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Abstract

An architecture for a memory-resident, Parallel and Persistent
ObjectSTore (PPOST) is suggested. Different object-oriented data-
bases might be built on top of PPOST. The term memory-resident
(or main memory based) means that the primary storage device is
main memory. Persistence is guaranteed automatically by man-
aging secondary and stable storage devices (such as main mem-
ory with uninterrupted power supply, discs and tapes). The ar-
chitecture is able to take advantage of available main memory in
a parallel or distributed environment. Thus, transactions can be
actually performed with memory-speed, without being limited by
the size of the memory of a given computer. Such an architecture
is especially advantageous for applications requiring very fast an-
swers, such as CAD or high-performance simulation.

�The implementation environment is partly supported by Digital Equipment Cor-
poration (EERP contract number AU-035).

1



1 Introduction

The main application area of massively parallel processing is to make
large (scientific) computations faster. Some efforts have been made to
port existing databases, (such as Oracle) on parallel machines (such
as nCube or KSR). Much less effort has been made in finding good ar-
chitectures for database management systems, which are inherently
parallel and thus can take full advantage of parallelism.

Main memory-resident databases [1, 9, 8] are often considered ob-
solete, because of their limited capacity of memory and their unability
to scale up with growing needs. This objection is not true any more, if
a memory-resident database is implemented on a parallel architecture,
which not only can incorporate substantially large main memory (pos-
sibly several Gigabytes or even Terabytes), but scales even better than
disc-resident databases. Adding new nodes adds not only more storage
capacity, but corresponding processing power as well.

Moreover, in nowadays distributed computing environments not only
a number of unused CPUs, but also a great amount of unused main
memory is available. Taking advantage of this idle memory (in addi-
tion to the idle cycles) can make a parallel, memory-resident database
even cost effective.

A memory-resident database can also coexist with other applica-
tions using virtual memory as main memory rather than real memory.
In this case, however, overallocation must be avoided, otherwise the
performance suffers from paging delay.

Another advantage of using parallelism in a memory-resident data-
base is, that logging, checkpointing and archiving can be made in par-
allel with ordinary transactions serving the users. We make the ex-
plicit assumption that applications served by PPOST have substan-
tially more read than update operations (this assumption defines a
sufficiently large class of applications). With this assumption, trans-
actions can be processed actually with the speed of the main memory,
access to secondary storage can be done in background. In the case
of object-oriented databases, we have the additional advantage that
methods of a retrieved object can be immediately executed in its pri-
mary storage.

Such an architecture is surely not general enough to be the ideal
solution for all applications. Its main advantage lies in giving very fast
answers for processing-intensive queries. Engineering applications,
such as CASE or CAD need this feature [7]. In the field of simulations
there is a growing need to take use of databases [11], which is, how-
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ever, restricted by slow answers of general database systems. PPOST
is ideally suited for supporting high-performance simulations [4].

1.1 Goals

The main goals of PPOST are

� High performance is achieved due to storing all data in main
memory and due to intensive use of parallelism.

� Safety and simplicity: Simplicity due to the fact that the object-
store is freed from sophisticated disc optimizations. Safety is
achieved by using a clean, type-safe object-oriented language by
separating the conceptual schema from the external schemas and
by simplicity.

� Flexibility: Flexibility means on the one hand, that applications
of PPOST may control the degree of parallelism. On the other
hand, the architecture can be implemented on different systems,
can be adapted to different processing and communication param-
eters.

� Cost effectiveness: The architecture does not insist on special
hardware, it can be implemented on any work-station cluster. It
can, however, take advantage of special hardware, such as stable
main memory or any high-performance MIMD machine

1.2 Data model

1.2.1 Separation of types and classes

PPOST supports an object-oriented data model. It consists of types, ob-
jects, typed object sets, classes, views and generic operations. The main
idea is a clear separation between types and classes [5, 6]. Types spec-
ify the intensional aspect of objects while classes describe the exten-
sional point of view. Classes and views are based on sets. Sets are well
understood and their significance in hierarchical or relational database
systems is well known. In addition, sets are inherently parallel.

