Object-Oriented Design for 4GL
to smooth the Path to BusnessInformation Sysems

Elke Hochmiiller, Claudia Kohl
Ingtitut for Informatik
Universitét Klagenfurt

Abstract

Modern 4GL systemstend to turn into really object-oriented environments which seemto be suited
quite well to realize businessinformation systems (BIS). BIS should support the accomplishment of
daily enterprise work. Such systems are required to handle a huge volume of data, assure data
integrity, cope with high input/output intensity, incorporate transaction management and provide
enduser-oriented interfaces.

Existing object-oriented analyss methods fit rather well to the purpose of BIS development.
Currently available object-oriented design methods, however, do not properly take into account
the typical BIS characterigtics. This paper proposes a powerful and flexible generic object-
oriented process mode for BIS development with 4GL. This process modd particularly focuses on
the adjustment of object-oriented design activities to the context of BIS devel opment in connection
with 4GL and on its incorporation into the overall object-oriented BISlife cycle. The applicability
of the proposed process model will be demongtrated by some examples using CA-OpenROAD as
underlying 4GL technology.

1. Motivation

In contrast to mere technical-scientific gpplications which focus on dgorithmic complexity, business
information systems (BIS) are rather characterized by the predominance of large date management,
the importance of the graphical user interface, and decentraized user access. These characteristics
typica to busness information systems have to be pad attention to in the whole system
development process and particularly during the design phase.

Today's market offers a variety of tools and environments using a fourth generation language
(4GL) that enables high level programming together with integrated database access facilities.
These tools enable the redlization of user interfaces in a very smple, graphical manner. Most of
these tools follow the principle of object-orientation. Hence, it is straightforward to embed the
application development within an object-oriented system life cycle.

As most existing object-oriented design methods are very generd and do not tackle BIS
characterigtics in particular, we propose an object-oriented process model for BIS development via
4GL which especidly tries to overcome these design deficiencies. However, this process model
should not be regarded as a new modeling technique but rather a set of guidelines of how to
proceed during the development process of a BIS independently of the actual selected object
modeling technique.

Section 2 investigates current object-oriented analysis and design gpproaches according to ther
applicability for BIS development and identifies BIS specific challenges. Section 3 gives an
overview of 4GL systems in generd and of CA-OpenROAD in particular. The object-oriented
process modd for BIS with 4GL will be presented in section 4. Some examples for the application

possibilities of this process model will be outlined in section 5 by using CA-OpenROAD as 4GL
environment.

2. Object-oriented BIS Development

Regarding the sequence and objectives of main development activities, the object-oriented life cycle
in fact did evolve from the traditiond software life cycle. Hence, the main levels of object-oriented
development are:

o object-oriented analysis
o object-oriented design
o (object-oriented or conventiona) implementation

The main difference between the traditional and the object-oriented software development life cycle
congstsin the fact that the latter focuses on the object as principa concept. All object-oriented life
cycle activities share a common vocabulary as well as a common notation. Object-oriented
development tasks include the identification, documentation, and implementation (often by means
of prototyping) of objects and their abstractions by using the principles of encapsulation,
aggregation, generdization, and inheritance.

Object-oriented Analysis

The development process of an object-oriented gpplication system generdly starts with the andyss
of the relevant parts of the real world (the so-caled problem domain) and results in a formal
requirements model. During analysis, the user requirements regarding the target system are elicited,
the structure and semantics of business-related objects, their relationships and their behavior are
documented.

There are a lot of object-oriented andyss approaches (c.f. [CoY09ld], [RBP+91], [ShMe8]],
[ShMe92]) which use dightly different notations but propose very smilar anayss tasks to be
caried out to obtain the problem doman mode (PDM). In generd, object-oriented analysis
activities can be attached to one of two mainstream task families which differ according to their way
of tackling the problem domain: static analyss (which deals with the description of the static
structure of objects and ther relationships) and dynamic analysis (which is concerned with the
behavior of the objects).

