
Requirements Classification
as a First Step to Grasp Quality Requirements

Elke Hochmüller

Institut für Informatik
Universität Klagenfurt, Austria

elke@ifi.uni-klu.ac.at

Abstract

As the degree of compliance of quality requirements mainly induces the
acceptance and success of a system, special emphasis should be laid on the
elicitation, specification and validation of quality requirements. Current
requirements definition methods, however, mainly focus on objects, functions,
and states. This paper proposes an integrated treatment of requirements
(functional as well as quality and economic requirements) based on a faceted and
adaptable classification approach. Possible impact and relevance of this
classification strategy will be outlined.

1 Motivation

Requirements analysis turned out to be the most crucial task in software
engineering. In order to support the various activities of requirements
elicitation, specification, and validation a broad spectrum of methods,
techniques, and tools have been proposed, developed and used so far.
Most of the approaches used for requirements modelling concentrate on
structuring and representing functionality. But functionality is not the
only one dimension that matters in software development (c.f. [21,24]).
Cancelled projects, unprofitable products, unhappy users, and budget and
schedule overruns are some of the symptoms that arise from requirements
which were not taken into account properly [18]. In fact, there exists a
dimension of requirements which can be regarded as the root for those
difficulties - in the literature that is referred to as non-functional
requirements or (software) quality requirements.

The deficiencies of giving quality requirements proper treatment can
mainly be traced back to inadequate techniques to grasp as well as to
express them in an appropriate manner because of their rather informal
nature. Hence, no wonder that as a consequence quality requirements are
often simply forgotten or even neglected during analysis. They then will
turn up again far too late during acceptance test or even during operation,
but quality cannot be attached to a product a posteriori [2]. The approach



presented in the sequel provides an integrated view of requirements with
special focus on quality requirements.

The intention of this paper is not only to provide a clear starting point to
characterize quality requirements but also to emphasize the necessity to
incorporate them inherently into the software development process. The
seriousness of the problems connected with that dimension of
requirements becomes obvious in the scientific community’s inability to
even agree upon its existence not to mention its classification. In
discussing these facts, the need for a proper treatment of quality
requirements will be motivated subsequently.

A generic classification structure which emphasizes on quality
requirements and their embodiment will be proposed. This classification
approach takes into account that a final and complete characterization of
quality requirements is not possible at the moment. It assures that the
extensibility of the characterization framework may not be hindered from
the beginning in order to not fare alike previous characterization attempts
on quality requirements. Moreover, the proposed classification scheme
together with an adequate information system can contribute to achieve
better documented requirements of a higher quality and support
elicitation, communication, traceability, and control activities.

Nevertheless, an organizational commitment in favour of quality
requirements is needed. Anchoring them explicitly in the system
development process will be an inevitable necessity.

2 Non-functional requirements - spook or reality?

In the literature there exist numerous attempts in defining non-functional
requirements. One of the first characterization approaches dates back to
1976 when Boehm introduced a hierarchical list of quality attributes [3].
His recent work [4] includes the mapping of stakeholder’s primary
concerns onto these quality criteria in order to get a better starting point
for negotiations in case of conflicting requirements. Davis [9] prefers the
notions of behavioural and non-behavioural requirements and focusses
primarily on reliability and efficiency issues. The IEEE-Std. 830 [12]
defines non-functional requirements in terms of performance, external
interfaces, design constraints, and quality attributes. In addition to
functionality, the ISO 9126 Standard [13] distinguishes five classes of
non-functional requirements as main characteristics for evaluation of
product quality, namely reliability, usability, efficiency, maintainability,
and portability. Roman [26] classifies nonfunctional requirements
according to interface constraints, performance constraints, operating



constraints, life cycle constraints, economic constraints, and political
constraints. A methodology developed by the Rome Air Development
Center (RADC) considers non-functional requirements from two
perspectives and distinguishes between user-oriented software quality
factors (e.g. efficiency, correctness, interoperability) and system-oriented
software quality criteria (e.g. completeness, anomaly management,
functional scope) [16].

