
Object Evolution by Model Evolution

Roland T. Mittermeir, Helfried Pirker, Dominik Rauner-Reithmayer�

Universität Klagenfurt
Institut für Informatik-Systeme

Universitätsstraße 65-67, 9020 Klagenfurt, Austria
fmittermeir, helfried, dominikg@ifi.uni-klu.ac.at

Abstract

Claims concerning the maintainability of object oriented
software usually refer to encapsulation and inheritance
mechanisms. However, if objects are perceived only from
the code level, potentials for higher level maintenance oper-
ations are missed. Instead, classical maintenance destroys
the relationship that once existed between specification and
implementation.
We present an approach supporting object evolution by
specification evolution such that for a substantial class of
changes, the ensuing changes in the implementation can ei-
ther be automatically performed or the complience with the
new overall specification can be assured by automatically
generated, well focussed test suits.

1. Motivation

To keep evolving software from structural deterioration,
special effort is needed [6]. If evolution is not enforced
by a very rigid maintenance process, it results in a diver-
gence of the product from the requirements- and design doc-
uments used for its original development. Parnas [12] refers
to this phenomenon as ”software aging”. Albeit encapsula-
tion and other beneficial features, ”objects” too are not im-
mune against aging. This paper suggests service channels
as an approach to software evolution that will keep the ag-
ing process relatively benign. The substance of this claim is
due to keeping a firm relationship between the model (speci-
fication) of an object (resp. class) and its realization in some
programming language.

The motivation behind our approach is, that maintenance
of complex (and/or large) objects � is far from trivial. How-
ever, since objects not only encapsulate their state with

�This work was partially funded by the Austrian Research Promotion
Fund (FWF), grant Nr. P 11.340-ÖMA.

�When using the term ”object” in this paper, we generally refer to the
class description.

respect to their environment but have their methods built
around this state, following some common and coherent
concept, maintenance can be supported to a higher degree
than in plain procedural code.

This concept a software object represents is concisely
represented in the object’s specification. There, the state
space and the methods reporting and manipulating it are
given in an implementation independent form. As each
method is coded as implementation of its respective specifi-
cation, parts of the common concepts will become implicit
in the implementation. Nevertheless they remain in the form
of the specific realization of the state space or in the form of
other interdependencies of methods. Thus, constraints that
have been obvious to the initial implementor might need to
be painfully uncovered by the maintenance programmer.

Thus, to alleviate the maintenance programmer from
much of the burden to uncover implicit implementation con-
straints,

� code and specification of objects should co-evolve;

� maintenance activities are to be supported by relating
the specification (model level) to the respective repre-
sentation on the implementation level;

� for a class of maintenance operations the relationship
between a modified specification to the respective code
can be automatically maintained via service channels.

Thus, for large existing object-oriented software systems
maintenance will become easier and certain reverse engi-
neering operations will be even unnecessary or could be per-
formed automatically.

The consequence of the approach is, though, that ob-
jects are formally specified and that maintenance activities
should be planned and performed first on the specification-
or model level. From there, one can identify, whether the
implementation needs to be modified ”by hand” or whether
a change on the model level can be automatically propagated
to the implementation level.



In the rest of this paper we first discuss conventional ob-
ject evolution and present then object evolution based on
model evolution. To benefit from model evolution, service
channels are proposed. Section 4 discusses the basic alter-
natives of how to implement them.

2. Object evolution caused by maintenance

Taking a look at object evolution, two communities can
be distinguished. The database community, investigating
the evolution of object-oriented database schemas (e.g.[1,
11, 2]), and the software engineering community investigat-
ing the evolution of object-(class-) hierarchies during the de-
velopment process (e.g.[7, 8]). In software engineering, the
end of the development process marks also the end of the
examination of the objects evolution (or history). However
this point is not the end of object evolution, it just marks the
transition from development to maintenance.

