a pure ad hoc manner or even outside of the work-
flow management system. Obviously, these strategies
are more complex at run time and even may corrupt
the workflow system as it no longer has information
on all instances of a certain business process and does
not represent the actual state of business processes.

In [EL94, EL95, EL96] we introduced a workflow
model which assists the designer with an automatic
failure handling feature which is mainly based on par-
tial rollbacks to explicit decision points (choices) in
the workflow. From these points forward execution of
further paths is triggered. Based on the experience
that decisions are not only made at in explicit choices
but within activities we extend the model such that
in principle any activity could be redone and be the
turning point from compensation to forward execu-
tion. Additionally we provide different levels of work-
flow recovery which gives the designer the option to
change the general recovery process where it is not
appropriate. Furthermore we want to make the ex-
ception handling mechanism so flexible that any ex-
ception can be dealt with within the system. So we
integrate an ad hoc mechanism which can be invoked
at any state of the workflow and enables process man-
agers to handle the exceptional business case with
some extensions or alterations of the workflow up to
a dynamic change to an individual workflow.

Up to now, failure and exception handling in work-
flow management has not been investigated deeply
[GHS95, KR95, AAAM96, WS97]. System failures
have been intensively studied within the classical
transaction model [GR93] and to some extend within
workflow management. Especially within the Exotica
project [MAGK95] different types of system failures
within a distributed workflow environment have been
discussed. Also extended transaction models [Elm92]
and transactional workflows [SR93] primarily focus
on handling system failures. Some of them also sup-
port the explicit modeling of failures and exceptions
(e.g. [WR92]).

Semantic failures (exceptions) are investigated par-
tially within the Excotica and the METEOR, [WS97]
project. However, they either suggest the explicit
modeling of exceptional situations or they propose
human intervention in case of exceptional situations.

2 Basic Concepts

To support exception handling within workflow man-
agement some basic pre-conditions are necessary.
First, the workflow metamodel must be extended in
order to incorporate exception-specific information.
Second, the workflow enactment service (workflow
engine) must be able to execute workflow instances
based on such an extended workflow schema. We will
discuss these basic concepts by introducing the Work-
flow Activity Model WAMO [EL94, EL95, EL96]
which was developed in order to support not only
the handling of system failures but especially of ex-
ceptions within workflow management. In WAMO a
workflow has a hierarchical structure, consisting of
complex activities, elementary activities and tasks.

2.1 Task

Tasks are the atomic work items which are executed
by the workflow participants. We distinguish between
automatic and manual tasks. Automatic tasks are ei-
ther batch programs which are executed without any
user interaction or interactive workflow applications.
Manual tasks are work items which are not executed
with a specific workflow application (e.g. making a
phone call, writing a letter). For the handling of fail-
ures and exceptions two aspects are important: Task
state information and task recovery information.
Tasks have a complex internal structure, i.e. dif-
ferent states which are reached by special events. In
figure 1 the state diagram of a task in WAMO is
presented. Besides the usual states ready, taken
and active the termination states of tasks are more

O— ready
untake take
assigned
Ltaken retaken
undo start
ex_abort ‘ ‘ sys_abort
sys _undo retake

’

\

ex_aborted

| committed | |

failed |

sys aborted

ex_undone

sys _undone

|

®

Figure 1: Extended state diagram of a task

extensive in order to detect whether a failure has oc-
curred. We distinguish between three different classes
of termination:

1. regular termination: This class comprises the
general termination states of a task, namely
committed (terminated with a positive result)
and failed (terminated with a negative result).

controlled abort: The second class consists of
states which are reached after a controlled cance-
lation of a task by the workflow user or the work-
flow system (e.g. task “car reservations” is
aborted because the customer does not need a
car any longer). Depending whether the task is
failure-atomar or not the termination states af-
ter an abort are ex_undone or ex_aborted. The
event ex_undo causes an internal rollback of the
task, the event ex_abort terminates a task with-
out cleaning up any intermediate results. Addi-
tionally, it must be emphasized that not all tasks
are abort-able in a controlled way. Therefore,
a task within W AM Os metamodel contains the
attribute “cancelType” which may have the val-
ues ex_abortable, ex_undoable or no-cancel
and which must be set by the task programmer.

