
Integration of Behaviour Models

Heinz Frank and Johann Eder

Universität Klagenfurt, Institut f¨ur Informatik
Universitätsstraße 65 - 67, A-9020 Klagenfurt, Austria

e-mail: fheinz, ederg@ifi.uni-klu.ac.at

Abstract

View integration is the most effective technique for developing a conceptual
database model. The universe of discourse is described from the viewpoint
of different user groups or parts of the system resulting in a set of external
models. In a second step these models have to be integrated into a common
conceptual database schema.

In this work we present a new methodology for integrating views based
upon an object oriented data model, where we concentrate on the integration
of the behaviour of objects, which is already not supported by existing view
integration methods.

1 Introduction

Conceptual modeling of a universe of discourse has two dimensions: the struc-
ture of objects and their relationships are represented in a static model (or object
model) and the behaviour of the objects is documented in a dynamic model. While
the techniques for structural modeling have a long tradition and are already quite
elaborated, conceptual modeling techniques for the dynamics of a mini-world are
not supported as well. In this paper we present a technique for view integration for
dynamic models which is part of a design methodology supporting the view inte-
gration approach for all aspects of object oriented data models. For this method
we assume that models have been developed from different perspectives. Each of
these view models consists of a structural (or static) model and a set of behavioral
(or dynamic) models in form of state charts (for each type one).

In [EF94] we made a comparative analysis of various view integration method-
ologies, two for extended E-R models ([BL84] and [NEL86]) and two for ob-
ject oriented models ([GLN92] and [GPNS92]). We found, that these integration
methodologies support the integration of the static models well. However, none
of them considers the integration of the dynamic models. [GLN92] state that
behaviour describes application semantics and, therefore, should not be part of

1

katja
ER`97 Workshop on Behavioural Models and Design Transformations, 1997

a conceptual database schema. [GPNS92] divide behaviour intooperations and
path methods. The later are used to access attributes via relationships of types.
Also in their opinion operations should not be part of the conceptual database
schema.

We do not share these opinions. First, we believe that path methods are a
kind of redundancy, which should be part of the conceptual database schema for
special reasons at least, for instance for comfortable access (just like views). Sec-
ond, in our opinion important common behaviour of objects must be part of the
conceptual database schema and not implemented in applications.

Our integration methodology consists of two major phases, theintegration of
the static models and theintegration of the dynamic models.

The integration of the static models deals with the structural parts (types, at-
tributes and their relationships to other types). The aim of this phase is to identify
and solve conflicts (naming conflicts or structural conflicts) among the types of
the various views. The result of this integration phase is the common conceptual
static model of the universe of discourse. Several integration strategies, mainly
for the entity relationship model ([Che76]) were published in the past, for in-
stance [BL84, GLN92, GPNS92, NEL86] or [She91]. Further comparative anal-
ysis of view integration methodologies were made in [BLN86] and [Sch87]. For
our methodology we did not develop another strategy for integrating the struc-
tural part of types but use already published methodologies, mainly [NEL86] and
[NP92].

Through the integration of the different static models of the views we get the
integrated conceptual static model. Afterwards the integration of the dynamic
models of the views takes place. For each integrated type its corresponding dy-
namic models of the views have to be integrated.

In an earlier paper ([FE97]) we presented a meta model for state charts to-
gether with a set of transformation which are proven to keep the semantics of the
models and which are complete in the sense that they suffice to derive any equiv-
alent model from a given one. This forms the basis of the integration of dynamic
models, which consists of the following steps:

First, we formalize the dynamic model by formally defining the range of all
states in all dynamic models with constraints or conditions on the given static type.
The range of a model is thus defined as a subspace of the object space spanned
by the definition of the type. Then we analyze the relationship of the models on
basis of their ranges and their marginal states (begin and end states). Relationship
classes are disjoint, consecutive, alternative, parallel, and mixed.