In object oriented systems, changes on classes lead not
just to different variants but also to different versions of the
maintained classes. This can also be viewed as a kind of ob-
ject evolution producing an object history beyond the scope
of development. But in contrast to the object evolution dur-
ing development, object evolution in the maintenance phase
mostly happens just on the implementation level. Even pro-
cess models assuming some object specification (i.e. de-
scription on the model level) at the outset, [4], consider this
specification just as starting point in development, but not as
co-evolving during generalization and/or specialization of
the respective object. Thus, an object life-cycle as illustrated
in Figure 1 results and the high level information originally
contained in the object model becomes progressively obso-
lete. We claim that this unnecessarily spoils information that
has been already available and hence will lead in the end to
costly reverse engineering efforts. Figure 1 illustrates, that
the more the object evolves, the further it diverges from its
initial object model OM . Hence, the initial object model is
becoming less and less a documentation or specification of
the system. So its value decreases with each evolutionary
step.

3. Object model evolution

Departing from the assumption that maintenance on the
model (specification) level is less costly than maintenance
on the implementation level and certainly less costly then
any reverse engineering activity, the process described in
Figure 1 is wasteful in the long run.

Therefore we propose an approach for software mainte-
nance on the model level as illustrated in Figure 2. Here
maintenance activities are done on the object model OM .
The resulting object model OM � is now the basis for the

OI

OM

OI’ OI’’
Maintenance

Activity
Maintenance

Activity

Model Level

Implementation Level

Figure 1. Traditional object evolution

derivation of a corresponding object implementation OI �.
In accordance to the object evolution step (fromOI toOI �)
we call the step from OM to OM � as object model evolu-
tion. The benefits of model evolution can be seen on the
model level itself as well as between model and implemen-
tation level.

Maintenance
Activity

Maintenance
Activity

OM’’

OI

OM

OI’ OI’’

Model Level

Implementation Level

OM’

Figure 2. Object model evolution

Co-evolution of model and implementation will yield a
set of “benefits of discipline”. They fall in one of the fol-
lowing categories:

� Model evolution provides a network of related ob-
ject models that define a road-map of object evolution
and thus also a possibility for specification based soft-
ware retrieval [9] and other forms of focussed software
reuse.

� This provides guidance concerning the sequence of
maintenance steps necessary to consistently buildOM �

out of OM . By maintenance activity steps we refer to
changes such as described in [10, 5]. Taking the hierar-
chical structure of Kungs classification [5], it is possi-
ble to describe the distance betweenOM andOM � on
different levels of granularity.

� Making explicit constraints that are (implicitly) as-
sumed as given in (parts of) the implementation. Thus,
one can relate those constraints and reason about them
and it will become possible to decide whether a mainte-
nance step violates a constraint in the object model that
is only hard to find or even not explicitly represented at
the implementation level. Constraints of this kind are
a main source of the difficulty of program comprehen-
sion and hence a recurring source of maintenance and
testing problems.

2



With further instrumentation of the relationships between
model- and implementation level, one can obtain addition-
ally:

1. Guided object evolution via service channels. This is
the most powerful version of object evolution by model
evolution.

2. Protected object evolution via test support.

3. Object evolution by plain programming.

A service channel is a mechanism to relate a sequence of
transformations on the model level to the code level. In its
most powerful version, as adaptive service channel, model
level changes are propagated automatically to the imple-
mentation level. Such propagations are safe against intro-
ducing inconsistencies or violations of constraints expressed
in the object’s model. Thus, a safe transformation from OI

to OI � can be guaranteed. These automatic code adaptions
are only possible, if the service channel can be sure that there
are not any hidden implicit constraints remaining. When
this is not the case, service channels can still assume an ob-
serving role as verificative service channels. Based on the
difference between OM and OM � they can be used to gen-
erate test-cases [14] for checkingOI � against the changes in
the specification. The specific benefits from focussed testing
in class structures can be seen from [3]. Certainly, one can
express modifications on the model level that are beyond the
provisions foreseen by any service channel. This applies no-
tably whenOM andOM � seem to be unrelated from a tool’s
perspective. Then, the respective modifications toOI � have
to be performed unsupported and no safe transition fromOI
toOI � can be guaranteed. The maintainer has, however, still
the benefit to work in a forward looking manner and does not
need to start the task with a reverse engineering activity.

