
Object-Oriented Design for 4GL
to smooth the Path to Business Information Systems

Elke Hochmüller, Claudia Kohl
Institut für Informatik
Universität Klagenfurt

Abstract

Modern 4GL systems tend to turn into really object-oriented environments which seem to be suited
quite well to realize business information systems (BIS). BIS should support the accomplishment of
daily enterprise work. Such systems are required to handle a huge volume of data, assure data
integrity, cope with high input/output intensity, incorporate transaction management and provide
enduser-oriented interfaces.

Existing object-oriented analysis methods fit rather well to the purpose of BIS development.
Currently available object-oriented design methods, however, do not properly take into account
the typical BIS characteristics. This paper proposes a powerful and flexible generic object-
oriented process model for BIS development with 4GL. This process model particularly focuses on
the adjustment of object-oriented design activities to the context of BIS development in connection
with 4GL and on its incorporation into the overall object-oriented BIS life cycle. The applicability
of the proposed process model will be demonstrated by some examples using CA-OpenROAD as
underlying 4GL technology.

1. Motivation

In contrast to mere technical-scientific applications which focus on algorithmic complexity, business
information systems (BIS) are rather characterized by the predominance of large date management,
the importance of the graphical user interface, and decentralized user access. These characteristics
typical to business information systems have to be paid attention to in the whole system
development process and particularly during the design phase.

Today’s market offers a variety of tools and environments using a fourth generation language
(4GL) that enables high level programming together with integrated database access facilities.
These tools enable the realization of user interfaces in a very simple, graphical manner. Most of
these tools follow the principle of object-orientation. Hence, it is straightforward to embed the
application development within an object-oriented system life cycle.

As most existing object-oriented design methods are very general and do not tackle BIS
characteristics in particular, we propose an object-oriented process model for BIS development via
4GL which especially tries to overcome these design deficiencies. However, this process model
should not be regarded as a new modeling technique but rather a set of guidelines of how to
proceed during the development process of a BIS independently of the actual selected object
modeling technique.

Section 2 investigates current object-oriented analysis and design approaches according to their
applicability for BIS development and identifies BIS specific challenges. Section 3 gives an
overview of 4GL systems in general and of CA-OpenROAD in particular. The object-oriented
process model for BIS with 4GL will be presented in section 4. Some examples for the application

possibilities of this process model will be outlined in section 5 by using CA-OpenROAD as 4GL
environment.

2. Object-oriented BIS Development

Regarding the sequence and objectives of main development activities, the object-oriented life cycle
in fact did evolve from the traditional software life cycle. Hence, the main levels of object-oriented
development are:

• object-oriented analysis
• object-oriented design
• (object-oriented or conventional) implementation

The main difference between the traditional and the object-oriented software development life cycle
consists in the fact that the latter focuses on the object as principal concept. All object-oriented life
cycle activities share a common vocabulary as well as a common notation. Object-oriented
development tasks include the identification, documentation, and implementation (often by means
of prototyping) of objects and their abstractions by using the principles of encapsulation,
aggregation, generalization, and inheritance.

Object-oriented Analysis

The development process of an object-oriented application system generally starts with the analysis
of the relevant parts of the real world (the so-called problem domain) and results in a formal
requirements model. During analysis, the user requirements regarding the target system are elicited,
the structure and semantics of business-related objects, their relationships and their behavior are
documented.

There are a lot of object-oriented analysis approaches (c.f. [CoYo91a], [RBP+91], [ShMe88],
[ShMe92]) which use slightly different notations but propose very similar analysis tasks to be
carried out to obtain the problem domain model (PDM). In general, object-oriented analysis
activities can be attached to one of two mainstream task families which differ according to their way
of tackling the problem domain: static analysis (which deals with the description of the static
structure of objects and their relationships) and dynamic analysis (which is concerned with the
behavior of the objects).

If we consider the Object Modeling Technique (OMT) methodology [RBP+91], the static analysis
tasks include the definition of a so-called object model which is represented by object diagrams
consisting of object classes and their relationships, and the dynamic analysis activities result in the
definition of a dynamic model with state diagrams as main means of representation.

Object-oriented Design

Object-oriented design deals with the mapping of the problem domain model onto the target
system. Existing object-oriented design methods, however, vary substantially in their proposed
design tasks (c.f.[Booc91], [CoYo91b], [RBP+91]). Usually, the various object-oriented design
approaches enrich the analyzed object model with additional classes and objects, but in a different
manner and with varying accuracy. Such augmentations are necessary to realize application

category specific tasks like enduser-oriented interfaces, extensive data storage, algorithmic
complexity, and control of particular system activities.