If we congider the Object Modeling Technique (OMT) methodology [RBP+91], the gatic andyss
tasks include the definition of a so-cdled object mode which is represented by object diagrams
congsting of object classes and their relationships, and the dynamic analysis activities result in the
definition of a dynamic modd with state diagrams as main means of representation.

Object-oriented Design

Object-oriented design deds with the mapping of the problem domain mode onto the target
system. Existing object-oriented design methods, however, vary substantidly in their proposed
design tasks (c.f.[Booc9l], [CoY091b], [RBP+91]). Usually, the various object-oriented design
gpproaches enrich the analyzed object mode with additiona classes and objects, but in a different
manner and with varying accuracy. Such augmentations are necessary to redize application

category specific tasks like enduser-oriented interfaces, extensve data storage, agorithmic
complexity, and control of particular system activities.

A common problem with these methods congsts in ther effort to stay universaly applicable,
irrespectively of the actua application category. Thus, proposals for design tasks usudly remain at a
rather high level of abgtraction which is of little help in detailed design activities where technica
factors (like the kind of operating system, programming language, graphica user interface, and
database management system) need to be obeyed.

Another problem of object-oriented andlysis and design lies in the usage of a common notation
leading to arather blurred trangtion from analysis and design which - at afirst glance - gppearsas a
solution to the structura clashes on the boundary between these two phases in traditional software
development. However, we should aso take into account that this notationaly caused blurred
trangition cals for a sophisticated process model describing development tasks and attaching them
to the stages of software development in order to prevent from being lost in the *anadlysis-design

object-gpace’.
Object-oriented Analyss and Design for BIS

Existing object-oriented analysis methods fit rather well to the purpose of BIS development. This
might mainly be due to the facts that object-oriented analyss focuses on modeing red-world
objects (what is aso true for analyzing the problem domain in case of business information systems)
and that the gstatic part of most object-oriented analysis methods evolved from conceptual data
modding. Thus, the object mode can be regarded as the object-oriented counterpart of the
conceptua datamodd.

The object-oriented design methods proposed so far, however, are mainly inadequate for carrying
out the design activities necessary for BIS development. As dready mentioned, most methodstry to
be applicable in al development stuations and often ignore the fact that design activities have to
take into account the requirements which are particular to the actua application category (e.g. be it
a business information system with huge volumes of data, or be it a mere technical system with
specia agorithmic challenges).

Object-oriented design activities for business information systems should particularly address object
management on the one hand, and the (preferably graphical) user interface on the other hand.
Design from the object management perspective should deal with the planning of object vishility,
multiple user access, data persstence, transaction management, integrity condtraints, and externa
interface requirements. Graphical user interface design should deal with presentation and interaction
mechaniams (i.e. static and dynamic layout requirements) by obeying user requirements (according
their types and profiles). There exist some proposas for graphica user interface design in the
literature (c.f. [Coll95], [CowWal3],[Shne92)]) following an object-oriented approach, but some of
them suffer from being too short-sighted by largely neglecting the connection to object management
design wheress others are too tightly coupled to the selected object management repository.

3. BlSrealization via 4GL -Systems

Fourth generation language (4GL) systems cannot be commonly defined. There exists a
multitude of languages and systems, focusing on very specia application categories. They span

a wide area from enduser-tools like graphical database query tools and enduser query-tools
to database application development environments and even database application generators
[Balz96][Wegs97]. In general, these systems offer a very high level language and thus increase
the productivity of programmers.

In the content of this paper with the aim of developing BIS we will make a restriction to 4GL
systems that aim to build business information systems as data-intensive, interactive
applications in an object-oriented manner. This 4GL application architecture family generally
disposes of 4GL languages which are less procedural than 3GL languages, have DDL and
DML constructs integrated in the 4GL language, offer a smple realization of the human
interface (mostly in form of so-called frames) and have language constructs for frequently used
tasks. As an representative of this 4GL application architecture family we will consider CA-
OpenROAD and its components to build a BIS[CAOR94].

CA-OpenROAD was constructed to be used for the development of database applications. It
Is a window-oriented tool with a visual programming environment for editing, compiling and
testing database-oriented applications.