Second is the integration-in-the-large where we develop an integration plan
with the goal of minimizing the integration effort. The integration plan consists
of integration operators for the different relationships of models. For mixed rela-
tionships, a further analysis is necessary where all states and events of two models

2

have to be analyzed to integrate the models. For the other relationships integration
operators only consider the marginal states. A crucial part of the development of
an integration plan is to derive the relationship of the model resulting from the
integration of two models with all the other models without actually performing
the integration.

Third, in the integration-in-the-small the integration is performed by executing
the integration plan.

In the next sections we concentrate on the integration of dynamic models. In
section 2 we present an overview of the used data model. In section 3 an example
from the domain of a library is presented to demonstrate our methodology. The
integration process for dynamic models is shown in section 4 illustrated by the
library example. However, in this paper we give an overview of our integration
approach in a more descriptive way without presenting all the formal details and
proofs. Interested readers are refered to [Fra96] and [FE97].

2 The data model

Our integration methodology is based upon an object oriented data model such as
OMT ([RBP�91]), T QL�� ([LM93, MT93]) or ODMG ([CBB�97]). A con-
ceptual database schema (and therefore the views too) consists of a set of types,
describing the structural properties of objects (the static model or object model in
OMT). Each type may have a behaviour which is described with a dynamic model
(or state charts according to [Har88, RBP�91, Rum93]).

For the integration methodology we useT QL �� for designing the static
model (types with their attributes and relationships to other types) of the views and
state charts for describing the behaviour of objects. However, for the integration
we had to made some extensions to dynamic models to formalize the semantics of
state charts. In [FE97] we presented this language in detail. Let us discuss them
briefly in the next paragraphs.

A dynamic model of a type primarily consists of states and events. We allow
an event to occur several times within a dynamic model and, therefore, distinguish
between the event and its event occurrences. An object which is in a stateS� can
react to an event’s occurrencee resulting in a transition of the object to a new state
S�. We callS� the source state of the event occurrencee andS� the target state
of the event occurrence.

To reduce the complexity and to make dynamic models more readable states
can be structured to state hierarchies. That are state generalizations, to express
alternatives, and state aggregations, to express parallelism according to OMT
[RBP�91].

States are provided with conditions, which an object must fulfill to be in the

3

state. These conditions, we call them therange of a state, are based upon the
attributes and relationships of the type. The range of a stateS� can be regarded as
a logical expression resulting intrue if an given object is in the stateS�, in false

otherwise. Dynamic models have a range too, which is defined as the disjunction
of ranges of the states of the dynamic model.

States may be marked asstart andend states (“marginal” states). For instance
the initial and final states are start and end states. However, the designer is allowed
to mark any further state too.

Furthermore event occurrences have pre- and postconditions, which again are
logical expressions. Thepreconditions of an event occurrence are the conditions,
an object must comply to enable the event occurrence causing a state transition.
The precondition of an event occurrence is defined as the conjunction of the range
of its source states and its guard.

Thepostcondition of an event occurrence are those conditions an object must
fulfill after the application of the event occurrence. Therefore, the postcondition
of an event occurrence must imply the ranges of its target states.

As specification language for these conditions we useT QL�� . For ad-
dressing these additional characteristics we use meta methods of dynamic mod-
els, states or event occurrences. WithS��Range�� the conditions (the range) of
the stateS� is meant. We writee�PreC�� to get the preconditions of an event oc-
currencee. As these conditions are logical expressions we may combine them by
disjunction, conjunction or negation. For instance the preconditions of an event
occurrencee is computed by the conjunction of the range of its source state and
its guard, that ise�Source State�Range�� � e�Guard.

Ranges of states as well as pre- and postconditions of event occurrences are
additional characteristics of dynamic models, which are used to define the se-
mantics of state charts. In [FE97] we defined the semantics of state charts and a
complete set of schema transformations to transform a dynamic model into any
other equivalent dynamic model. As an example we have transformations to de-
compose and to construct state hierarchies, to split and to combine states and to
shift event occurrences within state hierarchies.