An object is an instance of exactly one object type. Objects may be
grouped in collections. In PPOST typed object sets build the base for
all collections. A typed object set is a set of objects with base type spec-
ification. A class is an object container. Classes build a hierarchy. If an
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object is inserted into a subclass, it automatically becomes a member
of all superclasses (instance inheritance).

1.2.2 Separation of conceptual schema and external schemas

Object-oriented databases generally do not separate conceptual and ex-
ternal schemas. In PPOST, however the traditional layered architec-
ture of databases is used [6]. The objects of the conceptual schema are
stored in the objectstore of PPOST. The applications access the data
via external schemas (views). A view is a named, derived virtual class,
and for that reason a specialization of a class. Views are not materi-
alized, i.e. objects are not stored physically in views. Therefore views
require production rules to determine which objects exist virtually in
them. These production rules must be declared at view definition time.
These rules operate on a so called base, which can either be a class or
again a view.

1.2.3 Language representation

The concepts of the data model are represented with the help of pro-
gramming language constructs, in the form of typed, polymorphic object-
sets. The schemes are represnted by set-types, classes and views are
instances of such types. The integration of the language representation
into an elegant, general-purpose programming language (Modula-3) is
written in [3].

2 Architecture of PPOST

PPOST’s main components are (Fig. 1):

� Objectstore (consisting of a number of object machines)

� Log machine

� Checkpoint machine

� Archive machine

� Users (consisting of a number of user machines)
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Figure 1: Architecture of PPOST

The ”machines” are logical processors with their own address space.
They can be mapped on heavy-weight processes or on physical proces-
sors. The machines are able to manage light-weight threads inside the
same address space.

PPOST’s main purpose is to store and manage a large number of
objects. The primary copy of the data are held in main memory. A
backup image of the primary data and some log information are held
on nonvolatile storage. The backup contains normally an older, but
consistent state of the database. Applying the log information on the
backup leads to a new consistent state of the primary image.

PPOST is transaction-oriented. Transactions are initiated by the
user machines and processed by the objectstore. Issues of persistence
are handled by the log, checkpoint and archive machines. The usual
transaction properties (atomicity, consistency, isolation and durability)
must hold.

Parallelism is used for three different, partly controversial purposes:

1. Spatial extensibility (storing capacity can be enlarged by adding
nodes)

2. Time-scale extensibility (higher speed can be achieved by parallel
algorithms)
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Figure 2: Distribution of data

3. Fast backup (secondary devices are managed in background)

The first two purposes regard to the object store (called ”horizontal”
parallelism), the last aspect regards to the pipe-lined backup (”vertical”
parallelism). The first two points are in a way controversial: Spatial
extensibility requires a reasonably compact storing scheme, time-scale
extensibility requires many redundant physical processors. This is a
form of the usual time-space trade-off.
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2.1 Horizontal parallelism

We organize sets of typecompatible objects in classes. Classes serve as
object container (putting an object into a class to make it persistent)
and as the starting point of any operation that reads or manipulates
more than one of the objects stored. Classes in our object-oriented store
have the same role as tables in a relational database.

To spread the data of the class among several nodes having all
the methods available on every node we call data distribution (see
Fig. 2). Operations like selecting certain objects of the class or start-
ing a method of all objects in a class can be done in parallel when we
distribute the data: The operation can be started on every node that
holds data of the class. Section 3 describes benefits and costs of such
distribution in more detail.

2.2 Vertical parallelism

The idea of vertical parallelism is to decouple normal transaction pro-
cessing from issues of transaction undo and redo. This separation can
be done not only conceptually but also physically. Normal transac-
tion processing is done in the object store. Issues of transaction undo
and redo are handled by the log machine, checkpoint machine and the
archive machine.

