
QUALITY IMPROVEMENT THROUGH
QUALITY REQUIREMENTS MANAGEMENT

Elke Hochmüller

Institut für Informatik
Universität Klagenfurt

ABSTRACT not taken into account properly [13]. In fact, there
As the degree of compliance of quality requirements
mainly induces the acceptance and success of a
system, special emphasis should be laid on the
elicitation, specification and validation of quality
requirements. Current requirements definition
methods, however, mainly focus on objects,
functions, and states. This paper emphasizes quality
requirements and their integration into the system
development process. Based on a faceted and
adaptable classification approach, a framework to
manage quality requirements will be proposed.
Prospective effects improving not only the quality of
the elicited requirements and their compliances but
also the quality of the software development process
itself will be discussed.

Keywords: extra-functional requirements (EFRs),
faceted requirements classification, requirements
management.

1. Motivation

Requirements analysis turned out to be the most clear starting point to characterize and manage quality
crucial task in software engineering. In order to sup- requirements but also to emphasize the necessity to
port the various activities of requirements elicitation, incorporate them inherently into the software
specification, and validation a broad spectrum of development process. The seriousness of the problems
methods, techniques, and tools have been proposed, connected with that dimension of requirements
developed and used so far. Most of the approaches becomes obvious in the scientific community's
used for requirements modelling concentrate on struc- inability to even agree upon its existence not to
turing and representing functionality. But functional- mention its classification [9]. In fact, there exist
ity is not the only one dimension that matters in requirements which cannot be expressed by mere
software development (cf. [15, 16]). Cancelled
projects, unprofitable products, unhappy users, and
budget and schedule overruns are some of the
symptoms that arise from requirements which were

exists a dimension of requirements which can be
regarded as the root for those difficulties - in the
literature that is referred to as non-functional require-
ments, non-behavioral requirements, (software) quali-
ty requirements, extra-functional requirements or
simply '-ilities' (cf. [2, 6, 9, 10, 11, 18, 21]).

The deficiencies of giving quality requirements prop-
er treatment can mainly be traced back to inadequate
techniques to grasp as well as to express them in an
appropriate manner because of their rather informal
nature. Hence, no wonder that as a consequence qual-
ity requirements are often simply forgotten or even
neglected during analysis. They then will turn up
again far too late during acceptance test or even dur-
ing operation, but quality cannot be attached to a
product a posteriori [1]. One of the main objectives
of the approach presented in the sequel is to
overcome these problems by explicitly focussing on
quality requirements throughout the overall system
development project.

The intention of this paper is not only to provide a

functional specifications in the form of input ⇒
process ⇒ output. Furthermore, these requirements
might even be more important than the 'functional'
ones. In the sequel, these requirements will be

referred to as 'extra-functional requirements' (EFRs) tional requirements could substantially contribute to
subsuming not only quality requirements (constraints
regarding security, usability, maintainability, ...) but
also economic (or resource) requirements (like time
and cost constraints).

The key problems of extra-functional requirements
are mainly based on their soft and sometimes even
fuzzy nature. They are difficult to elicit and to
represent. Hence, EFRs are neglected by all the well-
known analysis and modelling techniques. As
opposed to functional requirements, compliance of
extra-functional requirements cannot be easily quali-
fied to be right or wrong, the results can rather be
compared along an ordinal scale giving good or bad
solutions. Furthermore, the structure of extra-func-
tional requirements can soon overcharge our capabili-
ties in dealing with complexity. Functionalities can be
structured, decomposed and represented using existing
analysis techniques. Extra-functional requirements can
be subject to abstraction mechanisms (like hierarchies
of aggregation/decomposition and generalization/
specialization), too. However, they may additionally

• constrain special functional requirements,
• influence (positively or negatively) other EFRs,

 • concern the system as a whole,
• concern the development process,
• origin from different stakeholders in the devel-

opment process.