In the next sections we discuss the process of integrating the dynamic models
of an integrated type. We assume that the integration of the static models has
already been finished. Therefore, we have to deal with one integrated type and
several dynamic models to integrate. We start with a short example followed by a
discussion of each integration step.

4

new

ordering

reject

checking

Book order

place

Book on Loan

lending return

loosing

loosing

Book reserved

Educational
 Bookreserve

lending

lending

return

(a) View of the Book Ordering Department (b) View of the Book Service Desk

(c) View of the Educational Book Department

Rejection (E)

 Book
request (S)

Book on Stock
 (E)

Book available
 (S)

Book lost (E)

Book in the
 Library (S)

Doublet control

Figure 1: The three dynamic models of the typeBook

3 The example

Let us introduce a short example from the domain of a library showing the be-
haviour of books from the viewpoint of three different departments. Assume that
the integration of the static models results into an integrated typeBook having the
following T QL�� syntax:

Book = [
Isbn: str,
Title: str,
Authors:fAuthorg,
reserved: bool,
status: (requested, ordered, lost, in library, borrowed, in textbook collection)]

The behaviour of a book from the viewpoint of theBook Ordering Department
is shown in figure 1(a). The department treats incoming book requests, checks for
doublets and orders books. Delivered books are registered and placed into the
library.

5

book request this.Isbn is UNKNOWN� this.status = requested
doublet control this.Isbn is KNOWN� this.status = requested
rejection this.Isbn IN book.Isbn� this.status = rejected
book order this.Isbn # book.Isbn� this.status = ordered
book on stock this.status = in library� this.reserved = false

Table 1: State Specification of the Book Ordering Department

book available this.status = in library� this.reserved = false
book on loan this.status = borrowed
book lost this.status = lost

Table 2: State Specification of the Book Service Desk

Books can be borrowed at theBook Service Desk if they are available. Books
may get lost. The dynamic model of a book from the viewpoint of the Book
Service Desk is shown in figure 1(b).

At least theEducational book department is responsible for the administration
of educational books, which are necessary for a lecture during a certain period.
Such books may not be borrowed by anyone until the end of the lecture. If the
book in question is out of stock it can be reserved by the department. Reserved
books may not be borrowed by anyone except the educational book department.
The behaviour of a book from the viewpoint of this department is shown in fig-
ure 1(c).

For the integration of dynamic models we demand the specification of states
as well as the postconditions of the event occurrences, which are shown in the
tables 1, 2 and 3. The postconditions of the event occurrences are equivalent with
their target states. Start and end states are marked with (S) and (E) in the views.

4 The process of integrating the behaviour

The integration of the static models supplies an integrated conceptual static model,
a common agreement about types, their internal structure (attributes) and their
relationships between them. Afterwards the integration of the dynamic models
takes place. The input parameter are an integrated type and its various dynamic
models from the different views. The aim of this integration phase is to obtain a
common behaviour of this type. To integrate the dynamic models of a type we
propose two phases:

6

book in the library (this.status = in library� this.status = borrowed)�
this.reserved = false

book reserved this.status = borrowed� this.reserved = true
educational book this.status = in textbook collection

Table 3: State Specification of the Educational Book Department

� Integration-in-the-large: In this integration phase an overall structure of the
integrated dynamic model is developed. Based upon relationships between
the dynamic models therelationship graph is constructed. On the basis of
this graph and with the aid of an algorithm theintegration plan is computed.
The integration plan consists of a sequence ofintegration operators. An
integration operator gets two dynamic models and integrates them to one
dynamic model.

� Integration-in-the-small: In this phase the integration takes place. Accord-
ing to the integration plan the integration operators are carried out step by
step. All integration operators except one can be applied automatically. For
this integration operator a more detailed analysis of the states and events of
both dynamic models to integrate is necessary.

In the next sections we discuss the steps of both integration phases. However,
we omit formal details and proofs. Interested readers are refered to [Fra96].