All approaches mentioned above address quality of and constraints on a
particular software product - they are so-called product-centered
approaches. Less attention, however, is paid to the quality of and
constraints on the software development process on its own. Only few
approaches address also requirements upon the development process, like
those in [20] and [30] distinguishing between product requirements,
process requirements, and external requirements, which can be legal or
economic constraints placed on both product and process.

From all these different definitions and recent discussions (c.f. REFSQ’94
[31], 8th IWSSD [17], BCS REFSG&FACS Joint Workshop on
Requirements Engineering and Formal Methods) we learn that the
interpretation of non-functionality varies considerably. Sometimes even
the existence of non-functional requirements as opposed to functional
ones is denied as there would be no reason for such a distinction. As a
consequence, are non-functional requirements only present in the
imagination of some ’crazy’ persons?

In fact, most of those disagreements can be traced back to severe
misunderstandings. Firstly, the points of view tend to be rather extreme -
be it that some proponents of non-functional requirements state that
quality needs no functionality on the one hand, and that some opponents
of non-functional requirements argue that quality cannot be treated as
first class citizen and therefore there is no need to make a distinction in
kinds of requirements. However, it should be clear that without any
function (purpose) there will be no need for quality, but just pure
functionality cannot survive without quite a portion of quality neither.
Hence, a forced division of the notion of requirements for mere
terminological motives is far too exaggerated. Secondly, people tend to
define non-functional requirements as "anything which is not obviously
a functional requirement" which also can be interpreted as "anything
which cannot be expressed by current (’functional’) methods". But, such
an artificial distinction due to our current limitations in dealing properly
with some kind of requirements is by no means an adequate approach in
requirements research neither.



However, it does not alter the fact that there exist requirements which
cannot be expressed by mere functional specifications in the form of
input ⇒ process ⇒ output. Furthermore, these requirements might even
be more important than the ’functional’ ones. As these requirements do
not have deserved such a negatively tasted term as ’non-functional’, in
the sequel, it will be substituted by the more suitable term ’extra-
functional’ which was coined by Mary Shaw with a work on software
architecture focussing on architectural properties [29].

3 The notion of extra-functional requirements

While functional requirements describe the intended purpose of a system
component, extra-functional requirements (EFRs) - as seen in this paper -
are constraints regarding quality as well as economics (e.g. time, cost).

Following the distinction between function and behaviour as stated in [5]
and [15], a function is what is necessary or desired, and the behaviours
are how this result is attained. Apart from behaviour and its function
(purpose), structural information as a third view in modelling completes
the picture of modelling systems. Investigating and interpreting functional
requirements in a top-down manner leads to the definition of behavioural
and structural models which nowadays can be represented in a quite
straight-forward way using adequate modelling techniques (c.f. [6,8,14,
27,28,32,33]) which is not the case with extra-functional requirements.
This and some other key differences between functional and extra-
functional requirements are shown in Table 1.

Functional Requirements Extra-functional Requirements

describe what a system should do - purpose delimit the solution space - constraints

are mainly focused by analysis process have no fix part in analysis process

sufficient methods for analysis available few methods for analysis known

straight-forward representation difficult representation

easy to elicit difficult to elicit

decomposition possible multi-faceted structure

module test sufficient often complete system necessary for
verification

are complementary can contradict each other

Table 1: Functional vs extra-functional requirements



As can be seen from Table 1, the key problems originate in the nature of
extra-functional requirements. As opposed to functional requirements,
compliance of extra-functional requirements cannot be easily qualified to
be right or wrong, the results can rather be compared along an ordinal
scale giving good or bad solutions. Furthermore, the structure of extra-
functional requirements can soon overcharge our capabilities in dealing
with complexity. Functionalities can be structured, decomposed and
represented using existing analysis techniques. Extra-functional
requirements can be subject to abstraction mechanisms (like hierarchies
of aggregation/decomposition and generalization/specialization), too.
Additionally, they may also

• constrain special functional requirements,
• influence (positively or negatively) other EFRs,
• concern the system as a whole,
• concern the development process,
• origin from different stakeholders in the development process.

