
VIEWS AS SECURITY MECHANISM IN OBJECT-ORIENTED DATABASE MANAGEMENT SYSTEMS
Michael Dobrovnik, Elke Hochm�llerInstitut f�r Informatik-SystemeUniversitÜt KlagenfurtKlagenfurt, AUSTRIAEmail: {michi,elke}@ifi.uni-klu.ac.at

ABSTRACT rights to other users at his complete discretion. Grantees can also
The semantically rich data models of object-oriented database be permitted to pass a subset of their rights to other users.

management systems (OODBMSs) are much more a challenge to While this approach is very flexible and adaptive, there is no
achieve security than the traditional (relational) models. Issues to central security policy that can be enforced by a subsystem of the
be considered include inheritance relationships and complex database. The security of the data heavily depends on the
object aggregations as well as method executions. discipline and wellbehavedness of the individual holders of

In relational systems, views have their place as one important access rights. Semantically rich object-oriented data models
building block of the security mechanism. They allow to derive which support inheritance, associations, composite data struc-
and re-structure the schema according to security requirements tures, navigation and methods pose additional challenges to
and also to implement content based restrictions on database discretionary access control (Lunt and Fernandez, 1990).
access. Mandatory access control. Mechanisms for mandatory access

The construction of derived schema elements and schema control require to label all objects in a database based on their
restructuring in order to design subschemas as external models
are also main goals of approaches for view mechanisms in
OODBMSs. While security is not the main focus of those
proposals, it seems equally promising to use them as implementa-
tion means to achieve security like in the relational systems.

One of the newer and more powerful proposals for views in
OODBMSs is our approach named eXoT/C. It supports the
derivation of external schemas from the conceptual schema by
means of a mapping specification. All security requirements can
be captured in the mapping itself. For the users of external
schemas this mechanism is transparent and there are no security
induced effects on the conceptual schema which would distort its
semantics.

Through an example which takes into account all the impor-
tant categories of security constraints in OODBMSs we will
investigate the suitability and assess the usefulness of eXoT/C
with respect to security issues.

1 MOTIVATION
Approaches to achieve security in database systems can be

classified into two categories, namely discretionary and manda-
tory access control.

Discretionary access control. The main idea of discretionary
security mechanisms (also called authorization models), is that of
ownership of information in combination with delegation of
access rights. An owner of a piece of information can apply any
legal operation to it. The owner can further grant a subset of his

sensitivity (classification). The active processes requesting access
to database objects (e.g. users, application programs) are called
subjects and are assigned to a clearance level. Classifications and
clearances are partially ordered. There is a strictly enforced
central security policy (the Bell-LaPadula model) which has two
aspects. A subject is allowed to read a data item if the subject's
clearance is greater than or equal to the data item's classification
(read down). A subject is allowed to write data classified equal
to or higher than the subjects clearance (write up). This ensures
unidirectional information flows from subjects at a lower
clearance to subjects at a higher one and leads to a multilevel
database which appears to be different to subjects at different
clearances (Pernul, 1995).

The rigidity of this policy implies high inflexibility and has
severe impact on schema design. In most approaches, a concep-
tual class whose attributes are attached to different classifications
(multilevel classes) requires a realization via a set of intercon-
nected classes, each at a single security level. Additional
inheritance relationships and associations based solely on security
requirements are thereby introduced to the schema (cf. Millen
and Lunt, 1992). The resulting schemas have poor quality in the
areas of minimality, expressiveness, readability, self-explanation
and extensibility (cf. Batini et al. 1992).

In addition to the two traditional kinds of access control
mechanisms, the ANSI/SPARC three-level architecture could
serve as a basis for the realization of a security subsystem. The
external schemas can be regarded as the sole part of the database

Employee

ssn
name
salary
birthday
sex

age()

Manager

bonus

total_budget()

Project

title
budget
category

projects

members
assignment

leader
leadership

guided_projects

a user or application is permitted to access. This perspective paper to represent the static object schemas of the examples. As
suggests a closer investigation of the applicability and usefulness required by OMT, inherited attributes and methods will not be
of external schemas as building block for access control. denoted again.