4.1 Integration in the Large

The aim of the integration-in-the-large is mainly to prepare for the integration,
which actually is done in the integration-in-the-small phase. Starting point is an
integrated type and its dynamic models, the result is the integration plan. To
develop the integration plan we have

� to determine the relationships between the involved dynamic models

� to represent the relationships in the relationship graph

� to compute the integration plan

4.1.1 Relationships between dynamic models

The ranges of states and the ranges of dynamic models are the basis for relation-
ships between dynamic models. We have defined five classes of possible relation-
ships between dynamic models, namelyparallel, disjoint, alternative, consecutive

7

M1

M2

1Z Z2

Z3 Z4

Z5 Z6

Z7

1m m 2

1n n2

disjoint

object

overlapping
 area

Figure 2: An example for a consecutive relationship

andmixed. For the formal definitions we refer to [Fra96], at this point we concen-
trate on the idea behind these relationships:

� parallel dynamic models: an object of the integrated type has to pass par-
allel both dynamic models. The ranges of the dynamic models have to be
equivalent and orthogonal.

� disjoint dynamic models: an object of the integrated type has to pass either
the first or the second dynamic model. The ranges of the dynamic models
must be disjoint.

� consecutive dynamic models: an object of the integrated type has to pass
first the one and second the other dynamic model. Beyond some start and
end states the ranges of both dynamic models must be disjoint.

� alternative dynamic models: an object of the integrated type has to pass the
dynamic models alternatively. Beyond some start and end states the ranges
of both dynamic models have to be disjoint.

� mixed dynamic models: an object of the integrated type has to pass a “mix-
ture” of both dynamic models.

Let us discuss the consecutive relationship more detailed. Consider the ex-
ample in figure 2, where you can see the dynamic modelsM� andM�. Except
an overlapping area between “marginal” states (end states ofM� and start states
of M�) the ranges of the dynamic models have to be disjoint. The ranges of the
“marginal” states must either be equivalent or the range of one state has to imply
the range of the other state. Figuratively spoken an object travels first throughM�,

8

reaching for example the end statem� of M�. As the range ofm� is equivalent
(or implies) the range of the start staten� of M� the object gets into the dynamic
modelM�.

For each relationship class between dynamic models we have developedin-
tegration operators. An integration operator gets two dynamic models to inte-
grate and delivers the integrated dynamic model. The integration operatorIPar

integrates two parallel dynamic models into a state aggregation.IDis, which
integrates disjoint dynamic models, is very simple as there is nothing to inte-
grate. It simply builds the union of both dynamic models to the integrated dy-
namic model.ICons integrates consecutive dynamic models by combining the
“marginal” states of the overlapping area to single states. The same doesIAltwith
alternative related dynamic models. However,IMix, which integrates mixed re-
lated dynamic models, is much more complicated. A detailed analysis of the states
and events of both dynamic models is necessary, which we will discuss later on.

In our example of figure 1 we determine the following relationships between
the dynamic models. The dynamic models of theBook Ordering Department and
Book Service Desk areconsecutive. The end stateBook on Stock from theBook
Ordering Department and the start stateBook available from the Book Service
Desk are equivalent, the remaining states are disjoint (compare the state specifica-
tions in the tables 1 and 2). The dynamic models of theBook Ordering Department
andEducational Book Department areconsecutive too, because the range of the
statebook on stock implies the range of the statebook in the library (compare ta-
bles 1 and 3). The dynamic models of theBook Service Desk and theEducational
Book Department aremixed related (compare tables 2 and 3).

4.1.2 The Relationship Graph

The relationships between all dynamic models of an integrated type are repre-
sented with therelationship graph. The nodes of this graph are the dynamic mod-
els, the edges represent the relationship between the dynamic models. In the case
of an alternative or consecutive relationship between dynamic models the edges
are annotated with the corresponding “marginal” states of the dynamic models.
The relationship graph of our library example is shown in figure 3.