An application appears as a sequence or hierarchy of frames, which are to be filled with data
and/or present data. Through these frames a user can trigger different kinds of transactions in
the system regarding the respective problem domain. CA-OpenROAD realizes a WY SIWY G
interactive user interface development environment. It offers WINDOWS-4GL as a procedural
event based language, which is type-equivalent with SQL. SQL statements can therefore be
easlly integrated.

CA-OpenROAD supports object-oriented concepts, too. There exist about 170 predefined
system classes related in a certain inheritance hierarchy, which can mainly be used for the
implementation of the user interface (e.g. a frame is a predefined system class) or for error-
handling. System classes cannot be changed by the programmer.

Additionally, so-called user classes enable the possibility to realize user-defined classes. These
user classes are hooked into the system class hierarchy at a certain node. Regarding the degree
of object-orientation, CA-OpenROAD’s classes are restricted in the sense as they are not
treated as objects. This is aso the reason why CA-OpenROAD classes only can specify
instance methods but no class methods. If class methods are needed to administrate all
instances of a class, a special class-user class has to be specified and implemented. Also the
inheritance and rewriting of attributes and methods works in a strange manner. Multiple
inheritance is not supported.

4. Object-oriented ProcessM odd for BISwith 4GL

Before we introduce our proposa for an object-oriented process mode to develop a BIS by means
of a4GL environment, we honestly concede that we would promise too much if we pretend to
have found a fully fledged model which takes into account all the particular facilities provided by
every single development tool on the market. By way of contrast, our proposed process mode has
to be consdered as a meta modd to help as a generd guiddline in its first place. Nevertheless, it is
powerful and flexible enough to be refined and instanciated according to a given development
Situation concerning the object-oriented anadyss method to be applied, the actua presentation

strategy, the sdected 4GL architecture as well as the generd type of the underlying database
system, and subsequently the finadly used 4GL environment and database system, respectively.

As can be seen from Fig.1, the process modd follows the aready introduced object-oriented life
cycle and congsts of three main (object-oriented) process levels. The primary god of this process
modd is to continuoudy sustain the encapsulation principle between the different process levels to
fully exploit one of the man advantages of object-oriented development. Thus, a mgor
independence between the three levels can be achieved leading to increased degrees of
maintainability as well as portability.

Object-oriented Analysis

Static Analysis Q:D Dynamic Analysis

Object-oriented Design

System Design <):> Graphical User Interface Design

Implementation

Detailed System Design <):{> Application Realization

Fig.1: Object-oriented Process Mode for BIS

In the sequel, the mgjor phases of the three process levels will be further described using a genera
outline by initially stating the overal goa of each phase which is followed by alist of activities and
their consumed input and produced outpui.

The individua phases can not be considered to be independent of each other. In Fg.1, the actud
connections and the respective directions of the information flows are represented as arcs. In
generd, phase products will be used as input on subsequent process levels. Additionally, the arcs
between phases located at the same level symbolize the iterative nature of those phases. Hence,
preliminary phase product parts will be passed over to the sibling phase, and vice versa. Thus, the
activities of each phase can be carried out by concentrating on the phase specific tasks without
loosing contact to the pardlel phase. In such a way the ongoing work can be supervised to stay
within the boundaries common to both phases on the same process level.

4.1. Object-oriented Analyss

The topmost process level deals with the andlysis of the problem domain. For this purpose we
propose an object-oriented strategy like OMT. According to the state-of-the-practice in object-
oriented analysis, we account for the two major viewpoints in analyzing the problem domain. Thus,
we distinguish between two phases, one of which is concerned with static analyss of the problem
domain, the other one focuses on the analysis of the problem domain dynamics.

Although both phases will be separately introduced in the sequel, we should aways keep in mind,
that especially these two phases cannot (and should not) be regarded in isolation. Moreover, results

of one phase can influence the outcomings of the other one, and vice versa. In fact, both phases
have the problem domain in their center of interest. They are just tackling the same problem domain
from a different point of view. Hence, the two phases do not compete each other but, on the
contrary, should be used to control overall consstency and completeness.