Starting from the problem of inheritance anomalies as
coined by [14] in the context of object-oriented
concurrent programming, it was shown in [8] that
extra-functional requirements cannot be simply
modelled as attachments to functional requirements.
This was proved by generalizing the notion of inheri-
tance anomalies and identifying similar problems
which arise in the context of object-oriented model-
ling of security constraints. As long as current model-
ling techniques focus on functional requirements, it is
useless to try to get extra-functional requirements
under the same umbrella. Tight interweaving of extra-
functional with functional requirements during re-
quirements modelling can lead to major design prob-
lems resulting in complex and unreadable designs
which are difficult to maintain. Thus, extensions of
existing methods will not be sufficient or even lead to
more interweavings of rather different contexts.

It should become obvious from this discussion that
extra-functional requirements are critical success
factors in software development. Hence, they should
be regarded as valuable assets which deserve much
more attention during software development projects. • the part of the process, for which the require-
A better and organized management of extra-func- ment is a constraint

improve the process of requirements elicitation lead-
ing to more accurate and complete requirements
which can be traced back to their origins as well as
forward to their compliances. This would lead to
extra-functional requirements which are recognized as
integral parts of the software development process.
For the purpose of integration, the generic framework
proposed in [9] which classifies extra-functional
requirements along a multi-dimensional scheme can
be applied in order to capture EFRs and subsequently
administrate them throughout the whole software
development life cycle.

The rest of the paper is organized as follows. Section
2 contains an overview of the generic classification
framework. Practical considerations regarding the
management of extra-functional requirements on basis
of the classification framework will be discussed in
section 3. Section 4 deals with prerequisites for an
adequate EFR management. Potential improvements
on the quality of the requirements and parts of the
development process will be outlined in section 5
which will be followed by some concluding remarks.

2. Generic Classification Framework

A universal characterization scheme of extra-function-
al requirements must be usable in the long run and in
many different development processes. Adaptability
to different contexts and evolving insight are calling
for a flexible and extensible approach. In the area of
software reuse the faceted classification technique has
already been successfully applied [17]. As shown in
the sequel, this classification strategy can also be
adapted for and applied to software requirements
engineering. Faceted classification is a synthetic ap-
proach. Classes are assembled by selecting predefined
keywords from faceted lists. This approach provides
higher accuracy and flexibility in classification. A
faceted scheme may have several facets and each
facet may have several terms.

Requirements engineering is obviously a process
(involving stakeholders) of establishing a (composite)
product. The different stakeholders within this process
can be regarded as sources of requirements on certain
features of parts of the product or/and of parts of the
development process. These requirements are captures
in terms of representations. Hence, the following five
facets are proposed as core dimensions:

• the part of the product, for which the require-
ment is a constraint

product process source feature representation

whole product procurement domain time ER diagram
hardware proj. management general objective cost object diagram
interface analysis client performance state trans. diagr.
whole software design user usability data flow diagram
function programming project manager availability structure chart
behavior component test law security functional spec.
structure system test economics reliability free text
database installation standards efficiency test plan
user interface maintenance internal guidelines flexibility .
documentation . . expandability .
design . . portability
code maintainability
. testability
. understandability

modifyability
.
.

Table 1: Faceted classification scheme for extra-functional requirements

• the source, which is the requirement’s origin
• the feature, which the requirement addresses
• the form of representation, which describes the

requirement

The more general dimension target subsuming the
product as well as the process dimension was decided
to split up in favor of being able to express the
possibility of attaching a requirement to both a part
of a product and a part of a process.

Table 1 shows the core classification framework as
described in [9]. It consists of the above five facets
together with an initial set of related terms. The terms
within each facet can be defined according to the
specific system development needs. Thus, each
organization can establish its own classification
scheme. The actual classes of extra-functional
requirements can then be assembled by selecting the
most appropriate set of terms within the given facets.

An additional dimension domain with an initially
empty set of terms will help in getting together
domain-specific extra-functional requirements. Thus,
the terms within this dimension will strongly depend
on the particular development projects.

It is noteworthy that the dimension feature subsumes
all results of previous single-dimensional classi-
fication approaches in an open list of EFR categories.
These terms refer to quality requirements as well as
to economic (or resource) requirements.

The terms represented in Table 1 should be
considered just as examples for the purpose of

illustration. An actual instance of the classification
scheme will consist of far more specific terms with
usually finer granularity. For example, 'time' is a
rather general term which can be specialized to
'response time', development time', 'training period',
and so on.