Starting from the problem of inheritance anomalies as coined in [19] in
the context of object-oriented concurrent programming, it was shown in
[11] that extra-functional requirements cannot be simply modelled as
attachments to functional requirements. This was proved by generalizing
the notion of inheritance anomalies and identifying similar problems
which arise in the context of object-oriented modelling of security
constraints. As long as current modelling techniques focus on functional
requirements, it is useless to try to get extra-functional requirements
under the same umbrella. Tight interweaving of extra-functional with
functional requirements during requirements modelling can lead to major
design problems resulting in complex and unreadable designs which are
difficult to maintain. Thus, extensions of existing methods will not be
sufficient or even lead to more interweavings of rather different contexts.
Nevertheless, there exist some proposals with quite successful approaches
regarding particular aspects of extra-functionality like modeling
performance (c.f. [9,22,23]) or security constraints (c.f. [7,10,11]).

Above all, the kind of a requirement (be it functional or extra-functional)
during the elicitation and analysis process will usually not be clear from
the very beginning. Hence, a rather general goal will have to be further
refined and concretized in order to result in a final classification.
Additionally, it may depend on the current situation whether a
requirement can be regarded as functional or as extra-functional.

However, our primary concern should not be a clear distinction between
functional and extra-functional requirements irrespective of the current



circumstances, but - as extra-functional requirements tend to be paid not
enough attention to and therefore are easily forgotten - an adequate
possibility to make all requirements explicit, be it in terms of functional
or extra-functional requirements.

4 Dimensions of extra-functional requirements

Any attempt to comprehensively identify and classify types of extra-
functional requirements will fail because of their context-sensitive nature.
A fully fledged classification scheme being valid for any kind of project
can never be sufficiently established. Thus, it is not surprising that there
exists a variety of different classifications of non-functional requirements.
There are three properties these approaches have in common: they are
enumerative, not exhaustive, and rather difficult to extend. A more
appropriate classification should either be exhaustive or easy to extend.

4.1 Generic classification scheme

Existing product-centered classification approaches propose various
enumerations of software quality attributes which are sometimes ordered
within a hierarchical structure (e.g. [3,13]). The actual hierarchy depends
on the selected quality attributes and their relationships (as they are
commonly accepted or perceived by the author). A further ordering can
also take place according to different viewpoints like stakeholders
primary concerns [4]. Approaches which additionally consider process
and external requirements (e.g. [20,30]) also classify extra-functional
requirements hierarchically and distinguish between product, process, and
external requirements at the topmost level leading to three different trees.

All of the currently known classification approaches are nevertheless
soundly based but lack in the ability to structure extra-functional
requirements along more than one single dimension. In order to enable
the incorporation and combination of different viewpoints, a multi-
dimensional classification approach is required. It should be universal in
the sense of being usable in the long run and in many different
development processes. Adaptability to different contexts and evolving
insight are calling for a flexible and extensible approach.

In the area of software reuse the faceted classification technique has
already been successfully applied [25]. As shown in the sequel, this
classification strategy can also be adapted for and applied to software
requirements engineering. Faceted classification is a synthetic approach
and enables the definition of more than just one single dimension.
Classes are assembled by selecting predefined keywords from faceted



lists. This approach provides higher accuracy and flexibility in
classification. A faceted scheme may have several facets (dimensions)
and each facet may consist of several terms.

The core facets selected in applying and adapting the faceted
classification technique to extra-functional requirements are similar to
those proposed in the Goal Question Metric (GQM) approach [1] which
defines goals along the dimensions objects (products, processes,
resources), viewpoints (actors), and issues. GQM starts with the definition
of a goal which can be refined into several questions each of which can
itself be refined into various metrics. GQM mainly concentrates on the
refinement of (rather abstract) goals through questions leading to better
quanitfyable goals.