It is common practice to initidly start analysis with just one of the phases depending on the actualy
applied object-oriented analysis approach (e.g. static analysis in case of OMT). On the availability of
thefirst useful results, the other phase will be entered and the iteration will take its course.

Both phases proceed from a common externally originated input which congtitutes the real world in
the problem domain. This input can be obtained either by analyzing existing information or by
eliciting additionad information in a rather dynamic manner through different kinds of
communication.

The output of both phases together is the problem domain mode which will consst of a gatic and a
dynamic part.

a) Static Analysis

The main god of static analysisisto get a full understanding and a detailed description of problem
domain statics.

e input:
dynamically obtained from users (domain experts, clients):
- interviews (structured, open-ended)
gatic andyss of available documents:
- reports
- exigting system descriptions
- environment descriptions
- task descriptions
o tasks:
identification of inherent and transaction classes and objects
application of abstraction mechanisms (aggregation, generdization)
identification of relationships between problem domain classes
identification of attributes
identification of methods

e Qutput:
problem domain mode - static view:
- object schema
- description of problem domain classes

b) Dynamic Analyss

Dynamic andyds aims a the identification of potentid users (or user classes) and a the
achievement of afull understanding and a detailed description of problem domain dynamics.

e input:
dynamically obtained from users (domain experts, clients):

- interviews (structured, open-ended)
- observations (Video, on-ste observation)
- prototyping
gtatic andyss of available documents:
- reports
- exigting system descriptions
- environment descriptions
- task descriptions

o tasks.
identification of potential users
identification of different user profiles
identification of core task families
identification of tasks within each task family
relationship of tasksto problem domain classes
identification of transaction classes
structuring of tasks into atomic subcomponents

e Qutput:
problem domain model - dynamic view:
- user types and profiles
- scenarios
- event traces
- state trangition diagrams per problem domain class
- frame sketches

4.2. Object-oriented Design

The second process level is concerned with object-oriented design. In proposing a phase dedling
with the internal system architecture and a phase focusing on the design of the graphica user
interface, we follow the commonly accepted distinction between external and internad design
[Coll95].

Input of both phases are not only the products received by the preceding andyss activities, but also
additiona information from the users, about interface requirements to other systems or about the
architecture of the target system itself.

The main product of the object-oriented design level as a whole is the so-called application model
which congsts of the (probably revised) problem domain mode, the sysem modd (as a result of
the system design phase) and the presentation modd (delivered by graphical user interface design).

In order to be able to decide about the overdl presentation strategy for the external design, the kind
of representation should be definitely selected when starting with graphical user interface design.
We digtinguish between three different kinds of presentation strategies.

e data-oriented: table-driven presentation
e task-oriented: function-driven presentation
¢ object-oriented: object-oriented presentation (data-method combinations)

For internal design, however, the target database architecture (e.g. relational, object-oriented) needs
to be captured as it will affect the sysem mode. Nevertheless, the syssem design itself will be
carried out in an object-oriented manner. Hence, additional control classes (i.e. classes with no
attributes but only methods which are bunched together in a toolbox-like fashion [CoY 0914]) will
be defined; especialy in case of an underlying relationd database architecture, so-caled database
classes will have to be established to maintain the encapsulation principle.

a) Sysem Design

The god of the system design phase is to explore and get an gppropriate mode of the interna
system architecture.

e input:
problem domain model
externd:
- interface requirements to other (existing) systems
- persstency requirementsto be dicited from users
- quality congtraints to be elicited from users
- integrity congtraints (e.g. primary & foreign keys, additiona congtraints)
internd:
- target database architecture (e.g. OODBMS, RDBMYS)
- generd technical environment congtraints

o tasks.
identification of persstent and transent problem domain classes
development of logicd data model
- according to target database architecture
- obeying both quality and integrity constraints
identification of system classes (database and control classes) and their dynamics

e output:
system architecture:
- revised problem domain model
- logical datamode

- system model (including system class definitions)

b) Graphical User Interface Desgn

Graphica user interface design aims at the exploration and establishment of an appropriate user
interface moddl.