The origin for the presented classification scheme was
the awareness of deep problems of the software
engineering process. But similar issues regarding
quality requirements can also be observed in the non-
software areas of system development. Especially in
early-phase requirements engineering a strict and rigid
distinction between hardware, software, interfaces,
and environment will seldom be neither wise nor
feasible. The classification scheme is powerful and
flexible enough to allow for a coarse initial
classification favoring and documenting an integrated
view of the whole system and also to support the
evolution and refinement of the first analysis results
into more concrete, detailed, and structured forms.

3. Extra-Functional Requirements Management

The real benefits of the generic classification scheme
can only be exploited if it is used as basis for a
proper requirements management of extra-functional
requirements.

Limiting the focus of requirements management to
EFRs should not be regarded as a constraint but it is
rather feasible to restrict the additional management
overhead to an inevitable minimum. The following
suggestions can be also valid for functional
requirements, but these usually can be well expressed

by existing requirements modelling techniques and classification framework enables not only its
their realization and compliance test can be carried characterization but provides also an initial set of
out in a quite straight-forward manner. Hence, there information about the target, the source, the feature,
should be no need for any extra administration effort and the representation of that requirement. However,
regarding functional requirements. in order to take full advantage of the potential of

Extra-functional requirements, on the other hand, about captures and relationships of the actual
cannot be properly treated using existing modelling requirement as well as about its compliance and
techniques (cf. [4, 5, 12, 19, 20, 22, 23]) which are subsequent compliance control is necessary to be
mainly focussing on static and dynamic system administered.
properties and almost totally neglecting resource as
well as quality requirements. Extensions to these
methods can only be effective for some selected types Further essential information deals with the viability
of extra-functional requirements (e.g. performance, of the requirement and the circumstances of its
security constraints) but not at all be sophisticated capture. Hence, the following items are proposed as a
enough to tackle all possible kinds of EFRs. minimum set of requirements capture information:
Additionally, such enhanced methods will still have
to prove their true applicability, as - because of • preference or degree of importance
interweavings of extra-functional with functional • degree of stability
requirements - the resulting model components might • reason for actual requirement
turn out to be rather cumbersome regarding their • identification of analyst
complexity raising problems with respect to • date of entry
readability and maintainability [8].

This leaves us with a situation which can be Especially EFRs can not be considered in isolation.
described as follows: Functional requirements can be They often will concern (constrain) other functional
captured, expressed, and realized quite well in requirements. These relationships are already covered
applying well-known and effective analysis, design by the usage of the classification schema itself (as the
and programming techniques. Existing methods,
however, are rather inadequate for analyzing and
expressing extra-functional requirements. The lack in
being able to cope with EFRs in a structured way can
lead to misunderstood, forgotten and neglected
requirements which might be the real reasons for
most of the doomed projects.

The absence of powerful technical methods for
dealing with extra-functional requirements calls for a
compensating strategy in making EFRs explicit. One
approach which is currently feasible and can be
realized within a short time is the use of pure
organizational means.

Using the generic classification scheme as meta
information for EFR categories, we can establish an
EFR information system which supports the treatment
of extra-functional requirements throughout the
system development process.

For this purpose, the definition of instances of each
synthesized class must be possible. This can be
achieved by associating values to each selected term
resulting in combinations of triples of the common
form (facet, term, value). • compliance control plan (method of compliance

Anchoring the actual requirement within the • reaction in case of failed compliance control

such an information system, additional information

a) Requirements capture information:

b) Requirements relationship information:

values within the dimensions product and domain
will usually refer to functional requirements).
However, there will be different kinds of
interrelations between EFRs themselves (e.g.
hierarchies of aggregation and generalization, positive
and negative dependency relationships). Requirements
can also evolve and be subject to changes which will
require to keep track of that evolution. Thus, the
administration of the following relationships seems
advisable:

• aggregation/decomposition hierarchies
• generalization/specialization hierarchies
• (kinds of) relationships to other EFRs
• versioning information

c) Compliance plan information:
The usage of an EFR information system should not
be confined to expressing and storing requirements
but also help in planning their compliance as well as
the subsequent control of their compliance. Such
planning information can be:

• date/phase of earliest possibility for compliance
• date/phase of latest possibility for compliance

control)

d) Compliance information:
The administration of the following information about project-specific needs. Thus, each organization can
the actual compliances can help in gaining a establish its own classification schema instance which
continuous survey of the current project status: in its turn will serve as a meta schema for the actual

• reference to compliance product information.
• date of actual compliance
• identification of person in charge for compli-

ance EFR management will only take place effectively and

e) Compliance control information:
The EFR information system will contain valuable information base will keep track of all the
information regarding the overall project. This information as described in the previous section.
information can be used for compliance control as an
essential part of quality assurance activities. Results
of such reviews can again be entered into the Once institutionalized, the EFR classification schema
information system in order to support control together with domain-specific experience in
documentation. These inputs can include: requirements elicitation and analysis can help in

• result of compliance control guidelines for future EFR elicitation can evolve
• date of compliance control through practice and continuous use of the EFR
• identification of person in charge for compli- classification framework. The definition and reuse of

ance control elicitation templates in the form of generic patterns

The EFR information system will hold a possibly during elicitation.
huge volume of data with a lot of cross-references
between the items. Powerful mechanisms for the 4.2. EFR Advocate
search of items and the navigation between them are
essential for the usefulness of the system. This makes The establishment of a additional role in terms of a
it advisable to use a database system in combination
with hypertext technology as the underlying frame-
work for the EFR information system.

4. Implications for the Development Process

Although extra-functional requirements are critical
success factors, they are too often neglected in
practice. It should be our aim to fortify their rele-
vance within the system development process from
the very beginning. For this purpose, a full integra-
tion of extra-functional requirements into the system
development process as well as into the organization-
al structure should be striven for. This integration
should take place as smooth as possible by fully
exploiting currently applied and approved develop-
ment strategies which will be enriched by EFR spe-
cific activities based on an adequate infrastructure.

4.1. EFR Infrastructure

From the organizational point of view, proper
structures are required to support EFR management.

a) EFR Meta Schema
The main advantages of the generic classification
schema are its extensibility and the possibility to

tailor its contents according to organization- and

EFR information base containing EFR-related

b) EFR Information Base

efficiently if the activities are supported by an
adequate information system. The so-called EFR

c) EFR Elicitation Guidelines and Templates

advanced EFR management. This means that

for particular EFR categories can be of essential help

project independent EFR advocate (or EFR advocate
group with a number of members appropriate to the
size of the company) will help to pay adequate and
continuous attention to extra-functional requirements.

The main concern of the EFR advocate should be to
act in behalf of extra-functional requirements. Related
activities include the administration of the EFR
infrastructure, the responsibility of EFR specific
technology transfer as well as the accomplishment of
EFR-related tasks during different stages of the actual
system development processes.

a) EFR infrastructure administration
The EFR advocate will be responsible for the
administration and maintenance of the meta
information constituting the generic classification
scheme and the contents of the EFR information base,
and - as experience grows - the structure of the EFR
templates.

b) EFR specific technology transfer
For members of project groups the EFR advocate
should also act as an interlocutor regarding EFR
concerns (with special focus on EFR-related
elicitation education).

c) Requirements analysis
The EFR advocate should be present and active the system development process which in turn will
during requirements engineering and act as an analyst have positive effects on the quality of the resulting
with particular sensitivity regarding extra-functional system.
requirements. Related activities include the
identification, refinement (ask for further information 5.1. Requirements Quality
in case of rather high level goals or objectives which
are difficult to quantify), classification, and Institutionalizing an organization-specific instance of
documentation (together with insertion into the EFR the generic classification schema together with an
information base) of extra-functional requirements. adequate EFR information base which enables the

d) Review and Control
The EFR advocate should also be in charge of EFR
specific reviews and the final internal compliance Using the organization-wide EFR infrastructure calls
control. for a structured way of handling extra-functional