The challenge is to provide a mapping mechanism between Fig. 1 contains the OMT object schema of a conceptual
the conceptual schema and the external schemas which is model in a simplified enterprise domain. It consists of three
powerful enough to express all common kinds of security object types: Employee, Manager, and Project. Object type
constraints. Semantically rich object oriented data models withEmployee is characterized by the attributes ssn, name,
their support of static and dynamic constructs seem to be ideally salary, birthday, sex and the method age(). The object
suited as an implementation framework. type Project has title, budget, and category as

Object-oriented views. As in relational systems, views in relationship). Object type Manager is defined as subtype of
OODBMSs allow one to construct derived schema elements and Employee and inherits all attributes, methods and relationships
subschemas. Although most proposals for OO views do not of Employee. Each Project is lead by one Manager.
claim to be security models in the first place they provide a Bonus is an additional attribute of Manager. The method
schema mapping facility which can be utilized as means to total_budget() returns the sum of budgets of those projects
realize security support in the object-oriented context. which are lead by the manager.

The applicability of object-oriented views for the realization
of security constraints was already examined by Hochmüller
(1996), with eXoT/C (say: exotic) as representative of an object-
oriented view approach. In the comparison, the problem of
inheritance anomalies did arise especially in the case of manda-
tory access control of multilevel real world entities realized by
single level objects even for minuscule examples, while the
object-oriented view approach was free of this semantic dilemma.

This result inspired us to further investigate the principal
suitability of object-oriented views for access control. The
central idea of this paper is not a complete presentation of the
area of object-oriented views (for a comparison of different
proposals cf. Motschnig-Pitrik, 1996 and Dobrovnik, 1997), but
to discuss the realization of access control with eXoT/C through
an example which features all categories of security constraints
(cf. Pernul, 1994; Castano, 1995).

The rest of the paper is structured as follows. In section 2 the
security constraint categories are presented in the context of the 2.2 Security constraint categories
example which will be used throughout the paper. Section 3
gives a brief introduction to the basic features of eXoT/C
illustrated by the implementation of the conceptual schema of the
example. The realization of the schema mapping together with its
discussion by constraint category is dealt with in section 4. An
assessment of the object-oriented view approach in contrast to the
two traditional security approaches can be found in section 5.
The security-specific contributions of our approach are summa-
rized in the last section.

2 SECURITY CONSTRAINTS
In order to establish a common basis for the explanation of

the various security constraint categories as well as for the
discussion of the realization of security constraints with object-
oriented views, we will next introduce a simple example schema.
Af terwards, the security constraints proposed so far in the
literature will be briefly discussed .Then, we will constrain the
example schema according to security requirements. The
applicability of object-oriented views for the realization of these
security constraints will be demonstrated in section 4.

2.1 Example schema
For the sake of uniformity, the OMT notation of Rumbaugh

et al. (1991) will be used (with some extensions) throughout the

attributes. Employees can be assigned to projects (many-to-many

Fig. 1 Conceptual object schema

In the sequel, we will talk of security objects when we refer
to objects in the database as well as when we consider query
results. Security constraints are already discussed and classified
in li terature (cf. Castano et al., 1995; Pernul, 1994; Pernul,
1995). In our discussion of security constraints, we follow the
taxonomy as presented by Pernul (1994). This classification
distinguishes between two different types of application-depen-
dent security constraints:

• constraints that classify characteristic properties (attributes,
methods) of security objects (2.2.1 to 2.2.4)

• constraints that classify retrieval results (2.2.5 to 2.2.7)

In the following, all these kinds of security constraints will be
shortly described and illustrated by example constraints on the
elements of the object schema represented in fig. 1.

2.2.1 Simple constraints
Simple constraints classify certain properties of one security

object to be at a higher security level than others of the same
object.

Example. The budget of each project is confidential. This
requires to classify the attribute budget of object type Pro-
ject at a secure level.

S

Manager

bonus

total_budget()

Employee

ssn
name
salary {S}
birthday {S if sex=’F’}
sex

age() {birthday.level} Project {S if category = ’critical’}

title
budget {S}
category

{Project.level}

projects

members
assignment

guided_projects

leaderleadership
{Project.level}

2.2.2 Content constraints level. This should protect from inferring which team is responsi-
Content constraints classify characteristic properties of one ble for what project (cf. Pernul, 1994). However, enough trials

security object based on their particular values or on the values of querying single assignments will help to elude any aggregation
of other properties of the same object. constraint.