e input:
(revised) problem domain model
user types and profiles
frame ketches
externd:
- interface requirements as dicited from users
internd:

- system dependent style guides

o tasks:
decision about presentation strategy (data-, task- or object-oriented)
definition of common look and feel (generd frame style)
definition of frame hierarchy
refinement of frame sketches according to actua presentation strategy
prototyping and evaluation of frame layout
definition of frame layout according to
- user types and profiles
- actual presentation strategy
definition of frame dynamics (interaction mechanisms):
- dtate trangition diagrams
- transaction concept

e output:

dtatic presentation model:
- generd frame style
- frame hierarchy
- frame layout

dynamic presentation mode:
- adtate trandtion diagram per frame
- transaction concept (transaction boundaries within frames)

4.3. Implementation

The third and fina process level concentrates on the redlization of the find system which consists of
a database holding persstent objects and one or more gpplication systems (depending on the
amount of different user types and the diversfication of ther tasks). This is the level, where a
definite decison about the target database system and the actua 4GL environment has to take
place.

By distinguishing between system design a the OOD level and detailed sysem dedign at the
implementation level, we can maintain the object-oriented manner of design until implementation.
Thus, the exchange of actud database systems with the same underlying architecture will only affect
the detaled sysem desgn phase achieving a mgor independence between desgn and
implementation.

In case of an RDBMS, we have to provide a mapping of the object-oriented system design model
onto the relational database modd. This will be redlized within the code of database class methods
through which encapsulated database access will be provided.

The products of the application redization phase will be constructed on bass of the dready
developed presentation model and the development possibilities provided by the selected 4GL
environment.

a) Detailed System Design

In case of a busness information system as target system, detailed system design mainly comprises
database desgn activities. Its main god is to produce the database definitions for the target
database system.

e input:

logical data model

system class definitions

externd:
- expected quantity of data
- performance requirements

interndl:
- characteridtics of actud target database system
- gpecific technica environment constraints

o tasks:
definition of database tables according to database classes
definition of primary keys, mandatory attributes, and indexes
definition of congtraints (foreign keys, integrity, usage)
physical database design
definition of user privileges
implementation of system class methods

e Qutput:
database definitions for target database system
system class methods

b) Application Realization

The main objective of application redization is the implementation of application components in
order to obtain the final gpplication system(s).

e input:
(revised) problem domain classes
system class definitions
gtatic and dynamic presentation model
o tasks.
mapping design congtructs onto the actud 4GL system:
- frame redlization (find graphica representation, properties, biasss, ...)
- frame scripts
- additiond 4GL system specific components (e.g. user classes)
- code optimization
assembling framesinto application system(s)
e Qutput:
4GL components (frames, scripts, 4GL procedures, ...)
complete application system(s)

5. Selected examplesfrom a particular instance model

As shown in the previous section, the final output of the application of the proposed object-
oriented process model for BIS is dependent on the object oriented analysis method, the
presentation strategy, the target database architecture, the target database system, the 4GL
architecture as well as the actual 4GL environment - factors which are influencing the process
products on different process levels. In this section some small examples of development
outputs are presented.

In order to demonstrate the applicahility of the proposed process model, we assume the following
specidizations:

e object-oriented analyss method: OMT
e presentation strategy: object-oriented
e database architecture: relationa

e database system: Ingres

¢ 4GL architecture: object-oriented

¢ AGL environment: CA-OpenROAD

The example does not cover the entire process but at least one possible output per
development phase.