3. uncontrolled abort: Complementary to the previ-

ous cases, tasks may be terminated uncontrolled,
because of system failures. Again, we have to
distinguish between the states sys_undone (for
failure atomar tasks) and sys_aborted (we also
refer to these failure states as sys_terminated).
Remember that the attribute cancelType con-
tains the necessary failure atomicity information
of a task which will be necessary for further fail-
ure handling.

As an example for these different task termination
states we analyze an automatic teller machine and
the task ATM-transfer:

task ATM-transfer

cancelType[ex undone, sys_undone]

To withdraw money there must be enough money
on the account and the PIN-code must be correct.
In this case the task ATM-transfer terminates in the
state committed. If there is not enough money on
the account or the PIN is wrong then the task fails.
Additionally, during money transfer the customer
may cancel the operation which leads to the state
ex_undone, i.e. the operation is rolled back. If during
task execution a system failure occurs then again an
automatic rollback must be guaranteed such that nei-

ther the bank nor the customer is aggrieved. In that
case the task terminates in the state sys_undone.

2.2 Elementary Activity

The concept of compensation is essential within
WAMO . The first version of WAMO [EL94, EL95,
EL96] enabled the workflow designer to associate
tasks with compensation tasks. Now this concept
has been refined and enhanced by more sophisti-
cated compensation techniques (see also [Ley95a,
AAAT96]). First, not only tasks but also complex
activities may be associated with compensation ac-
tivities (i.e. tasks or again complex compensation
activities). Second, a new building block - elemen-
tary activities - are introduced (see figure 2).

An elementary activity contains a task and the
corresponding compensation task, if available and
necessary. As already mentioned in previous work,
W AMO does not presume that every task has an
associated compensation task (as this is for example
the case in the Saga-Model [GMS87]). Sometimes
a compensation is not possible (e.g. faxing a confi-
dential information to the wrong person) and some-
times a compensation is not necessary (e.g. an au-
tomatic task which checks the credit-worthiness of a
customer). Elementary activities have all the features
of tasks but also further information concerning the
compensation of a task. In particular, they offer two
types of compensation:

1. strong_compensation

2. weak_compensation

If an elementary activity receives the event
strong_compensate then the task within the activity
is compensated according to W AM Os compensation
technique. On the other hand, if a weak_compensate
event is received then within the elementary activ-
ity the decision is made, whether the task is com-
pensated or the compensation is finished (inverted)
by executing the original task again. This concept
opens two important advantages: first, it simplifies
the specification of workflows since elementary activ-
ities represent, black boxes for the workflow designer
and second it allows a much more flexible handling
of the compensation process since depending on the
compensate event, a compensation process can be fin-
ished precociously.

2.3 Complex Activity

W AM O supports hierarchical structuring of work-
flows by using complex activities which consist of

other (sub-) activities, representing subprocesses.
Furthermore, a certain activity may take part in sev-
eral other activities, especially several times in an
other activity which enhances re-usability. Addition-
ally, complex activities support the modeling of con-
trol structures (behavior) over activities. Up to now,
W AM O offers the following simple but powerful con-
trol structures: sequence, and-parallel, nesting, loop,
ranked choice and free choice. The choice constructs
enable the modeling of alternative (contingency) ac-
tivities. An alternative activity is executed only if
the immediate previous activity fails. In contrast to
a ranked choice, the execution order in a free choice
list is computed dynamically (at run time).

As already mentioned, complex activities may be
associated with compensation activities (i.e. tasks
or again complex activities). However, this opens
two possibilities for the compensation of a complex
activity: shallow and deep compensation (a similar
approach is introduced in [Ley95b]). Within shallow
compensation the associated compensation activity
is executed whereas deep compensation propagates
the compensation of a complex activity to its child
activities. The attribute compType of a complex ac-
tivity must be set by the workflow designer in order
to define which compensation type should be taken
at runtime within a given workflow type. The state
diagram of a complex activity is presented in figure
3.

In contrast to tasks, complex activities cannot
be aborted uncontrolled. The state of an activ-
ity is computed by the states of its child activ-
ities. As soon as a child terminates the event
Cterm(termination_state) is sent to the parent ac-
tivity (see figure 3). Hence, we basically distinguish
between two classes of termination states:

1. reqular termination comprises the states
committed (terminated with a positive result)
and failed (terminated with a negative result).