Example. The birthday of women is confidential. Hence, the
security level of Employee’s attribute birthday depends on 2.3 Example schema with security constraints
the value of attribute sex. Fig. 2 is an extension of fig. 1. It contains some security

2.2.3 Complex constraints application context. For reasons of simplicity we use two
Complex constraints classify characteristic properties of one classification levels: unclassified (U) and secure (S). Only secure

security object based on the values of properties of another elements will be explicitly denoted as such ones in the object
associated object. schema of fig. 2. We use this simple notation for the sake of a

Example. All information about critical projects is confiden- clear presentation. For a somewhat more complete notation the
tial. This implies that assignments of Employees to reader is referred to MOMT (Marks et al., 1996).
Projects with category = `critical` has to be The attribute budget of a Project is secure. Projects
classified at a secure level. themselves are either unclassified or secure. A Project is secure

2.2.4 Level-based constraints projects is secure (assignments, leaderships, and exclusion from
Level-based constraints classify characteristic properties of computation of manager’s budget sum).

one security object based on the classification of another property The values of attribute salary are unclassified. Their
of the same object. association to instances of object type Employee, however, is

Example. The method age() of Employee must always be secure. The birthday of women is secure. This requires also
at the same classification level as the attribute birthday. the computation of women’s age to be secure (corresponds to a

2.2.5 Association-based constraints
Association-based constraints classify the combination of the

value of certain characteristic properties of one object with the
identifying property of this object at a higher level of classifica-
tion as the values of the unrelated properties themselves. This
constraint type is also called context constraint (Castano, 1995).

Example. The salary of each individual employee is confiden-
tial. However, the values of salary without any information about
which employee gets what salary are unclassified. Thus, the
relationship between the values of the attribute salary and the
corresponding Employee objects are classified at a secure level.

2.2.6 Inference constraints
Inference constraints restrict from being able to infer classified

information by using unclassified data and hidden paths which
may also involve personal background knowledge.

Example. The total budget of a manager can be considered as
unclassified if the amount of these projects is high enough. This
would require to allow the computation of the total budget
(message total_budget()) only if a proper condition (e.g.
cardinality of property guided_projects should be greater
than 3) holds.

2.2.7 Aggregation constraints
Aggregation constraints classify several instances of the same

security object at a higher security level than single instances of
the same object. As single instances usually can be aggregated
offline, an aggregation constraint might not be very useful on its
own. Moreover, such an aggregation constraint will require to external schema elements (types, containers) from conceptual
restrict access to the single instances (through other constraints ones. Object generating and object preserving semantics are
of the categories presented above) in order to inhibit offline supported. We do not only take into account structural aspects
aggregation.

Example. Let us consider the assignment of projects to
employees as unclassified. However, the aggregation of all
employee assignments to a certain project should be at a secure

constraints which will subsequently be discussed within the

if its category is 'critical'. All information about secure

kind of 'dynamic' level-based constraint).

Fig. 2 Object schema with security constraints

3 OBJECT-ORIENTED VIEWS WITH eXoT/C

3.1 General Architecture
The main principle of the eXoT/C proposal as developed by

Dobrovnik (1995) is the clear and clean separation of the
conceptual schema from the external schemas. An external
schema can be regarded as a kind of interface specification
through which the database (the conceptual schema) can be
accessed. The designer of an external schema implements it as a
derived schema via a mapping specification.

There are special type constructors which allow to derive

(type and schema restructuring) but also deal quite extensively
with dynamic aspects as inter schema method resolution and
method steadiness (cf. Dobrovnik and Eder, 1996). Since we are
not in the position to present an in-depth treatment of eXoT/C

here due to space limitations, we refer to Dobrovnik and Eder, specified in a straightforward manner. The associations of the
1994 and to Dobrovnik, 1995. OMT model are implemented as attributes in the object types

In the sequel, we will present the data model of eXoT/C which are used to reference the objects at the other end of the
which can essentially be regarded as being a subset of the association. In this example, we arbitrarily chose to support
ODMG proposal (Catell et al. 1997). The data model is illus- bidirectional navigation by realizing such attributes on both sides
trated by the conceptual schema implementation of the running of the relationships (e.g. projects and members in object
example from fig. 1. The constructs for the derivation of external types Employee and Project).
schemas will be explained in section 4. The three containers implement the extensional part of the

3.2 Data Model The implementations of the methods are also included in the
We distinguish between extensional and intensional concepts, schema. For the sake of a focused presentation, some minor data

so a schema in our data model consists of a set of types and a set type conversions were deliberately left out.
of containers. The types describe the structural and behavioral
aspects of the objects and values.

We provide some atomic value types (boolean, integer, string,
...) and an atomic root object type. The type constructors set and
tuple can be orthogonally applied to types to build set valued and
tuple valued structured value types.

Object types (also commonly referred to as classes) can be
declared through the use of the object type constructor object.
They are positioned in an inheritance lattice which supports
conventional structural top down multiple inheritance semantics.
Conflicts are circumvented by demanding an unambiguous origin
of the object type components and methods.