5.1. Static Analysis
The considered problem domain concerns the administration of employees and their projects

within a fictive enterprise. Fig.2 represents an OMT object schema as part of an actually more
comprehensive problem domain mode.

employee
Fepmnr
&hame -
&first name project
&hire date Fename
gsalary &budget
Gstart
assistant Fhire() end
@dismiss() works on
gend_of_contract 4{> %get_projects() %get_duration()
%hire() Hexempt() . @plus_budget()
“dismiss() %is_back() 1+ %minus_budget()
%add_project() P$new()
%delete_project() “sdelete()
S$new() @sfind_one()
$3delete() #3find_all()
$3find_all()
#3find_one()

Fig.2 : Object schema of the problem domain

The object schema consists of the classes project, employee and its speciadization assistant. A
leading $ symbolizes class operations. Unique attributes are characterized by a key-symbol.
Assistants are employees with a temporary employee contract. Thus, their operations hire and
dismisswork in adifferent way.

5.2 Dynamic Analysis

The behavior of an individual class is part of the problem domain dynamics. Fig.3 shows the
state trangition diagram of class employee. The events triggering a state transition (e.g. hire,
dismiss) can be found aso as operations in the object schemaof Fig.3.

add_project get_projects

is_back i
new . hire . - = not available
. is known hired
[exempt

delete_project

dismiss

dismissed

Fig.3: State transition diagram of class employee
5.3 Graphical User Interface Design

Corresponding to the problem domain statics and dynamics a frame hierarchy and individual
frame layouts and dynamic designs have to be developed. Fig.4 presents the frame layout of
the frame administrate employees. The state transition diagram of administrate employees
canbeseeninFig.5.

Group Yiew Arrange Appearance Bias Frame Help
5
ALL EMPLOYEES J
empno surname first name hire date salary [€
==l =
=
\I I
of =
El=
Al =]
search surname:
E'I clear |
] |
(o] show all I save search exit
/
=]] =
T i |

Fig.4: Frame layout administrate employees

®

fil tablefield special |
\ entry: ~db_class emp_class \

exit search[name spezialized] / clear display

. init wait for user interaction

AA A

v

show all / clear display

fill tablefield
entry: ~db_class,

[OK]/ success

modify tf clear

save tablefield to db

[KO 1/ fail

Fig.5: Dynamics of frame administrate employees
5.4 System Design

During this process level it becomes clear that al three PDM classes have to be made
persistent. The attributes of the PDM classes can be stored in a relational scheme containing
the tables employee, works, project and assistant. In order to achieve aloosely coupled access
to the relational database, three database classes are identified: emp_db , pro_db and assi_db,
which should realize an encapsulated relational database access. This system design assures
that only the database classes have to be modified in case of a database exchange. Thus, the
remaining system architecture will not be affected.

emp_db
assi_class emp_class pro_class
Ystore()
%find_all() 4‘ >— %delete() %delete() Sdelete()
%find_one() Sfind_all() %find_one() %store_project()
Ydelete() %find_one() %find_all() :deletefproject()
get_projects()
knows i
knows employee knows
Emnr
ghame) X
first name project assi_db
- hire date fgname
assistant gsalary works on | gbudget “store()
&end_of_contract start %delete()
‘ H > $hire() @ ¢end
Phire() %dismiss() 1+ o]
Ydismiss() %get_projects() get_duration() pro_db
Pexempt() ®plus_budget()
:isfback() %minus_budget() ®store()
add_project() &
%delete_project() delete()

Fig.6 : Revised PDM

Since in the considered 4GL architecture classes are not treated as objects and therefore no
class operations can be defined, it is necessary to revise the PDM. Classes as object
repositories have to be modeled as classes themselves (e.g. emp class is a collection of
employees and offers respective operations that have been modeled as class operations in the
originad PDM before). Since this class class operations are all database access operations the
class classes are treated as database classes, too. Fig.6 presentsthe revised PDM.