2.2.1 Transaction undo

For transaction undo we use before-images or shadow copies in volatile
storage. In the case of a system crash, the primary copy of the database
is lost anyway. All not-yet-committed transactions are trivially ”un-
done”. Therefore, transaction undo is in accordance with the concept of
a memory-resident database.

2.2.2 Transaction redo

In the case of a system crash an automatic recovery procedure must
restore the content of the database.

Parallel logging

The necessary log information (see later) is sent to the log machine.
The log machine would ideally store the log-tail in stable main memory.
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In this case, transactions whose log information arrived in the log ma-
chine can be committed immediately. We do not insist, however, on the
existence of a stable main memory. In the lack of this, we precommit
[8, 10] the corresponding transactions and let run other transactions
(locks are released). In the meantime, the log information is stored on
disc in the form of simple sequential files (this can be done at full disc-
speed). After that, precommitted transactions may be committed. In
the case of a system crash precommitted transactions are handled as
not-yet-committed.

Parallel checkpointing and archiving

The task of the checkpoint machine is to apply the logs on the last
valid backup image [14]. After processing a certain amount of log in-
formation, a new backup is created, and the corresponding log files are
deleted. Checkpointing is done by a separate machine, therefore its
speed has no influence on the response time of the transactions. If the
database is more or less quiescent, then the backup may come very
close to (or even the same as) the primary copy. In the case of a heavy
load, the backup might become relatively ”old”. In this case, the log
files may become long and a restart maybe expensive. This is unlikely,
however, because a database rarely has a constant heavy load over a
long period of time (i. e. days). The newest backup generated by the
checkpointer can be archived on additional nonvolatile storage (such
as tapes). Archiving is considered as a normal activity, which does not
reduce the response time of normal transactions.

Recovery

In the case of a system crash, a recovery must be executed. The backup
image is loaded in main memory and the log is applied on it. Note
that in this case the actual memory image is generated with ”memory
speed” (instead of ”disc-speed”, as in the case of checkpointing).

Backup database

An interesting possibility of this architecture is to use an existing disc
based database as nonvolatile storage medium. In this case a bidirec-
tional mapping is needed between PPOST and the external database.
The checkpointer must be able to generate appropriate calls to this
database, on the basis of the log information. At recovery, the data
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extracted from the database must be mapped on the PPOST primary
store image. Such mappings are surely not trivial to find, and the ex-
ternal database should not be quite different from PPOST - e. g. it
should be preferably an object-oriented one. If such a mapping can
be found, then PPOST could serve as a kind of ”supercache” for some
existing databases.

3 Costs of Data Distribution

In this section we want to demonstrate the feasibility of a distributed
main memory object store: It is possible within certain limits to en-
hance throughput and speed of operations on the object store. That
means we can manipulate larger sets of objects within the same time
by adding new compute nodes, or on the other hand, do the same oper-
ation within shorter time.

Distribution of the data of a class makes it possible to accelerate
operations that work on every object in the class. Typical operations
that need to look at every single object are selecting objects that meet
a certain criteria, computing a sum of a single attribute of every object
and the like. The enhenced speed gained by parallelism has to make
up for the time needed for communication. As we will see, every op-
eration has—depending on the size of the class—an optimum number
of nodes with which it runs fastest. Adding more nodes will decrease
performance because the time gained by parallelism is less than the
time needed for the additional network traffic. If either the class is too
small or the network is too slow this optimum number of nodes is one:
To distribute such a class with a given operation does not make sense.

A different problem is the increase of the size of a class. If the class
is too large to fit in a single node, we have no choice other than to
distribute it among several nodes. If the size of a class increases over
the lifetime of the system, we would like to add new nodes to gain not
only more storage room but also more computational power. As we
will show, within certain limits the size of a class can increase without
degrading performance if we add more compute nodes.