A common problem with these methods consists in their effort to stay universally applicable,
irrespectively of the actual application category. Thus, proposals for design tasks usually remain at a
rather high level of abstraction which is of little help in detailed design activities where technical
factors (like the kind of operating system, programming language, graphical user interface, and
database management system) need to be obeyed.

Another problem of object-oriented analysis and design lies in the usage of a common notation
leading to a rather blurred transition from analysis and design which - at a first glance - appears as a
solution to the structural clashes on the boundary between these two phases in traditional software
development. However, we should also take into account that this notationally caused blurred
transition calls for a sophisticated process model describing development tasks and attaching them
to the stages of software development in order to prevent from being lost in the ‘analysis-design
object-space’.

Object-oriented Analysis and Design for BIS

Existing object-oriented analysis methods fit rather well to the purpose of BIS development. This
might mainly be due to the facts that object-oriented analysis focuses on modeling real-world
objects (what is also true for analyzing the problem domain in case of business information systems)
and that the static part of most object-oriented analysis methods evolved from conceptual data
modeling. Thus, the object model can be regarded as the object-oriented counterpart of the
conceptual data model.

The object-oriented design methods proposed so far, however, are mainly inadequate for carrying
out the design activities necessary for BIS development. As already mentioned, most methods try to
be applicable in all development situations and often ignore the fact that design activities have to
take into account the requirements which are particular to the actual application category (e.g. be it
a business information system with huge volumes of data, or be it a mere technical system with
special algorithmic challenges).

Object-oriented design activities for business information systems should particularly address object
management on the one hand, and the (preferably graphical) user interface on the other hand.
Design from the object management perspective should deal with the planning of object visibility,
multiple user access, data persistence, transaction management, integrity constraints, and external
interface requirements. Graphical user interface design should deal with presentation and interaction
mechanisms (i.e. static and dynamic layout requirements) by obeying user requirements (according
their types and profiles). There exist some proposals for graphical user interface design in the
literature (c.f. [Coll95], [CoWa93],[Shne92]) following an object-oriented approach, but some of
them suffer from being too short-sighted by largely neglecting the connection to object management
design whereas others are too tightly coupled to the selected object management repository.

3. BIS realization via 4GL-Systems

Fourth generation language (4GL) systems cannot be commonly defined. There exists a
multitude of languages and systems, focusing on very special application categories. They span

a wide area from enduser-tools like graphical database query tools and enduser query-tools
to database application development environments and even database application generators
[Balz96][Wegs97]. In general, these systems offer a very high level language and thus increase
the productivity of programmers.

In the content of this paper with the aim of developing BIS we will make a restriction to 4GL
systems that aim to build business information systems as data-intensive, interactive
applications in an object-oriented manner. This 4GL application architecture family generally
disposes of 4GL languages which are less procedural than 3GL languages, have DDL and
DML constructs integrated in the 4GL language, offer a simple realization of the human
interface (mostly in form of so-called frames) and have language constructs for frequently used
tasks. As an representative of this 4GL application architecture family we will consider CA-
OpenROAD and its components to build a BIS [CAOR94].

CA-OpenROAD was constructed to be used for the development of database applications. It
is a window-oriented tool with a visual programming environment for editing, compiling and
testing database-oriented applications.

An application appears as a sequence or hierarchy of frames, which are to be filled with data
and/or present data. Through these frames a user can trigger different kinds of transactions in
the system regarding the respective problem domain. CA-OpenROAD realizes a WYSIWYG
interactive user interface development environment. It offers WINDOWS-4GL as a procedural
event based language, which is type-equivalent with SQL. SQL statements can therefore be
easily integrated.

CA-OpenROAD supports object-oriented concepts, too. There exist about 170 predefined
system classes related in a certain inheritance hierarchy, which can mainly be used for the
implementation of the user interface (e.g. a frame is a predefined system class) or for error-
handling. System classes cannot be changed by the programmer.

Additionally, so-called user classes enable the possibility to realize user-defined classes. These
user classes are hooked into the system class hierarchy at a certain node. Regarding the degree
of object-orientation, CA-OpenROAD’s classes are restricted in the sense as they are not
treated as objects. This is also the reason why CA-OpenROAD classes only can specify
instance methods but no class methods. If class methods are needed to administrate all
instances of a class, a special class-user class has to be specified and implemented. Also the
inheritance and rewriting of attributes and methods works in a strange manner. Multiple
inheritance is not supported.