4.1.3 The Integration Plan

The aim of an integration plan is to determine an integration sequence with mini-
mal integration effort without actually integrating the dynamic models. The inte-
gration plan states which dynamic models have to be integrated with which par-
ticular integration operator.

9

Book Service
 Desk

Book Ordering
 Department

Educational Book
 Department

mixed

consecutive: Book on Stock
Book available

consecutive: Book on Stock
Book in the Library

Figure 3: The relationship graph of the library example

Therefore, we have to consider the consequences of each integration step.
Suppose we would like to integrate two dynamic modelsM� andM� with an in-
tegration operator. This results into a dynamic modelMI , the relationship graph
must be changed.M� andM� have to be replaced by the modelMI . But which
are the relationships ofMI to other dynamic models of the integrated type?

According to the definition of the relationships between dynamic models the
answer to this question depends on the range of the integrated dynamic model
and its start and end states. For each integration operator, exceptIMix, which
integrates mixed related dynamic models, we know the range as well as the start
and end states of the integrated dynamic model.

Consider a small example. Suppose we integrateM� andM�, which are dis-
joint, to MI . Suppose further thatM� is consecutive toM� but disjoint toM�.
ObviouslyMI andM� will be consecutive too. Another example, suppose we
integrateM� andM� with a mixed relationship. This cannot be done automati-
cally. We may conclude only the range of the integrated modelMI , but not the
“marginal” states ofMI . Therefore, if there is a relationship between another dy-
namic modelM� andM� (except a disjoint relationship)M� andMI will be mixed
too.

It is possible to derive the consequences to the relationship graph caused by
the application of an integration operator for each thinkable combination of re-
lationships without actually recomputing them. Interested readers are refered to
[Fra96], where changes of the relationship graph due to an application of an inte-
gration operator are proven.

The integration plan determines an integration sequence with minimal inte-
gration effort, which depends on the automatisation possibilities of the integration
operators. Integrating mixed related dynamic models with the integration opera-
tor IMix requires an additional analysis and cannot be done fully automatically.
Therefore the integration effort for the application ofIMix is high. Furthermore
in general the more states the dynamic models have the higher is the integration

10

effort. In contrast toIMix the other integration operators are automizable, their
integration efforts are low. This leads to a sketch of a rule based algorithm to
compute the integration plan:

1. Integrate mixed related dynamic models as soon as possible as long as the
integration does not destroy “cheap” relationships.

2. Integrate other related dynamic models when the integration does not de-
stroy “cheap” relationships.

3. Integrate dynamic models whose integration preserves as much “cheap” re-
lationships as possible.

Back to our example from figure 1. If we would integrate the dynamic models
of the Educational Book Department andBook Service Desk, which are mixed
related, the integrated dynamic model would have a mixed relationship to the
model of theBook Ordering Department. We would need another usage of the
“expensive” integration operatorIMix. However, if we first integrate the models
of theBook Ordering Department and theBook Service Desk with the integration
operatorICons toM� and afterwardsM� model with the dynamic model ofEdu-
cational Book Department toMI we would needIMix only once. Our integration
plan looks like:

ICons (Book Ordering Department, Book Service Desk,M�)
IMix (M�, Educational Book Department,MI)

4.2 Integration in the Small

We start the integration in the small after the development of the integration plan.
The integration plan is executed step by step, the dynamic models are integrated
with the corresponding integration operators.

According to the integration plan of our library example we have to integrate
the dynamic models of theBook Ordering Department and theBook Service Desk
using the integration operatorICons. The operatorICons simply combines the
annotated states on the edge of the relationship graph, that areBook on Stock
andBook available, to one state. The integrated dynamic modelM� is shown in
figure 4.

However, integrating dynamic models whose relationship is mixed is much
more complicated, a further detailed analysis is necessary. Furthermore the inte-
gration of mixed related dynamic models cannot be done automatically. We are
only able to support the designer by computing integration recommendations.