Faceted classification does not only establish different dimensions but
also semantically refines them into terms according to specific system
development needs. Thus, each organization can establish its own
classification scheme. The actual classes of extra-functional requirements
can then be assembled by selecting the most appropriate set of terms
within the given facets. The five core facets are:

• the part of the product, for which the requirement is a constraint
• the part of the process, for which the requirement is a constraint
• the source, which is the origin for the requirement
• the feature, which the requirement addresses
• the form of representation, which describes the requirement

The product and process facets position the requirement according to the
two main dimensions recognized in software engineering and can also be
found in the one-dimensional classification approaches mentioned before.
The terms within these dimensions take into account that requirements
will usually not only regard the software product or development process
as a whole but can more precisely concern certain parts thereof.

While product and process are both target-oriented aspects of an EFR,
it’s origin is also quite important. Since extra-functional requirements
may be ambiguous, inaccurate, and fuzzy in themselves, the source
dimension is instrumental not only for requirements traceability but also
for their further elaboration and refinement. In using the notion of
’source’ instead of ’viewpoint’, it can be pointed out that persons
(stakeholders) will not be the only origins of requirements.

The feature facet allows for the possibility to express the semantic
context which is addressed by the extra-functional requirement. This



dimension subsumes all enumerations of previous classification
approaches in an open list of EFR categories. It corresponds to the GQM
dimension ’issue’. The terms within this facet will not only refer to
quality requirements but also to economic (or resource) requirements like
time and cost.

The four dimensions process, product, source and feature are regarded as
core facets for the purpose of classification. Moreover, the classification
framework should also tackle the problem of requirements documentation
leading us to a fifth facet representation which describes the form of the
requirement’s capture. This dimension was mainly selected because of its
practical impact with respect to traceability.

Table 2 shows the resulting core classification framework. It consists of
the five facets together with an initial set of related terms.

product process source feature representation

whole product
hardware
interface
whole software
function
behaviour
structure
database
user interface
documentation
design
code
.

procurement
proj. managemt.
analysis
design
programming
component test
system test
installation
maintenance
.

domain
general objective
client
user
project manager
law
economics
standards
int. guidelines
.

time
cost
performance
usability
availability
security
reliability
efficiency
flexibility
expandability
portability
maintainability
testability
understandability
modifyability
.

ER diagram
object diagram
state trans. diagr.
data flow diagram
structure chart
functional spec.
free text
test plan
.

Table 2: Faceted classification scheme for extra-functional requirements

Additionally, a further dimension domain with an initially empty set of
terms will help in getting together domain-specific extra-functional
requirements. Thus, the terms within this dimension will strongly depend
on the particular development projects.

The terms represented in Table 2 should be regarded just as examples for
the purpose of illustration. An actual instance of the classification scheme
will consist of far more specific terms with usually finer granularity. For
example, ’time’ is a rather general term which can be specialized to
’response time’, ’development time’, ’training period’, and so on.



The origin for the presented classification scheme was the awareness of
deep problems of the software engineering process. But similar issues
regarding quality requirements can also be observed in the non-software
areas of system development. Especially in early-phase requirements
engineering a strict and rigid distinction between hardware, software,
interfaces, and environment will seldom be neither wise nor feasible. The
classification scheme is powerful and flexible enough to allow for a
coarse initial classification favouring and documenting an integrated view
of the whole system and also to support the evolution and refinement of
the first analysis results into more concrete, detailed, and structured
forms.

4.2 Impact and relevance

The main advantages of the generic classification scheme are its
extensibility and the possibility to tailor its contents according to
organization- and project-specific needs. Its multi-faceted nature allows
for taking into account the multi-dimensional nature of extra-functional
requirements leading to dynamically assembled classes. As the terms
within each classification scheme instance will apply to the whole
organization, a common vocabulary (concerning development phases,
product and document types, EFR features) together with common
development strategies will be essential byproducts.