The definition of a subtype can make use of covariant
redefinition of attributes and method signatures. The subtype
relation also defines type substitutability and assignment compati-
bility, namely wherever an instance of a certain type can be used,
it is also allowed to use an instance of one of its subtypes.

At the extensional level, we provide containers, which can be
described as typed object sets. An instance of an object type can
be added to any type-compatible container and can also be
removed from it. The containers are user defined object sets
which also provide persistence. An object persists the current
session when it is in at least one object container or when it is
referenced by another persistent object (persistence by
reachability). Currently, there is no hierarchy defined between
the containers. The object types are the factories and the
containers are the warehouses of the object instances.

We assume the existence of a Turing complete procedural
language for the implementation of methods and also of a
declarative query language.

All object types have to be well formed, a property which
restricts overriding of components and methods to the covariant
case and avoids multiple inheritance conflicts in requiring that
all methods and components have a unique origin.

If all object type definitions in a schema are well formed then
the schema obeys the covariant subtyping principle. As usual, the
object generating method new() is treated differently, since it
can already be bound at compile time.

3.3 Conceptual schema definition
Before we discuss the realization of the security constraints

presented in the previous chapter, we will briefly introduce the
syntax and semantics of the schema definition language used in
eXoT/C. Fig. 3 illustrates the implementation of the conceptual
schema as described in section 2.1.

The structural aspects of the three OMT classes are repre-
sented as object types. Attributes and method signatures are

model serving as persistence roots and entry points for queries.

schema Enterprise {
object Employee {
 ssn : string;
 name : string;
 salary : money;
 birthday : date;
 sex : char;
 projects : set(Project);
 age() : integer;
}

object Manager : Employee {
 bonus : money;
 guided_projects : set(Project);
 total_budget() : money;
}

object Project {
 title : string;
 budget : money;
 category : string;
 leader : Manager;
 members : set(Employee);
}

container TheProjects : Project;
container TheEmployees : Employee;
container TheManagers : Manager;

method age(): integer in Employee {
 return today()-self.birthday;
}

method total_budget() : money in Manager {
 return sum(select budget
 from p
 in self.guided_projects);
}
} // Enterprise

Fig. 3 Conceptual Schema in eXoT/C

4 IMPLEMENTING SECURITY CONSTRAINTS
In this section we will show how our view mechanism can be

used to achieve the desired level of security as specified in fig.
2. The main principle is likewise straightforward and elegant.

4.1 Schema mapping
We use the conceptual schema as a basis from which we

construct an external schema (view). The schema derivation is
specified through a slightly extended form of the schema
definition language which was already used for conceptual
schemas. Through the derivation specification we define a
mapping between the conceptual schema and the external
schema. The user of an external schema is neither aware of the
underlying conceptual schema nor of the details of the mapping
used to derive his view.

\tFor type equivalence and type compatibility, we use the same rules as in ODMG. Two types S , T are equivalent, iff S is a subtype of T and vice versa. More explicitly, two types are equivalent, if they are named types (predefined types or object types) and have the same name, or they are anonymous types (set or tuple types) and if their structure is identical. For set types, the element type must be identical, and for record types, components must be identical in number, name and type. \tSo basically, we use name equivalence for object types and structural equivalence for anonymous types. We do not use structural object equivalence, since we do not want to introduce additional type equivalences in the external schema which do not have any correspondence in the conceptual schema. Such an unwanted equivalence would arise externally, if two external types have the same externally visible structure, but are based on incompatible conceptual types. \tAn assignment a:=b is permissible, if the type of a is a supertype of the type of the expression b . The type of an actual parameter must be a subtype of the formal parameter it substitutes.

The elements of the external schema (derived types and
containers) are described on the basis of conceptual schema
elements. Type derivation allows one to use either all characteris-
tics of a conceptual type or to restrict the external representation
to a subset of the conceptually known attributes and methods.
External types can also be extended via the specification of new
methods. For external containers a subset of the conceptual
extensions can be specified via a query expression.

All of the possible mapping mechanisms can be found in fig.
4 which shows the external schema mapping necessary to
implement the security constraints presented in section 2.3. We
will take a closer look at this mapping in the next section.

4.2 Security constraints revisited
We will explain the schema mapping in fig. 4 according to

the classification of security constraints presented earlier.

4.2.1 Simple constraints
The derivation of the external type Project from the

conceptual one takes the confidentiality of budget into account.
The attribute does not appear in the projection list of the external
type definition. The external appearance of projects is therefore
"budgetless". Type restriction as applied in this case can be used
to conceal the existence of conceptually defined attributes or
methods from the user of the external type. Type projection
typically implements simple security constraints (cf. sec. 2.2.1).