Figure 2 could be interpreted just as a methodological ad-
vice. As such, it might already help in lots of situations and
be in line with what is currently seen as “best practice”. The
argument against this disciplined approach is usually stress-
ful maintenance and neglicence to clean up later, what has
been missed in an initial rush-job. The argument of doing
the same work twice (on the model level and on the imple-
mentation level) is raised as an excuse. This excuse – it
might never have been valid – is rendered invalid if the sum
of work on the horizontal and the downward pointing arrow
is less than the work one would have to do on the bent arrow
representing implementation level maintenance. Machine
support for the vertical arrow will help to turn the economics
to where the technical perfection rests. Service channels are
proposed as adequate mechanisms to achieve this.

Figure 3 summarizes the idea of object evolution by
model evolution using service channels. Whether object
evolution is fully supported by service channels, only ex-
post supported by a test data generator, or even basically not

Checking
Model

Model
Object

Adapted

Object
Implementation

Object
Implementation

Adapted

Generation
Testcase

Object
Evolution

Service
Channel

Plain
Programming

Object
Model

Model
Evolution

Changes in
Requirements

Figure 3. Maintenance with service channels

supported at all so that just the benefits of model checking
remain, depends on a classification of the changes on the
model level resulting from respective requirements changes.

4. Realizations of service channels

So far, service channels have just been presented as a con-
cept. Now we introduce two quite different options to real-
ize them. A detailed discussion of these variations backed
up by example modifications is given in [13].

4.1 Built-in service channels

Built-in service channels are special methods written
specifically for the object under consideration, implemented
as “service methods”, not accessible to the regular “clients”
of this object. Such service devices are not a new concept
in conventional engineering. We find them as extra func-
tionality due to the engineering knowledge of the developer,
built beyond any users request. Examples one might think
of range from water pipes built into buildings for use by the
fire brigade via staircases or elevators in hotels marked by
“personell only” to plugs in cars, where special diagnostic
equipment can be connected and test-busses on highly com-
plex VLSI-chips. These examples show already a breadth of
purpose as well as the fact, that there is an engineering deci-
sion as to how much one builds into the specific object (pipes
etc.) and how much one leaves outside for instrumentation
on demand (service–plug).

As can be seen from the engineering examples, built-in
service channels are designed with full knowledge of the de-
sign of the artefact they are built into. This applies to soft-
ware service channels too: They “know” the object’s model,
and for the spectrum of changes they are to support also the
relationship between model and implementation.

For an obvious example we refer to the relationship be-
tween the state space, its implementation and its realization
in various methods. Assume a requirements change leads

3



to an extension of the state space. The service channel sup-
porting this change will identify all those parts in the imple-
mentation that need to be changed, in case the change can be
performed in a simple way (e.g. changing a constant) it will
perform this change on the source code level and after re-
compilation, the object’s implementation will be consistent
again.

Under certain conditions, one could also conceive of such
modifications on the fly. Its discussion is beyond the scope
of this paper though.

4.2 External service channels

The example given above demonstrated that normal op-
eration of an object and operating its service channel are
quite different operations. While during normal opera-
tion, its state will be changed, operating its service channel
changes its state space. Hence, it is not an operation on the
instance level, but – to borrow data base terminology – on
the schema level. Since we are dealing with software, re-
compilation is the normal consequence.

This very different usage pattern motivates the question
why such an operation has to be built-in and not kept sepa-
rate from the object as an independent tool. Obviously, this
is a valid alternative. We are referring to such special tools
as external service channels. Their main difference to built-
in service channels can be seen again from an analogy: Con-
sidering the fire brigade, a fire-man on a ladder sprinkling
water out of a hose to a burning building would be the “ex-
ternal” alternative to the built-in pipes and sprinklers.