Do we really need a new role just for extra-functional a better degree of accuracy in requirements
requirements? Well, if we take into account all those formulation. The existence of an evolving set of
horrible stories regarding failed project because of terms and the experience gained from former projects
poor quality products - isn't it worth to spend some will contribute to a better chance of complete
overhead in favor of acceptable quality and therefore requirements. The usage of the EFR information base
successful projects? The break-even-point should will improve requirements documentation reducing
rather soon be attained if we regard the losses which the risk of EFRs "lost somewhere in the paperwork".
otherwise could occur. Recent discussions on the Using the EFR information base throughout the
relevance of SQA (software quality assurance) groups development process allows for traced requirements
(cf. [7]) center on the criticism of their role as an (references to origins in terms of sources, reasons,
'end-item' checker. It is quite conceivable that the preferences) as well as traceable requirements (cross-
SQA group could take on the EFR-related activities references between requirements and their
described above to become a more effective advocate compliances in terms of design, code, or test units) in
in favor of quality. the sense of [6].

Another organizational approach for achieving higher 5.2. Process Quality
quality proposes the formation of a Requirements
Identification and Formulation Team (RIFT) which EFR management activities which are fully integrated
should be established within a customer organization into the software development process will contribute
[3]. This should enable customer organizations to different facets of improved process quality.
themselves to contribute to the reduction in the
failure rate of system development project. However,
most of the suggested guidelines for establishing a The interaction with the customer will be a more
RIFT do not consider time, personnel capacity, and active process with an EFR-minded analyst who will
budget aspects. Additionally, multiple education effort not just listening but touch upon certain EFR features
has to be taken into consideration when establishing which otherwise might stay hidden within the brain
a RIFT in each customer organization. of the customer as tacit knowledge.

The role of an EFR advocate, on the other hand,
should be installed within the developer organization. Experience with EFRs as well as with EFR-related
Hence, the skills of the EFR advocate can be utilized infrastructure will certainly improve the process of
for many development projects. In such a way, requirements elicitation. The initial set of terms
experience in EFR management has a higher potential within the classification framework which will be
to grow with each additional project. continuously extended by project experience allows

5. Potential for Quality Improvement particular EFR features can be a valuable starting

The potential benefit of the described EFR-specific requirements elicitation will gain in effectivity and
effort regarding the organizational structure as well as efficiency.
the development process will concern the quality of

the requirements themselves as well as the quality of

management of actual requirements and their
compliances will lead to higher requirements quality.

requirements which will reduce ambiguity and lead to

a) Customer Interaction

b) Improved Requirements Elicitation

for carefully directed questions. Templates for

point for elicitation. Thus, the process of

c) Conflict identification and negotiation
An important advantage of systematic EFR engineering processes must be adapted accordingly.
management is the increased transparency which can
be achieved by EFR documentation by means of the
EFR information base. This transparency provides the References
essential inputs for the identification of conflicting
EFRs and contributes the necessary information to an [1] A. Bertino: "Guest Editor's Corner - Achieving
early and effective process of negotiation. Quality in Software", Journal on Systems and

d) Downstream Communication
The usage of the EFR information base throughout [2] B.W. Boehm: "Software Engineering", IEEE
the requirement life cycle (identification, compliance
plan, compliance, compliance control) supports the
so-called downstream communication from the
analysts to the designers, programmers, testers. The
EFR information base contains information about
who has to know and act about what requirements.
Thus, further treatment of the identified requirements
can be better conducted and monitored.

e) Organized Compliance and Project Control
Continuous usage of the EFR base during the whole
software development project will also support the
processes of compliance control (control in the small)
and project control (control in the large). During
compliance control the actual software components
will be examined regarding the degree of EFR
satisfaction. The information necessary for this
purpose can easily be obtained and documented
from/into the EFR information base. Project control
deals with the observation of the overall project
status. A rough overview of a project can be easily
obtained from the EFR information base by
respective aggregating queries.

f) Internal Standardization
As the terms within each classification schema
instance will apply to the whole organization, a
common vocabulary (concerning development phases,
product and document types, EFR features) together
with common development strategies will be essential
byproducts.