4. Object-oriented Process Model for BIS with 4GL

Before we introduce our proposal for an object-oriented process model to develop a BIS by means
of a 4GL environment, we honestly concede that we would promise too much if we pretend to
have found a fully fledged model which takes into account all the particular facilities provided by
every single development tool on the market. By way of contrast, our proposed process model has
to be considered as a meta model to help as a general guideline in its first place. Nevertheless, it is
powerful and flexible enough to be refined and instanciated according to a given development
situation concerning the object-oriented analysis method to be applied, the actual presentation

strategy, the selected 4GL architecture as well as the general type of the underlying database
system, and subsequently the finally used 4GL environment and database system, respectively.

As can be seen from Fig.1, the process model follows the already introduced object-oriented life
cycle and consists of three main (object-oriented) process levels. The primary goal of this process
model is to continuously sustain the encapsulation principle between the different process levels to
fully exploit one of the main advantages of object-oriented development. Thus, a major
independence between the three levels can be achieved leading to increased degrees of
maintainability as well as portability.

Fig.1: Object-oriented Process Model for BIS

In the sequel, the major phases of the three process levels will be further described using a general
outline by initially stating the overall goal of each phase which is followed by a list of activities and
their consumed input and produced output.

The individual phases can not be considered to be independent of each other. In Fig.1, the actual
connections and the respective directions of the information flows are represented as arcs. In
general, phase products will be used as input on subsequent process levels. Additionally, the arcs
between phases located at the same level symbolize the iterative nature of those phases. Hence,
preliminary phase product parts will be passed over to the sibling phase, and vice versa. Thus, the
activities of each phase can be carried out by concentrating on the phase specific tasks without
loosing contact to the parallel phase. In such a way the ongoing work can be supervised to stay
within the boundaries common to both phases on the same process level.

4.1. Object-oriented Analysis

The topmost process level deals with the analysis of the problem domain. For this purpose we
propose an object-oriented strategy like OMT. According to the state-of-the-practice in object-
oriented analysis, we account for the two major viewpoints in analyzing the problem domain. Thus,
we distinguish between two phases, one of which is concerned with static analysis of the problem
domain, the other one focuses on the analysis of the problem domain dynamics.

Although both phases will be separately introduced in the sequel, we should always keep in mind,
that especially these two phases cannot (and should not) be regarded in isolation. Moreover, results

of one phase can influence the outcomings of the other one, and vice versa. In fact, both phases
have the problem domain in their center of interest. They are just tackling the same problem domain
from a different point of view. Hence, the two phases do not compete each other but, on the
contrary, should be used to control overall consistency and completeness.

It is common practice to initially start analysis with just one of the phases depending on the actually
applied object-oriented analysis approach (e.g. static analysis in case of OMT). On the availability of
the first useful results, the other phase will be entered and the iteration will take its course.

Both phases proceed from a common externally originated input which constitutes the real world in
the problem domain. This input can be obtained either by analyzing existing information or by
eliciting additional information in a rather dynamic manner through different kinds of
communication.

The output of both phases together is the problem domain model which will consist of a static and a
dynamic part.

a) Static Analysis

The main goal of static analysis is to get a full understanding and a detailed description of problem
domain statics.

• input:
dynamically obtained from users (domain experts, clients):

- interviews (structured, open-ended)
static analysis of available documents:

- reports
- existing system descriptions
- environment descriptions
- task descriptions

• tasks:
identification of inherent and transaction classes and objects
application of abstraction mechanisms (aggregation, generalization)
identification of relationships between problem domain classes
identification of attributes
identification of methods

• output:
problem domain model - static view:

- object schema
- description of problem domain classes

b) Dynamic Analysis

Dynamic analysis aims at the identification of potential users (or user classes) and at the
achievement of a full understanding and a detailed description of problem domain dynamics.

• input:
dynamically obtained from users (domain experts, clients):

- interviews (structured, open-ended)
- observations (Video, on-site observation)
- prototyping

static analysis of available documents:
- reports
- existing system descriptions
- environment descriptions
- task descriptions

• tasks:
identification of potential users
identification of different user profiles
identification of core task families
identification of tasks within each task family
relationship of tasks to problem domain classes
identification of transaction classes
structuring of tasks into atomic subcomponents

• output:
problem domain model - dynamic view:

- user types and profiles
- scenarios
- event traces
- state transition diagrams per problem domain class
- frame sketches

4.2. Object-oriented Design

The second process level is concerned with object-oriented design. In proposing a phase dealing
with the internal system architecture and a phase focusing on the design of the graphical user
interface, we follow the commonly accepted distinction between external and internal design
[Coll95].