The projection mechanism is also used in the derivation of
type Employee. Since attribute salary was specified to be
secure, it is omitted from the projection list.

4.2.2 Content constraints
The implementation of a content security constraint can also

be seen in the derivation specification of Employee. As the
classification of attribute birthday depends on the sex of the
employee (cf. sec. 2.2.2), the attribute value must be hidden for
female employees while it is unclassified for male ones. Con-
straints of this type can only be dynamically evaluated at run
time. The way to implement such constraints in eXoT/C consists
of two steps. First, the dependent attribute (or method) has to be
projected away by type restriction as mentioned above. This
implies that no instance of the type has such an externally
observable attribute. But since this is too restrictive according to
the security requirements (the birthday of males is unclassified),
in the second step, we need to construct a mechanism by which
the unclassified values can be retrieved. It is rather evident to
implement an additional method for Employee, which dynami-
cally evaluates the condition of the content constraint. In the
example, the externally defined method birthday() only
returns the birthday if the method is sent to an object of type
Employee with sex='M'. If the birthday of a female em-
ployee is requested, the method could either return a cover story,
a null value or a special value. For the example we use the
special value N/A (not available).

Method birthday() in fig. 4 is notable for the reason that
it shows the access mechanism for conceptually defined attributes
which were excluded from the external type definition by
projection. The actual conceptually defined attribute is denoted
by object.attribute@. In the case of birthday(), we
use self.birthday@ to access the conceptual attribute.

derive schema UnclassifiedEnterprise
from Enterprise {

derive Project {
 from Project {
 title: string;

category : string;
leader : Manager;
members : set(Employee);

 }
}

derive Employee {
 from Employee{
 ssn : string;
 name : string;
 sex : char;
 }
birthday() : date;
age() : integer;
projects() :set(project);
}
method birthday() : date in Employee {
 if (self.sex = 'F')

return (N/A)
 else

 return self.birthday@;
}
method age():integer in Employee {
 if (self.birthday()=N/A)
 return N/A
 else
 return self.age()@;
}
method projects() : set(Project) in Employee {

return
 (select P from p in self.projects@
 where p.category <> 'critical');
}

derive Manager : Employee {
 from Manager {
 bonus : money;
 }
 guided_projects() : set(Project);
 total_budget() : money;
}
method guided_projects() : set(Project) in Manager
{

return
 (select P from p in self.guided_projects@
 where p.category <> 'critical');
}
method total_budget() : money in Manager {
 if (card(self.guided_projects()) < 3)
 return (N/A)
 else
 return sum(
 select budget from p
 in self.guided_projects());
}

container TheEmployees : Employee =
select E from E in TheEmployees@;

container TheManagers : Manager =
select M from M in TheManagers@;

container TheProjects : Project =
select P from P in TheProjects@
where P.category <> 'critical';

container TheSalaries : money =
select salary from E in TheEmployees@;

}; // UnclassifiedEnterprise

Fig. 4 External schema definition

It is important to stress the fact that this mechanism for inter
schema referencing does not offer users a way to circumvent the
security restrictions. The @-notation can solely be used by the
designer of the schema mapping who implements the desired
security boundary. There is no means for the user of an external
schema to make any forbidden use of this feature even if he
should gain access to the mapping specification or the description
of the conceptual schema (which shouldn't be the case normally).

The @-notation allows the external schema designer to make
use of all attributes and methods in the conceptual schema.
Decisions about the classification of an attribute or return value
of a method can therefore be made with the whole database
being accessible.

This power does also imply the possibility to implement a
"covert channel". It is the responsibility of the designer of the
schema mapping to check for and eliminate such security holes.
Since much of the security restrictions are implemented structur-
ally via types this task is not so problematic as it may seem to
be at the first glance. When a conceptual type is restricted via
projection, the resulting external type definition is used to
describe the observable structure of the conceptual instances for
the user of the external schema. In the context of our example
this means that projects do not have a budget, independent of the
place where they occur (e.g. as attributes projects in type
Employee and guided_projects in type Manager).

4.2.3 Complex constraints
Complex constraints (cf. sec. 2.2.3) can be implemented in a

way rather similar to that used for content constraints. In our
example, projects with 'critical' category are secure. This includes
also associations with members and leaders and computations of
budget sums. To restrict the view to unclassified projects only,
we construct a derived container using an adequate selection
criterion. The external container TheProjects includes all
unclassified projects. The classified ones are never visible to the
user. Associations require some careful considerations. While it
is not necessary to restrict the navigation from secure objects to
unclassified ones, it is essential to explicitly avoid references
from unclassified objects to secure ones.