These are specific maintenance tools, designed indepen-
dently of the specific object they are operating on.

External service channels are specific maintenance tools,
designed independently of the specific object they are oper-
ating on. Their purpose is to identify change, change propa-
gation and limits to change propagation. An external service
channel consists of general tools for program understand-
ing and reverse engineering such as slicers, ER- or structure
charts generators etc. With them, support can be given for
change categories not anticipated and therefore infeasible to
deal with by built-in service channels. With the external ser-
vice channel, the conceptional network that is preestablished
in the internal service channel will be defined on the fly. A
consequence is, that the maintenance support they provide
will be reduced. To improve their performance, special ser-
vice plugs, such as explicit links between identifiers used at
the model level and identifiers used in the implementation
can be provided.

5. Conclusion

This paper discusses concepts to improve maintenance
of object oriented software beyond conventional code-level

inheritance mechanisms. Based on formal specifications,
service channels have been proposed to instrument links
between the specification and implementation of objects.
Thus, specification and implementation of objects evolve in
a consistent manner and aging processes due to successive
maintenance are blocked or reduced.

The power and generality of service channels depends on
their specific architecture. Hints for the main architectural
choices have been given. For a detailed discussion we refer
to [13].

References

[1] J. Banerjee, H.-T. Chou, H. J. Kim, and H. F. Korth. Se-
mantics and implementation of schema evolution in object-
oriented databases. SIGMOD RECORD, 16(3):311–322,
1987.

[2] E. Casais. Managing Class Evolution in Object-Oriented
Systems. In O. Nierstrasz and D. Tsichritzis, editors, Object-
Oriented Software Composition, pages 204–244. Prentice
Hall International (UK) Ltd., 1995.

[3] M. J. Harrold, J. D. McGregor, and K. Fitzpatrick. In-
cremental testing of object-oriented class structures. In
Proc. 14th International Conference on Software Engineer-
ing (ICSE’92), pages 68 – 80, 1992.

[4] B. Henderson-Sellers and J. Edwards. The object-oriented
systems life cycle. Communications of the ACM, 33(9):142
– 159, Sept. 1990.

[5] D. Kung, J. Gao, P. Hsia, F. Wen, Y. Toyoshima, and C. Chen.
Change Impact Identification in Object-Oriented Software
Maintenance. In Proc. of the International Conference on
Software Maintenance, pages 202–211, 1994.

[6] M. M. Lehman. Programs, life cycles and laws of software
evolution. Proceedings of the IEEE, 68(9):1060 – 1076,
Sept. 1980.

[7] K. J. Lieberherr and C. Xiao. Object-Oriented Software
Evolution. IEEE Transactions on Software Engineering,
19(4):313–343, Apr. 1993.

[8] S. Matsuura, H. Kuruma, and S. Honiden. EVA: A Flexible
Programming Method for Evolving Systems. IEEE Transac-
tions on Software Engineering, 23(4):296–313, May 1997.

[9] R. Mili, A. Mili, and R. T. Mittermeir. Storing and Retrieving
Software Components: A Refinement-Based System. IEEE
Transactions on Software Engineering, 23(7):445–459, July
1997.

[10] R. Mittermeir and K. Kienzl. Intra-Object Schemas to
Enhance Adaptive Software Maintenance. In Austro-
Hungarian Software Engineering Seminar, 1993.

[11] S. Monk and I. Sommerville. Schema Evolution in OODBs
Using Class Versioning. SIGMOD RECORD, 22(3):16–22,
1993.

[12] D. Parnas. Software aging. In Proc. 16th Int. Conference on
Software Engineering (ICSE’94), pages 279 – 287, 1994.

[13] H. Pirker and R. T. Mittermeir. Service Channels - Purpose
and Realization. Technical report, Univ. Klagenfurt, 1997.

[14] P. Stocks and D. Carrington. A Framework for Specification-
Based Testing. IEEE Transactions on Software Engineering,
22(11):777–793, Nov. 1996.

4