Input of both phases are not only the products received by the preceding analysis activities, but also
additional information from the users, about interface requirements to other systems or about the
architecture of the target system itself.

The main product of the object-oriented design level as a whole is the so-called application model
which consists of the (probably revised) problem domain model, the system model (as a result of
the system design phase) and the presentation model (delivered by graphical user interface design).

In order to be able to decide about the overall presentation strategy for the external design, the kind
of representation should be definitely selected when starting with graphical user interface design.
We distinguish between three different kinds of presentation strategies:

• data-oriented: table-driven presentation
• task-oriented: function-driven presentation
• object-oriented: object-oriented presentation (data-method combinations)

For internal design, however, the target database architecture (e.g. relational, object-oriented) needs
to be captured as it will affect the system model. Nevertheless, the system design itself will be
carried out in an object-oriented manner. Hence, additional control classes (i.e. classes with no
attributes but only methods which are bunched together in a toolbox-like fashion [CoYo91a]) will
be defined; especially in case of an underlying relational database architecture, so-called database
classes will have to be established to maintain the encapsulation principle.

a) System Design

The goal of the system design phase is to explore and get an appropriate model of the internal
system architecture.

• input:
problem domain model
external:

- interface requirements to other (existing) systems
- persistency requirements to be elicited from users
- quality constraints to be elicited from users
- integrity constraints (e.g. primary & foreign keys, additional constraints)

internal:
- target database architecture (e.g. OODBMS, RDBMS)
- general technical environment constraints

• tasks:
identification of persistent and transient problem domain classes
development of logical data model

- according to target database architecture
- obeying both quality and integrity constraints

identification of system classes (database and control classes) and their dynamics

• output:
system architecture:

- revised problem domain model
- logical data model
- system model (including system class definitions)

b) Graphical User Interface Design

Graphical user interface design aims at the exploration and establishment of an appropriate user
interface model.

• input:
(revised) problem domain model
user types and profiles
frame sketches
external:

- interface requirements as elicited from users
internal:

- system dependent style guides

• tasks:
decision about presentation strategy (data-, task- or object-oriented)
definition of common look and feel (general frame style)
definition of frame hierarchy
refinement of frame sketches according to actual presentation strategy
prototyping and evaluation of frame layout
definition of frame layout according to

- user types and profiles
- actual presentation strategy

definition of frame dynamics (interaction mechanisms):
- state transition diagrams
- transaction concept

• output:
static presentation model:

- general frame style
- frame hierarchy
- frame layout

dynamic presentation model:
- a state transition diagram per frame
- transaction concept (transaction boundaries within frames)

4.3. Implementation

The third and final process level concentrates on the realization of the final system which consists of
a database holding persistent objects and one or more application systems (depending on the
amount of different user types and the diversification of their tasks). This is the level, where a
definite decision about the target database system and the actual 4GL environment has to take
place.

By distinguishing between system design at the OOD level and detailed system design at the
implementation level, we can maintain the object-oriented manner of design until implementation.
Thus, the exchange of actual database systems with the same underlying architecture will only affect
the detailed system design phase achieving a major independence between design and
implementation.

In case of an RDBMS, we have to provide a mapping of the object-oriented system design model
onto the relational database model. This will be realized within the code of database class methods
through which encapsulated database access will be provided.

The products of the application realization phase will be constructed on basis of the already
developed presentation model and the development possibilities provided by the selected 4GL
environment.

a) Detailed System Design

In case of a business information system as target system, detailed system design mainly comprises
database design activities. Its main goal is to produce the database definitions for the target
database system.

• input:
logical data model
system class definitions
external:

- expected quantity of data
- performance requirements

internal:
- characteristics of actual target database system
- specific technical environment constraints

• tasks:
definition of database tables according to database classes
definition of primary keys, mandatory attributes, and indexes
definition of constraints (foreign keys, integrity, usage)
physical database design
definition of user privileges
implementation of system class methods

• output:
database definitions for target database system
system class methods

b) Application Realization

The main objective of application realization is the implementation of application components in
order to obtain the final application system(s).