3.1 Calculating the costs

To calculate the number of nodes necessary for a given class with a
given operation in order to meet a certain performance goal we have to
know several parameters of the system, the class and the operation:
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Figure 3: Time needed for a distributed operation

� Size of the class (i. e. number of objects in it) (n),

� Time needed to process a single object in main memory (tmeth),

� Time needed to transmit the parameters of the operation to a sin-
gle node that holds part of the data (tpar),

� Time needed to transmit that part of the result that has been
produced by a single node to the caller of the operation (tres).

Example

Let us look at a typical operation upon a distributed class: A method
shall be started on every object of the class. It has some constant pa-
rameters and produces some single valued scalar result. Such an oper-
ation might be to calculate a sum of a certain attribute of every object
that meets a given criteria.

Fig. 3 shows the expense necessary for this operation. The param-
eters (together with the order to start the operation) have to be trans-
mitted to all the nodes that hold part of the data of the class (tpar). As
soon as a node has received these it will start its part of the operation
in its main memory (tmeth). Afterwards every node will transmit its
part of the result (tres). The operation is finished when the last nodes
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has transmitted its result. We call the time needed for the operation
Tapply.

If the class is distributed among k nodes the parameter messages
have to be retransmitted k times and k result messages have to be
collected. As soon as the second parameter is transmitted, the first
node starts to work1. Assuming that each node needs approximately
the same time for its part of the operation, the resulting time is:

T k

apply � ktpar �
n

k
tmeth � tres (1)

The acceleration due to parallelism is �n� n

k
�tmeth, the additional com-

munication effort is �k � ��tpar. To describe the latency of our network
we introduce a parameter L as the ratio of netcommunication-speed to
process-speed in main memory:

L �
tpar
tmeth

(2)

A large value of L means slow communication. A smaller value means
faster communication or expensive methods. L is the number of objects
that can be processed in a node before a single parameter message can
be transmitted.

Acceleration of an operation

An operation is supposed to run faster if it is distributed over more
than on node. But this acceleration is degraded by the time necessary
to transmit the parameters of the operation to more than one node. We
get:

AT �

apply � T k

apply � A �
�L� n

�k � ��L� n

k

(3)

(A is the acceleration of the operation with data distribution compared
with the operation running on a single node). Fig. 4(a) shows that with
comparatively large class sizes and L � ��� the performance of the
operation is increased first of all when we add nodes to the data distri-
bution. But beyond a certain number of nodes the operation becomes

1We assume that the operation runs on a switching network, so no broadcast is
available. A broadcasting network (like a ethernet bus) would permit to transmit the
operation parameters in parallel. But the result messages are likely to collide on the
bus after the operation has finished. That makes it more difficult to predict the total
running time of an operation. Moreover, switching networks are usually faster than
buses, so our assumption seams realistic.
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Figure 4: Distributed operation

slower when we add more nodes. We can differentiate Formular 3 to
calculate the number of nodes kfastestwith which the operation should
run fastest:

dA

dk
� � � kfastest �

s
�Ln � n�

�L� � Ln
(4)

From an economic point of view, it does not make much sense to use
kfastestnodes for a data distribution. Fig. 4(a) shows that the perfor-
mance gain between using � and kfastest�� nodes is much greater than
the additional acceleration gained if more than kfastest�� nodes are
used.

Scalability

A distributed main memory data store is able to keep the performance
of a operation in spite of increasing class size by adding nodes to the
distribution of the class. Let us look at the formulas above from a
different point of view:

T k

apply � T k��k

apply�with n ��n elements� (5)

�k �
�n
k
� kL��

q
�n
k
� kL�� � 	L�n

�L
(6)

Given a data distribution for an operation upon a class of size n spread
among k nodes: is the number of nodes we have to add to maintain the
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speed of the operation if the class size is increased by factor m. The
range of values of m for which a can be given depends on how “fast” the
original distribution was. If the original class was distributed among
a number of nodes that is close to kfastest, increasing the class size is
very expensive (�k becomes large) and soon impossible without loosing
performance. If the original distribution was less than optimal, we can
add nodes to keep the performance of the original operation.