11

new
 Book
request

ordering

reject

Rejection

Douplet control

checking

Book order

place

lending

Book on Loan

Book lostreturn

loosing

loosing

the integrated state

Book on Stock −
Book available

Figure 4: The integrated dynamic modelM�

Book on Stock −
Book available

Book on Loan Book reserved

Book in the
 Library

overlapping

subsuming

subsuming

Figure 5: The state relationship graph

Just as dynamic models the states of different dynamic models have relation-
ships. For instance the ranges of states may be equivalent or disjoint or the range
of a state may imply the range of another state (we say a statesubsumes another
state). Ranges of states may beoverlapping. Once more a graph, thestate rela-
tionship graph, is used to represent the relationships between states. The nodes
of this graph are the states of the dynamic models. An edge between a state of
one model and a state of another model exists if there is a relationship other than
a disjoint one between them.

A part of the state relationship graph which is computed by the usage ofIMix

in our library example is shown in figure 5. The ranges of the other states between
the dynamic models to integrate are disjoint.

As we do not consider disjoint relationships in the state relationship graph, the
graph must not be fully connected. For each connected subgraph the states of the
dynamic models have to be integrated according to the following way:

1. If there are state hierarchies (state generalizations or state aggregations) they

12

book in the library - not reserved this.status = in library� reserved = false
book borrowed - not reserved this.status = borrowed� this.reserved = false
book borrowed - reserved this.status = borrowed� this.reserved = true

Table 4: State specifications after the transformation

are decomposed using appropriate schema transformations.

2. The involved states of a connected subgraph are transformed by schema
transformations so that they are disjoint.

3. The transformed states are combined according to several heuristics to sin-
gle states or state hierarchies. An appropriate heuristic for the combination
of states are for instance the event occurrences. For example, states, which
are source states of event occurrences of the same event, should be com-
bined to a single state or to a state generalization.

The first and the second step can be done automatically by using appropriate
schema transformations. However, for combining states exist several integration
possibilities. According to several heuristics we compute a set of integration rec-
ommendations for the designer to choose from.

To conclude our library example we transform the involved states of the state
relationship graph into disjoint states, resulting in the statesBook in the Library -
not reserved, Book borrowed - not reserved andBook borrowed - reserved. The
specification of these states are shown in table 4.

The transformed states with their event occurrences are shown in figure 6 (not
involved states are dotted). Note, that the application of schema transformation
leads to copying event occurrences.

In the second step we may consider combining some of the states or creating
state hierarchies. For instance we may build a state generalization based upon the
statesBook borrowed - not reserved andBook borrowed - reserved as they have
some event occurrences in common, e. g.loosing.

As all states of the state relationship graph of our example are integrated we
finish the integration with the integration operatorIMix and return to the integra-
tion plan.

5 Conclusion

In this work we have presented a methodology for integrating object oriented
views with the main direction to the integration of behaviour models.

13

Book borrowed −
 reserved

Book in the
 Library −
not reserved

Book lost

Educational
 Book

reserve loosingloosing

loosing

lending

lending

lending

return

return

Book order

place

Book borrowd −
 not reserved

Figure 6: The integrated states

Our methodology of integrating behaviour models consists of the phases inte-
gration-in-the-large and integration-in-the-small. The aim of the first integration
phase is to determine an overall structure of the integrated dynamic model. Based
upon relationships between dynamic models integration operators are defined,
which integrates the dynamic models. The result of the integration-in-the-large
is the integration plan stating an integration order with minimal effort.

Within the integration-in-the-small phase the integration of the dynamic mod-
els takes place. Most of the defined integration operators can be performed auto-
matically. However, for mixed related dynamic models a further detailed analysis
of states and events is necessary.

It was our aim to relieve the designer by automizing the integration as much
as possible. In some situations the integration of behaviour models can be done
without the aid of a designer. Even the integration of mixed related dynamic
models could be computed by using additional heuristics for the combination of
states. However, the designer is allowed to make changes in order to improve
quality.