In the example this is realized through the methods pro-
jects() in Employee and guided_projects() in
Manager. Both methods replace the corresponding conceptual
attributes which were projected away during type derivation.
They simply apply the same selection criterion as used for the
container TheProjects to the conceptual attributes. Since the
whole conceptual database is accessible for the methods by
means of the @-notation, arbitrarily complicated complex
constraints can be expressed.

4.2.4 Level-based constraints
The realization of a level based constraint can be seen in the

method age() of Employee. Ages of employees are classified
if their birthday is classified (cf. sec. 2.2.4). The implementation
principle is again very similar to that of content based con-
straints. The conceptual attribute or method is projected away
and a new method is introduced in the mapping specification
which dynamically checks the classification of the independent
attribute. Depending on the result of the check, the real value is
returned or hidden.

Had we just projected the conceptually defined method
age() in the external type definition of Employee, then the
age of each employee would have been accessible. A conceptu-
ally defined method executes in the context of the conceptual
schema and can use/call all attributes/methods defined therein.
This feature is highly desired from the point of functionality and
schema reuse, but viewed in the context of security requirements,
it may seem to be a security hole. Had the original security
constraints not included the explicit requirements for the
classification of ages depending on the classification of birthdays,
the schema designer may have forgotten to restrict access to it.
As a consequence, birthdays may be inferred up to a resolution
of one year by using the unclassified age() method.

4.2.5 Association constraints
Since association-based constraints disallow the connection

between attributes of objects and their actual values (cf. sec.
2.2.5), they can be dealt with like simple constraints as a first
step. By projecting away the attributes in the object types, we
hide the attributes altogether. But this treatment alone would be
too restrictive, since the values would also be unaccessible. We
need to offer a way to access the isolated values. In the example
we achieve this by the construction of an additional container
TheSalaries which selects all salary values from the concep-
tual container for employees. Another possible solution would
have been the realization of a second derived type based on the
conceptual object type Employee with a single attribute
salary and of a container referring to this type.

4.2.6 Inference Constraints
Inference constraints also require to implement additional

restrictions of attributes or return values of methods. Possible
inference paths must be specified and need special treatment. The
example we gave in section 2.2.6 considered the inference from
aggregate values to the values they where computed from in the
case of just a few such values. Project budgets are classified,
total budgets of managers are not. In fig. 4 the conceptual
method total_budget() in Manager was replaced by a new
external method which acts as a guard for the real aggregate
value. As our example requires the budget of 'critical'
projects to be excluded from the budget sum, the selection in
method total_budget() is based on the externally computed
guided_projects(). If all budget values were allowed to be
included in the budget sum, the method code of
total_budget() would simply need to call the conceptual
method total_budget() by using the @-notation.

4.3 Resulting external schema
The result of the schema derivation process according to the

definitions in fig. 4 is presented in fig. 5 (on the next page)
which should be self-explanatory. This is the only information
about the database structure a user has evidence of. For the user,
the mapping specification and the underlying conceptual schema
are neither visible nor accessible by any means.

Hence, the object-oriented view approach does not just
implement the external schemas and provide the mapping
mechanism between the conceptual and external levels but also
allows one to use this mapping to enforce a security boundary
around the conceptual schema.

Employee {S}

salary

Employee {U}

ssn
name

Manager {S}

Manager {U}

bonus

schema UnclassifiedEnterprise {

object Project {
 title: string;
 category : string;

leader : Manager;
members : set(Employee);

}

object Employee{
 ssn : string;
 name : string;
 sex : char;
 birthday() : date;
 age() : integer;
 projects() :set(project);
}

object Manager : Employee {
 bonus : money;
 guided_projects() : set(Project);
 total_budget() : money;
}

container TheEmployees : Employee;
container TheManagers : Manager;
container TheProjects : Project;
container TheSalaries : money;

}; // UnclassifiedEnterprise

Fig. 5 Resulting external schema

5 ASSESSMENT
Object-oriented views or external schemas can be described

neither as a plain discretionary nor as a pure mandatory approach
for access control. While they have properties of each of the two
mainstream kinds of security models, they do not completely fit
into one of these categories.