5.5 Detailed System Design

One task of the detailed system design is to implement the database classes in CA-
OpenROAD. The mapping of emp_class to CA-OpenROAD results in a user class emp_class
with one attribute emps, holding a reference to al employees as a repository. Fig.7 shows the
4GL implementation through CA-OpenROAD of the operation find_all of the user class
emp_class. Find all has to access the Ingres database and loads data about al existing
employees.

method find_all()=
DECLARE

i =integer NOT NULL;
ENDDECLARE
BEGIN

CurObject.emps.Clear(); /* CurObject references the Object itself (like self) */

i=1;

SELECT empno AS :CurObject.empg[i].empno, name AS :CurObject.empg[i].surname,
fname AS :CurObject.empd]i].firstname, hire_dat AS :CurObject.empgd[i].hire_dat ,
salary AS :CurObject.empgi].salary

FROM emps

BEGIN

i=i+1;

END;

IF iirowcount=0 THEN Message 'no data available'; ENDIF;

RETURN CurObject.emps;

END;

Fig.7: method implementation of find_all
5.6 Application Realization

As an example for the redlization of a frame Fig.8 shows the essentia parts of the CA-
OpenROAD 4GL frame script for the frame administrate employees.

INITIALIZE ()=
DECLARE
empclass = emp_class; /* emp_class is a CA-OpenROAD user class redlizing the employee
class*/
err = integer NOT NULL;
ENDDECLARE
BEGIN
END;

ON CLICK show =
BEGIN
employee tf.clear(); /* employeetf isthe name of the tablefield in the frame layout */
employee_tf=empclass.find_al(); /* call method find_all and show resultsin the tablefield */
END;

ON CLICK save=
BEGIN
err = empclass.save_al(); /* cal method to save possible changesin the tablefield onto the database*/
IF err I=0 THEN ROLLBACK; */ close transaction */
ELSE COMMIT;
ENDIF;

END;
ON CLICK search = /* display only employees with a certain name in the tablefield */
BEGIN

employee_tf.clear();

employee_tf=empclass.get_one(name = namefield);
END;

Fig.8: implementation of frame administrate employees
6. Conclusion

Object-oriented design cannot be carried out without paying adequate attention to the kind of
application category of the actua system to be developed. This paper proposes an object-
oriented process model with special focus on design activities that should serve as guidelines in
case of one particular application category, namely that of business information systems.
Special emphasis is paid to the two major parts in object-oriented design, the phases of system
design and graphical user interface design. The activities on the object-oriented design level
are not considered in an isolated manner, but put into relation to the preceding level of object-
oriented analysis (producing some of its inputs) and the subsequent level of implementation
(consuming and refining its outputs). The presented approach should support the BIS
development team in handling design problem patterns typical to business information systems
in a systematic way dependent on the target 4 GL architecture.

References
[Balz96] H. Balzert: “From OOA to GUIs: The Janus System*, JOOP, Feb 1996, pp 43-47
[Booc91] G. Booch: "Object-Oriented Design with Applications’, Benjamin/Cummings, 1991

[CAOR94] CA-OpenROAD Programming Guide, Language Reference Manual, Application Editors User’s
Guide Release 3.0, Computer Associates International Inc., 1994

[Call95] D. Cdllins. "Designing Object-Oriented User Interfaces, Benjamin/Cummings, 1995
[Cowad3] K. Cox, D. Walker: "User-Interface Design”, Prentice Hall, 2nd ed., 1993

[CoY 0914 P. Coad, E. Yourdon: "Object-Oriented Analyss', Prentice Hall, 2nd ed., 1991
[CoY 091h] P. Coad, E. Y ourdon: "Object-Oriented Design”, Y ourdon Press, 1991

[RBP+91] J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, W. Lorensen: "Object-Orented Modding and Design”,
Prentice Hall, 1991

[ShMeB8] S. Shlaer, S.J. Mdlor: "Object-oriented Sysems Analyss Modding the World in Data’, Prent. Hall, 1988
[ShMe92] S. Shlaer, S.J. Mdlor: "Object Lifecyces Modeing the World in States’, Prentice Hall, 1992

[Shned2] B. Shneiderman: "Designing the User Interface - Strategies for Effective Human-Computer Interaction”,
Addison Wedey, 2nd ed., 1992

[Wegs97] E. Wegscheider: "Toward Code-Free Business Application Development”, IEEE Computer, Val. 30, No. 3,
1997, pp. 35-43

[Your94] E. Yourdon: "Object-oriented Systems Design - An Integrated Approach”, Prentice Hall, 1994