2. controlled termination either belongs to an ex-
ternal abort (state ex_aborted) or to a compen-
sation (state compensated). An external abort
may occur when the whole workflow is aborted
by the user. A compensation (weak or strong)
if the activity is involved in a compensation pro-
cess.

2.4 Vitality

Another important basic feature is the concept of vi-
tal and mon wvital activities in order to specify the
importance of (complex) activities within a work-
flow. During workflow modeling the workflow de-

ex_abort
|
|
sart init \ o
D -
i Task o
,,,,,,,,,,,,, -

weak compensate
- T T
strong compensate|
i st

,,,,,,,,,, - committed
,,,,,,,,,, — faled

,,,,,,,,,, == ex_terminated
sys_terminated

: CompTask |-------- = — compensated

\ compError

Figure 2: Internal structure of an elementary activity

signer specifies which child activities are vital or non
vital for the corresponding parent activity. Therefore,
W AMOs metamodel offers the relation attribute
vital which can be set for any activity.

If a non vital activity fails, workflow execution
can continue and make forward progress without
any compensation actions. Per default, all activities
within a workflow are vital for the parent activity. In
any case, if a vital activity fails then the compensa-
tion mechanism is activated (this concept is explained
in detail in section 3).

3 Exception Handling

3.1

At workflow execution time a task (and hence an el-
ementary activity) may fail either because of a con-
trolled abort (cancel by the user), an uncontrolled
abort or a regular fail. In [EL96] several techniques
concerning the handling of system failures (uncon-
trolled abort) of tasks have been presented: espe-
cially the retry of tasks or the execution of alter-
native tasks. Additionally, an escalation concept is
discussed, which supports the migration of system
failures to semantic failures, i.e. if the system fail-
ure cannot be handled at task level then the failure
escalates to an exception. As already mentioned, ex-
ceptions may also arise if a task does not deliver a
desired result or cannot be executed because of un-
predicted changes in the business process.

In such a case, further execution depends on the vi-
tality of the failed (elementary) activity. A complex
activity terminates in the state committed, if all acti-
vated vital subactivities terminate successfully. Oth-

Automatic Exception Handling

erwise the complex activity runs into a compensation
procedure. This leads to the following execution de-
cisions:

1. Forward ezecution: If the failed activity A; is
non vital then the workflow continues.

2. Backward recovery: If the failed activity A; is vi-
tal then the compensation process is activated in
order to re-establish a consistent workflow state.
The execution sequence within a compensation
depends on the current control structure A; is
participating:

(a) sequence: The state of the parent PA; of ac-
tivity A; is changed to weak_compensating
(see event Cterm[vitfail] in figure 3).
The direct predecessor! A;_; of A; within
PA; is searched.

i. If there is no direct predecessor under
the parent PA; then the parent termi-
nates in the state compensated, which
either finishes the compensation pro-
cess if the parent is a non vital activity
or terminates the whole workflow in the
state compensated if there is no parent
or continues with the compensation of
the predecessor of PA;.

ii. If there is a direct predecessor then
the last computed elementary activ-
ity of this direct predecessor A;_; is

IThe determination of the direct predecessor can be fairly
complex since several traversals within the activity hierarchy
are necessary. A prototype implementation of this mechanism
is realized in the prototype WFM-System Panta Rhei[EGLIT]
and described in [Lie98].

(b)

ex_abort

Cterm[aborting] start T Cterm[weak]
abort Ct itfail Y
: €ex_abor : erm [vitfail] - ’j
ot aive | Ctemfactiv | compensating
‘ | Cterm [vitPARfail]
Cterm [strong] |
[active] sirong_compensate |~ | compensatin
A
Cterm Cterm L]
[succeed] [failed] [succeed] Cterm[strong]
Cterm[styicceed]
v
‘ strong_compensate
‘ failed ‘ ‘committed \
: weak_compensaie

Figure 3: State diagram of a complex activity with compensation

searched. However, this again may re-
quire several traversals within the ac-
tivity tree if A; 1 is a complex activity.

iii. If A;_1 is an elementary activity then
it is compensated through the method
weak _compensate. This means that
the task within the elementary activ-
ity is compensated and the activity ter-
minates in the state compensated. Or
compensation is finished precociously,
i.e. the elementary activity terminates
successfully. In this case, the state
of the parent activity changes from
weak_compensating to active (event
Cterm[active]).