We see the main advantages of our approach in the formal treatment of the
integration process which allows a highly automatic integration while giving the
designer the possibility to make decisions and automatically carry out their con-
sequences in the model.

14

References

[BL84] C. Batini and M. Lenzerini. A Methodology for Data Schema Integra-
tion in the Entity Relationship Model.IEEE Transactions on Software
Engineering, 10(6):650–664, November 1984.

[BLN86] C. Batini, M. Lenzerini, and S. B. Navathe. A Comparative Analysis
of Methodologies for Database Schema Integration.ACM Computing
Surveys, 18(4):323 – 364, December 1986.

[CBB�97] R. Cattell, D. Barry, D. Bartels, M. Berler, J. Eastman, S. Gamer-
man, D. Jordan, A. Springer, H. Stickland, and D. Wade.The Object
Database Standard: ODMG 2.0. Morgan Kaufmann Publishers, Inc,
1997.

[Che76] P. Chen. The Entity-Relationship Model - Toward a Unified View of
Data. ACM Transaction on Database Systems, pages 9–36, March
1976.

[EF94] J. Eder and H. Frank. Schema Integration For Object Oriented
Database Systems. In M. Tanik et al., editor,Software Systems in
Engineering. ASME, 1994. Procceedings of the ETCE, New Orleans.

[FE97] H. Frank and J. Eder. A Meta-Model for Dynamic Models. Technical
report, Institut für Informatik, Universität Klagenfurt, March 1997.
http://www.ifi.uni-klu.ac.at/cgi-bin/publsearch.

[Fra96] H. Frank.View Integration für objektorientierte Datenbanken. PhD
thesis, Institut f¨ur Informatik, Universität Klagenfurt, 1996.

[GLN92] W. Gotthard, P. C. Lockemann, and A. Neufeld. System Guided
View Integration for Object-Oriented Databases.IEEE Transaction
on Knowledge and Data Engineering, 4(1):1–22, January 1992.

[GPNS92] J. Geller, Y. Perl, E. Neuhold, and A. Sheth. Structural Schema Inte-
gration with Full and Partial Correspondence using the Dual Model.
Information Systems, 17(6):443–464, 1992.

[Har88] D. Harel. On Visual Formalisms.Communications of the ACM,
31(5):514 – 530, May 1988.

[LM93] H. Lam and M. Missikoff. On Semantic Verification of Object-
Oriented Database Schemas. InProceedings of Int. Workshop on New
Generation Information Technology and Systems - NGITS, pages 22 –
29, June 1993.

15

[MT93] M. Missikoff and M. Toaiti. Mosaico: an Environment for Specifi-
cation and Rapid Prototyping of Object-Oriented Database Applica-
tions. EDBT Summer School on Object-Oriented Database Applica-
tions, September 1993.

[NEL86] S. B. Navathe, R. Elmasri, and J. Larson. Integrating User Views in
Database Design.IEEE Computers, pages 185–197, January 1986.

[NP92] S. B. Navathe and G. Pernul.Advances in Computers, volume 35,
chapter Conceptual and Logical Design of Relational Databases,
pages 1 – 80. Academic Press, 1992.

[RBP�91] J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, and W. Lorensen.
Object-Oriented Modeling and Design. Prentice Hall International,
Inc, 1991.

[Rum93] J. Rumbaugh. Controlling Code: How to Implement Dynamic Mod-
els. Journal of Object-Oriented Programming, May 1993.

[Sch87] M. Schrefl. A Comparative Analysis of View Integration Methodolo-
gies. In R. Traunm¨uller R Wagner and H. Mayr, editors,Informations-
bedarfsermittlung und -analyse für den Entwurf von Informationssys-
temen, pages 119–136, 1987. Fachtagung EMISA.

[She91] A. P. Sheth. Issues in Schema Integration: Perspective of an Industrial
Researcher. InARO-Workshop on Heterogeneous Databases, Septem-
ber 1991.

16