Fig. 4(b) shows values for in dependency of the relative increase
of a class with n � 
�� ���, L � ��� for different distributions. The
fastest distribution of that class is kfastest � ��. The figure shows that
extending the size of a class which was originally not distributed is
inexpensive: It is possible to increase the size of the class and (nearly)
keep the speed of operations in a single node. On the other hand, if the
original distribution was speed optimized, it is much more expensive
to increase the class size without performance loss.

3.2 Measurements

How fast would an operation in a PPOST based database actually run?
What operation acceleration and size scalability can actually be ex-
pected? To answer these questions we define an example operation.
We have simulated what would happen in a PPOST based database
when this operation is started. What we have measured is presented
in this subsection.

3.2.1 The example operations

Imagine a development department which works on optimizing some
complicated machine (like the engine of a car). To monitor what hap-
pens when the machine runs, a lot of data is mesured with high fre-
quency. This data consists of oil-, water-, exhaust-pressure and -temperature
and other things like that. Also the exact time when certain events oc-
cur (like the completion of some cyclic action) is recorded.

Let us assume that the monitor collects data 1000 times per second
on 16 channels. If the test runs 10 minutes, we get 10x60x1000 data
records. We would like to answer the following questions:

� How long does it take to insert all that data into a database?
Is it possible to insert the data on the fly in a crash safe fashion
(if a powerfailure caused by the tested process happens, we do not
want to loose the data collected immedeatly before).
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� How much additional space is required to store the data?
How much extra main memory not usable by application data do
we need for storage structures?

� How long do we have to wait for statistical data
We use the following example operations:

1. Average and standard deviation of each chanel.

2. List of averages between certain events.

3. Distribution of data for each chanel (which requires sorting).

� How do these costs evolve if the amount of data increases
Say we want to extend the test time from 10 minutes to 20 min-
utes. Beside the additional memory resources needed, how much
performance is lost by extending the test?

3.2.2 The test setup

We will simulate this application on a farm of 12 Digital-Alpha/OSF-
1 mashines (they are equipted with a 133 MHz processor with 128
MBytes of main memory; the nodes are connected with a fast switching
FDDI net). The code to implement the test was written in Modula-3,
a clean object-oriented language ([13, 2]). For comparison we also run
similar operations on a standard comercial disk based database system
(Oracle) on a single mashine. We implement:

� Distribution
with a simple distributed hash table. There is a “master” on one
of the nodes which cuts the hash table in equal parts. Data with
a hash index belonging to a certain part is stored on one of eight
data nodes.

� Persistence
by creating a redo log of all insert and remove operations on a
sequential file on the master node. From time to time we copy the
contents of the main memory of all data nodes to their local disks.
The redo log is created by the stable object package, the copy of
the main memory data structures with the pickle package. Both
packages are part of the Modula-3 library ([13, 12]).

3.2.3 Results

� � �
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4 Conclusions

Traditional limits of memory-resident databases can be mastered by
the use of parallelism. Given a relation between the processing speed
of individual nodes and communication, the minimal size of classes can
be stated, from which the memory-resident store scales nearly linearly.
This actually means that we can either add nodes to store and pro-
cess more information at constant speed, or we can add nodes to pro-
cess the same information faster. Main memory based object-oriented
databases have the additional advantage that methods stored in the
database can be executed in their primary store.

Parallelism can be used in providing persistence as well: processing
of log information, creation of disc backups and tape archives can all
be done in parallel to normal transactions. Therefore, normal transac-
tions are entirely decoupled from I/O on nonvolatile storage.
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[3] L. Böszörményi and K.H. Eder. Adding parallel and persistent
sets to modula-3. In Proceedings of the Advances In Modular
Languages (JMLC’94), pages 201–215. Universitätsverlag Ulm
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