parallel: Tf a vital parallel activity A; fails
then already executed siblings of the ac-
tivity are stromg compensated. The state
of PA; is changed to strong _compensating
(see event Cterm[vitPARfail] in figure 3).
As soon as all siblings are compensated,
PA; changes its state to compensated which
either finishes the compensation process if
PA,; is a non vital activity or terminates the
whole workflow in the state compensated
if there is no parent of PA; or continues
with the compensation of the predecessor
of PA; according to the previous discussed
algorithm.

choice: The activities within a choice are all
non vital. If an activity within the choice
fails then the next alternative within the

(a)
(b)

choice is activated. The choice activity it-
self A; fails if all activities within the choice
structure fail. This may trigger a compen-
sation process if the failed node is vital.
The compensation depends on the control
type of the parent of A;.

If during the compensation process a com-
plex activity of type choice receives a (weak
or strong) compensate event, then this
event is applied on the successfully termi-
nated activity within the choice.

loop: The compensation of a loop depends
on the attribute compType which must be
set by the workflow designer during work-
flow build time. If the attribute value is
of full compensate than each successful
executed activity within the loop is com-
pensated (regardless how often the loop
was executed). If the value is of partial
compensate then only the last iteration is
compensated.

3. Forward recovery: Having re-established a con-
sistent state by doing backward recovery, work-
flow execution either finishes because all com-
mitted activities have been compensated or con-
tinues if:

there is an alternative path (e.g. an other
activity in the choice),

one of the parents of the compensated ac-
tivity is non vital,

(c) the compensation was inverted within an
elementary activity.

3.2 Ad hoc Exception Handling

Although the concept of weak compensation offers
a flexible mechanism to handling the compensation
process within a workflow we still do need further
possibilities to support workflow users in handling
exceptional situations. During any stage of work-
flow execution workflow users should have the pos-
sibility to leave the predefined workflow path, exe-
cute some additional activities, jump back into the
predefined schema and continue with workflow exe-
cution. Therefore, two types of ad hoc executions are
introduced within WAMO :

1. ad hoc extension: By applying this function dur-
ing execution of a task, the workflow user can
jump into the ad hoc mode if the current state
of the task is taken or, if the current state is
active, as soon as the task terminates. Jump-
ing into the ad hoc mode comprises the following
steps:

(a) The workflow user must select the new ac-
tivity and the agent of this new activity.
Additionally, he must be able to supply the
new activity with necessary input data.

The workflow engine creates a new version
of the schema if the ad hoc mode is ac-
tivated the first time within the current
instance. Otherwise the already extended
version is used.

After execution of the included activity,
workflow execution automatically continues
with the next activity in the schema or with
another new activity if he user again acti-
vates the ad hoc mode.

2. ad hoc refinement: In contrast to the previous
ad hoc function the idea of ad hoc refinement is
to interrupt current task execution in order to
execute in the meantime one or more new activ-
ities and then to continue with the interrupted
task. However, this function can only be ap-
plied on tasks which are suspendable. This fea-
ture is set by the workflow designer (attribute
suspendable within a task specification). The
actions within an ad hoc refinement are similar
to these of an ad hoc extension.

4 Conclusions

We proposed a concept of failure handling in work-
flow management systems which offers several desir-
able properties. First it treats business processes as
business transactions and enforces that workflows ter-
minate in a correct state. The backward recovery fea-
ture automatically drives the compensation of activi-
ties. This failure handling model eases the task of de-
signers as well as of workflow agents and process man-
agers. Designers may use its compensation/forward
execution model to automatically generate a series
of consistent alternative execution plans for a model
and need not treat any exception explicitly. Com-
pensation and forward execution are enacted auto-
matically so the need for intervention and decision
making in the cause of exceptions at run time is re-
duced. Through the integration of ad hoc semiauto-
matic exception handling, the system is very flexible
and gives process managers a whole range of func-
tionalities to treat any exception within the workflow
management system. The automatic exception han-
dling functionality comes with little extra effort at
design time where information about activities have
to be given to the system. We described the proposed
exception handling concept in terms of our Work-
flow Activity Model W AMO , however the concept
is more general and can easily be integrated in other
workflow specification models.