Institutionalizing the generic classification scheme together with an
adequate information system which enables the management of
requirements instances by attaching values to terms and administrates
also further relevant information concerning actual requirements and their
compliance can substantially improve the documentation and quality of
extra-functional requirements, enhance communication and the process of
requirements elicitation, and support traceability and control.

a) Requirements documentation:
The usage of a requirements repository will succeed in better documented
requirements reducing the risk of requirements "lost somewhere in the
paperwork". Moreover, the structure of the classification scheme together
with the repository’s built-in query mechanism will help in organizing
and structuring the requirements.

b) Quality of requirements:
As requirements will be handled in a more structured way, ambiguity can
be reduced and a better degree of accuracy can be achieved. The
existence of an evolving set of terms and the experience gained from for-
mer projects will contribute to a better chance of complete requirements.



c) Process of requirements elicitation:
The initial set of terms which will be subsequently extended by project
experience can help in requirements elicitation allowing for carefully
directed questions. Thus, the classification scheme can be used as an
elicitation guideline. Additionally, the definition and reuse of elicitation
templates in the form of generic patterns for particular EFR categories
may turn out to be a valuable starting point in elicitation. As a
consequence, the process of requirements elicitation will gain in
effectivity as well as in efficiency.

d) Effects on communication:
Prospective impacts on communication are twofold. On the one hand, the
interaction with the customer will become a more lively process with an
analyst who is not just passively listening but is also able to play an
active role by touching upon features which otherwise might have been
hidden within the brain of the customer as tacit knowledge. On the other
hand, the interaction to other persons in the subsequent development
process is supported by stating who has to know (and act) about what
requirements. Hence, the further treatment of the identified requirements
can be better conducted and monitored. The latter kind of communication
will take place rather in an indirect manner through querying and
updating the contents of the EFR information system.

e) Traceability:
In using the EFR information system throughout the development
process, traceability of requirements back to their origins (sources,
reasons, preferences) as well as forward to their compliance (design,
code, test units) can be facilitated. The attached values along the
representation facet serve as pointers to the actual development
documents.

f) Control support:
The EFR information system can also serve for control purposes. On the
one hand, compliance control can be supported by respective queries and
documented by updating the contents of the EFR base; on the other hand,
project management can be assisted in pursuing the overall project status.

5. Conclusion

Mere technical methods are often insufficient and rather inadequate for
dealing properly with quality requirements. The real challenges, however,
consist in a commitment to the importance of quality requirements within
the whole system development process. This paper provides an integrated
view on requirements with special focus on extra-functional requirements



(quality and economic constraints). An adaptable and extensible generic
classification scheme can be used as an effective means in eliciting and
representing extra-functional requirements. Nevertheless, we should be
conscious of the fact that existing software engineering processes must be
adapted accordingly to achieve the full integration potential.

Acknowledgement

The author gratefully acknowledges the reviewers’ comments on earlier
versions this paper.

References

[1] V.R. Basili, G. Caldiera, H.D. Rombach: "Goal Question Metric
Approach", in: J.J. Marciniak (ed.): "Encyclopedia of Software", Vol. 1,
1994, pp. 528-532

[2] A. Bertino: "Guest Editor’s Corner - Achieving Quality in Software",
Journal on Systems and Software, Vol. 26, No. 1, July 1994, pp. 1-3

[3] B.W. Boehm: "Software Engineering", IEEE Transactions on Computers,
Vol. 25, No. 12, Dec. 1976, pp. 1226-1241

[4] B.W. Boehm, H. In: "Identifying Quality Requirements Conflicts", IEEE
Software, Vol. 13, No. 2, 1996, pp. 25-35

[5] B. Chandrasekaran, A.K. Goel, Y. Iwasaki: "Functional Representation as
Design Rationale", IEEE Computer, Vol. 26, No. 1, Jan. 1993, pp. 48-56

[6] P. Chen: "The Entity-Relationship Model: Toward a Unified View of
Data", ACM Transactions on Database Systems, Vol. 1, No. 1, 1976, pp.
9-36

[7] L. Chung: "Dealing with Security Requirements during the Development
of Information Systems", Proc. CAiSE’93, Springer Verlag, Paris, 1993,
pp. 234-251

[8] P. Coad, E. Yourdon: "OOA - Object-oriented Analysis", Prent. Hall, 1991
[9] A.M. Davis: "Software Requirements - Objects, Functions, and States",

Prentice Hall, 2nd ed., 1993
[10] M. Dobrovnik, J. Eder: "Logical Data Independence and Modularity

through Views in OODBMS", Proc. Engineering Systems Design and
Analysis Conference (ESDA’96), Montpelier, 1996, pp. 13-20