6. Concluding Remarks

Mere technical methods are often insufficient and
rather inadequate for dealing properly with quality
requirements. The real challenges, however, consist in
a commitment to the importance of quality require-
ments for system development. This paper focusses
on extra-functional requirements (quality and
economic constraints) and their integration into the
system development process by means of a proper
EFR management. A generic classification framework
can serve as basic instrument for the elicitation and
documentation of EFRs. In order to achieve the full

integration potential, however, existing software

Software, Vol. 26, No. 1, July 1994, pp. 1-3

Transactions on Computers, Vol. 25, No. 12,
Dec. 1976, pp. 1226-1241

[3] D. Brash, B. Wangler: "Bridging the RIFT
Between Customers and Developers", Proc.
Third International Workshop on Requirements
Engineering: Foundation of Software Quality
(REFSQ'97), Barcelona, June 1997

[4] P. Chen: "The Entity-Relationship Model:
Toward a Unified View of Data", ACM
Transactions on Database Systems, Vol. 1, No.
1, 1976, pp. 9-36

[5] P. Coad, E. Yourdon: "OOA - Object-oriented
Analysis", Prentice Hall, 1991

[6] A.M. Davis: "Software Requirements - Objects,
Functions, and States", Prentice Hall, 2nd ed.,
1993

[7] J. Henry, B. Blasewitz: "Do we really need
SQA to produce quality software? No! Well
maybe. It depends. Yes!", ACM SIGSOFT
Software Engineering Notes, Vol. 19, No. 2,
April 1994, pp. 63-64

[8] E. Hochmüller: "Inheritance Contradictions
between Functional and Extra-functional
Requirements", Proc. Second World Conference
on Integrated Design & Process Technology
(IDPT'96), Vol. 1, SDPS, Austin, Dec. 1996,
pp. 106-113

[9] E. Hochmüller: "Requirements Classification as
a First Step to Grasp Quality Requirements",
Proc. Third International Workshop on
Requirements Engineering: Foundation of
Software Quality (REFSQ'97), Barcelona, June
1997

[10] IEEE, Inc: "IEEE Guide to Software
Requirements Specifications, ANSI/IEEE Std.
830-1984, 1984

[11] ISO/IEC: "International Standard ISO/IEC [17] R. Prieto-Diaz: "Implementing Faceted
9126. Information technology - Software Classification for Software Reuse", ACM
product evaluation - Quality characteristics and Communications, Vol. 34, No. 5, May 1991,
guidelines for their use", Geneva, 1991 pp. 88-97

[12] M. Jackson: "System Development", Prentice [18] G.-C. Roman: "A taxonomy of current issues in
Hall, 1983 requirements engineering", IEEE Computer,

[13] P. Loucopoulos, V. Karakostas: "System
Requirements Engineering", McGraw-Hill, 1995 [19] D.T. Ross, K.E. Schoman: "Structured Analysis

[14] S. Matsuoka, A. Yonezawa: "Analysis of Transactions on Software Engineering, Vol. 3,
Inheritance Anomaly in Object-Oriented No. 1, 1977, pp. 1-65
Concurrent Programming Languages", in: G.
Agha, P. Wegner, A. Yonezawa (eds.): [20] J. Rumbaugh, M. Blaha, W. Premerlani, F.
Research Directions in Concurrent Object- Eddy, W. Lorensen: "Object-oriented Modelling
Oriented Programming, MIT Press, 1993, pp. and Design", Prentice Hall, 1991
107-150

[15] R.T. Mittermeir: "Dimensions of Software Requirements", Proc. First International
Design - From Algorithms to Systems", Proc. Workshop on Requirements Engineering:
Second World Conference on Integrated Design Foundation of Software Quality (REFSQ'94),
& Process Technology (IDPT'96), Vol. 1, 1994, pp. 4-6
SDPS, Austin, Dec. 1996, pp. 82-89

[16] C. Potts: "Fitness for Use: The System Quality Design", Prentice Hall, 1979
that Matters Most", Proc. Third International
Workshop on Requirements Engineering: [23] E. Yourdon: "Modern Structured Analysis",
Foundation of Software Quality (REFSQ'97), Prentice Hall, 1989
Barcelona, June 1997

Vol. 18, No. 4, April 1985, pp.14-23

for Requirements Definition", IEEE

[21] G. Starke: "Session Summary: Non-Functional

[22] E. Yourdon, L.L. Constantine: "Structured