References

[AAAT96] G. Alonso, D. Agrawal, A. El Abbadi,
M. Kamath, R. Giinthér, and C. Mohan.
Advanced Transaction Models in Work-
flow Contexts. In Proc. of 12th IEEE
Intl. Conference on Data Engineering,
New Orleans, LA, 1996.

[AAAM96] G. Alonso, D. Agrawal, A.El Abbadi, and
C. Mohan. Functionality and Limitations
of Current Workflow Management Sys-

tems. IEFEE Ezxpert Journal, 1996.

[EGL97] J. Eder, H. Groiss, and W. Liebhart. The
Workflow Management System Panta
Rhei. In A. Dogac et al., editor, Ad-
vances in Workflow Management Sys-
tems and Interoperability. Springer, Is-

tanbul, Turkey, August 1997.

J. Eder and W. Liebhart. A Transaction-
Oriented Workflow Activity Model. In
S. Kuru et al., editor, Proc. of the 9th

[EL94]

[EL95]

[EL96)]

[Elm92]

[GHS95]

[GMS87]

[GRO3]

[KR95]

[Law97]

[Ley95a]

[Ley95b]

Int. Symposium on Computer and Infor-
mation Sciences, pages 9-16, Antalya,
Turkey, 1994.

J. Eder and W. Liebhart. The Work-
flow Activity Model WAMO. In Proc.
of the 3rd Int. Conference on Coopera-
tive Information Systems, Vienna, Aus-
tria, May 1995.

J. Eder and W. Liebhart. Workflow Re-
covery. In Ist IFCIS Int. Conference on
Cooperative Information Systems, Brus-
sels, Belgium, June 1996. IEEE Com-
puter Society Press.

A K. Elmagarmid. Database Transaction
Models for Advanced Applications. Mor-
gan Kaufmann Publishers, 1992.

D. Georgakopoulos, M. Hornick, and
A. Sheth. An Overview of Workflow
Management: From Process Modeling
to Workflow Automation. In A. Elma-
garmid, editor, Distributed and Parallel
Databases, volume 3. Kluwer Academic
Pub., Boston, 1995.

H. Garcia-Molina and K. Salem. Sagas.
ACM SIGMOD Conf., 1987.

J. Gray and A. Reuter. Transaction Pro-
cessing: Concepts and Techniques. Mor-
gan Kaufmann, 1993.

M. Kamath and K. Ramamritham. Mod-
eling, Correctness & System Issues in
Supporting Advanced Database Applica-
tions Using Workflow Management Sys-
tems. Technical report, University of
Massachusetts, 1995.

P. Lawrence, editor. Workflow Handbook
1997. John Wiley, 1997.

F. Leymann. Supporting business
transactions via partial backward recov-
ery in workflow management systems.
In G. Lausen, editor, GI-Fachtagung:
Datenbanksysteme in Buero, Technik und
Wissenschaft, Dresden, March 1995.
Springer Verlag.

F. Leymann. Transaktionskonzepte fiir
Workflow Management Systeme. In
G. Vossen J. Becker, editor, Geschaeft-
sprozessmodellierung und — Workflow-
Management. Thomson, Germany,
1995.

[Lie98)

[MAGK95]

[SR93]

[WEMO6]

[WR92]

[WS97]

W. Liebhart. Fehler- und Ausnahme-
behandlung im Workflow Management.
PhD thesis, Department of Informatic-
Systems, University Klagenfurt, January
1998.

C. Mohan, G. Alonso, R. Glinthor, and
M. Kamath. Exotica: A Research Per-
spective on Workflow Management Sys-
tems. IEEE Data Engineering Bulletin,
March 1995.

A. Sheth and M. Rusinkiewicz. On
Transactional Workflows. Bulletin of the
Technical Committee on Data Engineer-
ing, 16(2), 1993.

Workflow Management Coalition, Tech-
nical Report, http://www.aiai.ed.ac.uk/

WIMC/overview.html. Coalition
Overview, 1996.
H. Waechter and A. Reuter. The Con-

Tract Model. In A.K. Elmagarmid, edi-
tor, Database Transaction Models for Ad-
vanced Applications. Morgan Kaufmann,
1992.

D. Worah and A. Sheth. Transactions
in Transactional Workflows. In S. Jajo-
dia and L. Kerschberg, editors, Advanced
Transaction Models and Architectures.
Kluwer Academic Publishers, 1997.