• input:
(revised) problem domain classes
system class definitions
static and dynamic presentation model

• tasks:
mapping design constructs onto the actual 4GL system:

- frame realization (final graphical representation, properties, biases, ...)
- frame scripts
- additional 4GL system specific components (e.g. user classes)
- code optimization

assembling frames into application system(s)
• output:

4GL components (frames, scripts, 4GL procedures, ...)
complete application system(s)

5. Selected examples from a particular instance model

As shown in the previous section, the final output of the application of the proposed object-
oriented process model for BIS is dependent on the object oriented analysis method, the
presentation strategy, the target database architecture, the target database system, the 4GL
architecture as well as the actual 4GL environment - factors which are influencing the process
products on different process levels. In this section some small examples of development
outputs are presented.

In order to demonstrate the applicability of the proposed process model, we assume the following
specializations:

• object-oriented analysis method: OMT
• presentation strategy: object-oriented
• database architecture: relational
• database system: Ingres
• 4GL architecture: object-oriented
• 4GL environment: CA-OpenROAD

The example does not cover the entire process but at least one possible output per
development phase.

5.1. Static Analysis

The considered problem domain concerns the administration of employees and their projects
within a fictive enterprise. Fig.2 represents an OMT object schema as part of an actually more
comprehensive problem domain model.

Fig.2 : Object schema of the problem domain

The object schema consists of the classes project, employee and its specialization assistant. A
leading $ symbolizes class operations. Unique attributes are characterized by a key-symbol.
Assistants are employees with a temporary employee contract. Thus, their operations hire and
dismiss work in a different way.

5.2 Dynamic Analysis

assistant

end_of_contract

hire()
dismiss()

1+

project

name
budget
start
end

get_duration()
plus_budget()
minus_budget()
$new()
$delete()
$find_one()
$find_all()

employee

mnr
name
first name
hire date
salary

hire()
dismiss()
get_projects()
exempt()
is_back()
add_project()
delete_project()
$new()
$delete()
$find_all()
$find_one()

1+

works on

The behavior of an individual class is part of the problem domain dynamics. Fig.3 shows the
state transition diagram of class employee. The events triggering a state transition (e.g. hire,
dismiss) can be found also as operations in the object schema of Fig.3 .

Fig.3: State transition diagram of class employee

5.3 Graphical User Interface Design

Corresponding to the problem domain statics and dynamics a frame hierarchy and individual
frame layouts and dynamic designs have to be developed. Fig.4 presents the frame layout of
the frame administrate employees. The state transition diagram of administrate employees
can be seen in Fig.5 .

Fig.4: Frame layout administrate employees

is known hired
not available

dismissed

new hire

hire

exempt

dismiss

get_projectsadd_project

is_back

delete_project

Fig.5: Dynamics of frame administrate employees

5.4 System Design

During this process level it becomes clear that all three PDM classes have to be made
persistent. The attributes of the PDM classes can be stored in a relational scheme containing
the tables employee, works, project and assistant. In order to achieve a loosely coupled access
to the relational database, three database classes are identified: emp_db , pro_db and assi_db,
which should realize an encapsulated relational database access. This system design assures
that only the database classes have to be modified in case of a database exchange. Thus, the
remaining system architecture will not be affected.

Fig.6 : Revised PDM

Since in the considered 4GL architecture classes are not treated as objects and therefore no
class operations can be defined, it is necessary to revise the PDM. Classes as object
repositories have to be modeled as classes themselves (e.g. emp_class is a collection of
employees and offers respective operations that have been modeled as class operations in the
original PDM before). Since this class class operations are all database access operations the
class classes are treated as database classes, too. Fig.6 presents the revised PDM.

wait for user interaction
fill tablefield

entry: ^db_class

init

fill tablefield special

entry: ^db_class emp_class

save tablefield to db

[OK] / success

[KO] / fail

save
clearmodify tf

exit

show all / clear display

search[name spezialized] / clear display

emp_class

delete()
find_all()
find_one()

1+

employee

mnr
name
first name
hire date
salary

hire()
dismiss()
get_projects()
exempt()
is_back()
add_project()
delete_project()

knows

project

name
budget
start
end

get_duration()
plus_budget()
minus_budget()

1+

works on

pro_class

delete()
find_one()
find_all()

knows

emp_db

store()
delete()
store_project()
delete_project()
get_projects()

pro_db

store()
delete()

assistant

end_of_contract

hire()
dismiss()

assi_class

find_all()
find_one()
delete()

knows

assi_db

store()
delete()