Comparing the external schema approach with discretionary
models (e.g. Fernandez et al., 1993; Brüggemann, 1994) we note
that the former does not explicitly include the notion of a
grant/revoke mechanism. The grant granularity as presented here
is a whole external schema which is defined and carefully
tailored by a security administrator according to the central
security requirements at a "schema definition time". The authori-
zation models are more flexible in allowing users to grant/revoke
access rights dynamically at run time. But as already mentioned
in the first section of the paper, this also leads to a decentrally
defined security "policy" which is a moving target and not
enforceable. A security architecture with external schemas as
their basic building block and an authorization model on top of
it might be a promising framework combining the advantages of
both approaches namely flexible delegation of rights within a
tight security boundary.

In contrast to security models with mandatory access control
(multilevel approaches with single level object representations),
the view based realization of security requirements does have
minimal influence on conceptual schema design. Even a small
example should make this point obvious. In fig. 6, the realization
of one simple security constraint is shown. The starting point
(which is a simpler version of our running example) is a type
Employee with a subtype Manager. Employee has the
unclassified attributes ssn and name and a secure attribute
salary. The type Manager has an additional unclassified
attribute bonus.

The multilevel approaches split each of the conceptual types

Employee and Manager into two separate single-level parts.
This results in two secure and two unclassified components. The
two secure parts are related by inheritance which is also true for
the two unclassified parts which is stated in conventional OMT
notation. The unfamiliar dashed lines linking the secure and the
unclassified components of each of the two conceptual types may
be interpreted either as security induced inheritance (Jajodia et
al., 1995) or as association between composite objects (Bertino
and Jajodia, 1993). Both variants provide means to view just the
unclassified parts or to access the whole conceptual object.

Fig. 6 Simple constraint and multilevel classes

In the presence of more classification levels and/or more
complex security constraints the single level implementation can
lead to rather complicated structures in the conceptual schema.
The pure conceptual semantics of the schema are heavily
distorted by the security requirements. This class partitioning is
not the only problematic issue, others are class rearrangements
and object migration. A more detailed discussion of these
problems can be found is given by Hochmüller (1996).

A security solution based on eXoT/C allows for semantic
inheritance hierarchies and navigation paths in the conceptual as
well as in the external schemas. The derivation-based association
between conceptual and external schemas is (virtually) orthogonal
to traditional relationships between schema elements. This
enables us to implement security requirements as inter schema
mappings and preserves the original conceptual semantics.

But the virtues of the multilevel security models should not be
neglected. The strong policy and its strict enforcement is the
central feature. Views do not guarantee such a degree of control
and security per se. The flexibility in external schema construc-
tion puts the burden of the decision between security and
functionality of the external views onto the designer of the
mapping. The mandatory models and the view based security
approach have distinct strengths and limits making them suitable
for different domains depending on the relative importance
between rigid security and powerful functionality.

An open question is the feasibility of the mapping construc-
tion in the presence of complicated intertwined security con-
straints (cf. Burns 1992). Tool support for the semiautomatic
generation of the derivation specifications starting from a
MOMT-like static model would be advantageous for the task of
schema design as well as for the resulting security level. A

content-based security constraint like "all confidential projects are
secure" could for instance be used to automatically generate
corresponding filter expressions in all parts of the schema
mapping where projects can appear.

6 CONCLUSION
Object-oriented views can be used as an effective means of

access control and to implement a fine grained security mecha-
nism. Since the usage of components and notably also of
methods can be restricted via projection, the definition of
external schemas enables the DBA to draw a tight security
boundary between the parts of the database the user is entitled to
work on and the part he has no clearance for. In particular, the
usage of views does not only allow to restrict the rights of an
user to access data elements. The power and flexibility of
external schemas with respect to security is the ability to put
strong confinements on the user concerning his possibilities to
apply certain operations on those data objects.

Only the parts of the database, which are explicitly mapped
to the outer interface of the external schema are accessible to the
user of the external schema, and the way of manipulation of
those visible parts can be restricted to any degree. By providing
methods for certain selections or updates of the data, the external
schema designer can make available operations for the user of
the external schema in a strictly controlled way. These methods
can be made arbitrarily restrictive on their execution. Checks for
permissions of users on schema elements, validation of receivers
and parameters of the methods and arbitrary complex access and
modification rights can be implemented in such methods.

Nevertheless, these restrictions do not necessarily diminish the
power or the usability of the external schemas to an unwanted
degree. Since the implementor of the external schema has access
to all parts of the whole underlying conceptual layer, he can
design and provide quite powerful methods which are not
restricted in any sense. Neither the scope of those methods is
inherently confined to just a part of the conceptual schema, nor
are there any system implied limitations on the operations such
methods can execute.