[11] E. Hochmüller: "Inheritance Contradictions between Functional and Extra-
functional Requirements", Proc. Second World Conference on Integrated
Design & Process Technology (IDPT’96), Vol. 1, SDPS, Austin, Dec.
1996, pp. 106-113

[12] IEEE, Inc: "IEEE Guide to Software Requirements Specifications,
ANSI/IEEE Std. 830-1984, 1984

[13] ISO/IEC: "International Standard ISO/IEC 9126. Information technology -
Software product evaluation - Quality characteristics and guidelines for
their use", Geneva, 1991

[14] M. Jackson: "System Development", Prentice Hall, 1983



[15] H. Kaindl: "An Integration of Scenarios with their Purposes in Task
Modeling", Proc. ACM Symposium on Designing Interactive Systems
(DIS’95), Ann Arbor, MI, August 1995

[16] S.E. Keller, L.G. Kahn, R.B. Panara: "Specifying Software Quality
Requirements with Metrics", in: R.H. Thayer, M. Dorfman (eds.): "System
and Software Requirements Engineering", IEEE-CSP Tutorial, 1990

[17] J. Kramer, A.L. Wolf: "Succeedings of the 8th International Workshop on
Software Specification and Design", ACM Software Engineering Notes,
Vol. 21, No. 5, Sep. 1996, pp. 21-35

[18] P. Loucopoulos, V. Karakostas: "System Requirements Engineering",
McGraw-Hill, 1995

[19] S. Matsuoka, A. Yonezawa: "Analysis of Inheritance Anomaly in Object-
Oriented Concurrent Programming Languages", in: G. Agha, P. Wegner, A.
Yonezawa (eds.): Research Directions in Concurrent Object-Oriented
Programming, MIT Press, 1993, pp. 107-150

[20] R.T. Mittermeir: "Requirements Engineering", in: K. Kurbel, H. Strunz:
"Handbuch Wirtschaftsinformatik", Poeschel Verlag, 1990

[21] R.T. Mittermeir: "Dimensions of Software Design - From Algorithms to
Systems", Proc. IDPT’96, Vol. 1, SDPS, Austin, Dec. 1996, pp. 82-89

[22] B.A. Nixon: "Dealing with Performance Requirements During the
Development of Information Systems", Proc. IEEE International
Symposium On Requirements Engineering (RE’93), San Diego, 1993 pp.
42-49

[23] A. Opdahl: "Requirements Engineering for Software Performance", Proc.
REFSQ’94, Utrecht, 1994, pp. 16-32

[24] C. Potts: "Requirements Models in Context", Proc. Third IEEE
International Symposium On Requirements Engineering (RE’97),
Annapolis, 1997, pp. 102-104

[25] R. Prieto-Diaz: "Implementing Faceted Classification for Software Reuse",
ACM Communications, Vol. 34, No. 5, May 1991, pp. 88-97

[26] G.-C. Roman: "A taxonomy of current issues in requirements engineering",
IEEE Computer, Vol. 18, No. 4, April 1985, pp.14-23

[27] D.T. Ross, K.E. Schoman: "Structured Analysis for Requirements
Definition", IEEE Transactions on Software Engineering, Vol. 3, No. 1,
1977, pp. 1-65

[28] J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, W. Lorensen: "Object-
oriented Modelling and Design", Prentice Hall, 1991

[29] M. Shaw: "Truth vs Knowledge: The Difference Between What a
Component Does and What We Know It Does", Proc. 8th IWSSD, Schloss
Velen, Germany, March 1996, pp. 181-185

[30] I. Sommerville: "Software Engineering", Addison-Wesley, 1992
[31] G. Starke: "Session Summary: Non-Functional Requirements", Proc.

REFSQ’94, 1994, pp. 4-6
[32] E. Yourdon, L.L. Constantine: "Structured Design", Prentice Hall, 1979
[33] E. Yourdon: "Modern Structured Analysis", Prentice Hall, 1989