5.5 Detailed System Design

One task of the detailed system design is to implement the database classes in CA-
OpenROAD. The mapping of emp_class to CA-OpenROAD results in a user class emp_class
with one attribute emps, holding a reference to all employees as a repository. Fig.7 shows the
4GL implementation through CA-OpenROAD of the operation find_all of the user class
emp_class. Find_all has to access the Ingres database and loads data about all existing
employees.

method find_all()=
DECLARE
 i = integer NOT NULL;
ENDDECLARE
BEGIN
 CurObject.emps.Clear(); /* CurObject references the Object itself (like self) */
 i=1;
 SELECT empno AS :CurObject.emps[i].empno, name AS :CurObject.emps[i].surname,

 fname AS :CurObject.emps[i].firstname , hire_dat AS :CurObject.emps[i].hire_dat ,
 salary AS :CurObject.emps[i].salary

 FROM emps
 BEGIN
 i=i+1;
 END;
 IF iirowcount=0 THEN Message 'no data available'; ENDIF;
 RETURN CurObject.emps;
END;

Fig.7: method implementation of find_all

5.6 Application Realization

As an example for the realization of a frame Fig.8 shows the essential parts of the CA-
OpenROAD 4GL frame script for the frame administrate employees.

INITIALIZE ()=
DECLARE

empclass = emp_class; /* emp_class is a CA-OpenROAD user class realizing the employee
class*/
 err = integer NOT NULL;
ENDDECLARE
BEGIN
END;

ON CLICK show =
BEGIN

employee_tf.clear(); /* employee.tf is the name of the tablefield in the frame layout */
employee_tf=empclass.find_all(); /* call method find_all and show results in the tablefield */

END;

ON CLICK save =
BEGIN
 err = empclass.save_all(); /* call method to save possible changes in the tablefield onto the database*/
 IF err !=0 THEN ROLLBACK; */ close transaction */
 ELSE COMMIT;
 ENDIF;

END;

ON CLICK search = /* display only employees with a certain name in the tablefield */
BEGIN

employee_tf.clear();
employee_tf=empclass.get_one(name = namefield);

END;

Fig.8: implementation of frame administrate employees

6. Conclusion

Object-oriented design cannot be carried out without paying adequate attention to the kind of
application category of the actual system to be developed. This paper proposes an object-
oriented process model with special focus on design activities that should serve as guidelines in
case of one particular application category, namely that of business information systems.
Special emphasis is paid to the two major parts in object-oriented design, the phases of system
design and graphical user interface design. The activities on the object-oriented design level
are not considered in an isolated manner, but put into relation to the preceding level of object-
oriented analysis (producing some of its inputs) and the subsequent level of implementation
(consuming and refining its outputs). The presented approach should support the BIS
development team in handling design problem patterns typical to business information systems
in a systematic way dependent on the target 4 GL architecture.

References

[Balz96] H. Balzert: “From OOA to GUIs: The Janus System“, JOOP, Feb 1996, pp 43-47

[Booc91] G. Booch: "Object-Oriented Design with Applications", Benjamin/Cummings, 1991

[CAOR94] CA-OpenROAD Programming Guide, Language Reference Manual, Application Editors User’s
Guide Release 3.0, Computer Associates International Inc., 1994

[Coll95] D. Collins: "Designing Object-Oriented User Interfaces, Benjamin/Cummings, 1995

[CoWa93] K. Cox, D. Walker: "User-Interface Design", Prentice Hall, 2nd ed., 1993

[CoYo91a] P. Coad, E. Yourdon: "Object-Oriented Analysis", Prentice Hall, 2nd ed., 1991

[CoYo91b] P. Coad, E. Yourdon: "Object-Oriented Design", Yourdon Press, 1991

[RBP+91] J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, W. Lorensen: "Object-Orented Modeling and Design",
Prentice Hall, 1991

[ShMe88] S. Shlaer, S.J. Mellor: "Object-oriented Systems Analysis: Modeling the World in Data", Prent. Hall, 1988

[ShMe92] S. Shlaer, S.J. Mellor: "Object Lifecycles: Modeling the World in States", Prentice Hall, 1992

[Shne92] B. Shneiderman: "Designing the User Interface - Strategies for Effective Human-Computer Interaction",
Addison Wesley, 2nd ed., 1992

[Wegs97] E. Wegscheider: "Toward Code-Free Business Application Development", IEEE Computer, Vol. 30, No. 3,
1997, pp. 35-43

[Your94] E. Yourdon: "Object-oriented Systems Design - An Integrated Approach", Prentice Hall, 1994