So the designer of the external schema has available the full
power of the complete conceptual schema. It lies in his responsi-
bility to construct an adequate interface for users in terms of
power and security. Such an external schema should provide only
the necessary and sufficient operations on the data objects the
users are entitled to see, but it should also be restrictive in terms
of validation, plausibility and consistency.

REFERENCES
Batini, C., Ceri, S., and Navathe, S.B. (1992). Conceptual

Database Design; An Entity-Relationship Approach. The
Benjamin/Cummings Publishing Company Inc.

Bertino, E. and Jajodia, S. (1993). Modeling Multilevel
Entities Using Single Level Objects. Ceri, S., Tanaka, K., and
Tsur, S. editors, Deductive and Object-Oriented Databases
(DOOD'93), pages 415-428, Springer, LNCS 760.

Brüggemann, H.H. (1994). Object-Oriented Authorization. In
Paredaens, J., Tenenbaum, L. editors, Advances in Database
Systems; Implementations and Applications, pages 139-160.
Springer.

Burns, R.K. (1992). An Application Perspective on DBMS

Security Policies. In Lunt, T.F., editor, Research Directions in
Database Security, pages 227-233, Springer.

Castano, S., Fugini, M., Martella, G., and Samarati, P. (1995).
Database Security. Addison-Wesley.

Catell, R.G.G. et al. (1997). The Object Database Standard
ODMG 2.0. Morgan Kaufmann.

Dobrovnik, M. (1995). Externe Schemata in objekt-
orientierten Datenbankmanagementsystemen; Logische Daten-
unabhängigkeit durch Änderungen über Sichten. PhD thesis,
Universität Klagenfurt, also pulished as Dobrovnik, M. (1997)

Dobrovnik, M. (1997). Externe Schemata in objekt-
orientierten Datenbankmanagementsystemen; Logische
Datenunabhängigkeit durch Änderungen über Sichten. Infix.
DISDBIS 25.

Dobrovnik, M. and Eder, J. (1994). Adding View Support to
 ODMG-93. In Mizin, I. A., Kalinichenko, L. A., and Zhuralev,
Y. I., editors, Proc. Intl. Workshop on Advances in Databases
and Information Systems, pages 74-81, Moscow, Russia. Moscow
ACM SIGMOD Chapter.

Dobrovnik, M. and Eder, J. (1996). Logical Data Indepen-
dence and Modularity through Views in OODBMS. In Proc.
Engineering Systems Design and Analysis Conference (ESDA'96),
pages 13-20, Montpellier.

Fernandez, E.B., Larrondo-Petrie, M.M., and Gudes, E.
(1993). A Method-Based Authorization Model for Ob-
ject-Oriented Databases. In Thuraisingham, B., Sandhu, R., and
Ting, T.C., editors, Security for Object-Oriented Systems, pages
135-150, Washington DC. Springer Verlag.

Hochmüller E. (1996). Inheritance Contradictions between
Functional and Extra-Functional Requirements. In Proc. Second
World Conference on Integrated Design & Process Technology
(IDPT’96), Vol.1, pages 106-113, Austin. SDPS.

Jajodia, S., Kogan, B., and Sandhu, R.S. (1995). A Multilevel
Secure Object-Oriented Data Model. In Abrams, M. D., Jajodia,
S., and Podell, H. J., editors, Information Security - An Inte-
grated Collection of Essays, pages 596-616. IEEE CSP.

Kim,W. and Kelley, W. (1995). On View Support in Object-
Oriented Database Systems. In Kim, W., editor, Modern Data-
base Systems. The Object Model, Interoperatibility and Beyond.
ACM Press.

Lunt, T.F. and Fernandez, E.B. (1990). Database Security.
ACM SIGMOD RECORD, 19(4):90-97.

Marks, D.G., Sell P.J., and Thuraisingham, B.M. (1996).
MOMT: A multilevel object modeling technique for designing
secure database applications. JOOP 9(4):22-29.

Mill en, J.K. and Lunt, T.F. (1992). Security for Ob-
ject-Oriented Database Systems. In Proc. Symposium on Re-
search in Security and Privacy, Oakland, CO. IEEE CS Press.

Motschnig-Pitrik, R. (1996). Requirements and comparison of
view mechanisms for object-oriented databases. Information
Systems, 21(3):229-252.

Pernul, G. (1994). Database Security. Advances in Computers,
38:1-72.

Pernul, G. (1995). Information Systems Security: Scope,
State-of-the-art, and Evaluation of Techniques. International
Journal of Information Management, 12(3):165-180.

Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F., and
Lorensen, W. (1991). Object-Oriented Modeling and Design.
Prentice Hall.

