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Abstract

State charts are a popular representation technique for the conceptual mod-
eling of the dynamics of a universe of discourse. However, designers are
not supported in their work with dynamic models as they are for working
with static models. We present a meta-model and a formalization of the se-
mantics of a state chart language. Important results are the definition of the
equivalence of dynamic models and a sound and complete axiomatization
of the equivalence. Based on this we define a set of basic schema trans-
formations which do not change the semantics of a model. These schema
transformations can be used to successively transform dynamic models to
achieve design goals or to prepare dynamic models for implementation.
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1 Introduction
Conceptual modeling of a universe of discourse has two dimensions: the struc-
ture of objects and their relationships are represented in a static model (or object
model) and the behavior of the objects is documented in a dynamic model (com-
pare [Boo91, RBP�91, CAB�94]). While the techniques for structural modeling
have a long tradition and are already quite elaborated, conceptual modeling tech-
niques for the dynamics of a mini-world is not supported as well. Open issues are
for example the formalization of the semantics of dynamic models, generaliza-
tion and inheritance of dynamic models, and transformations of dynamic models
(compare [KS94, Fir96, KS96]). The aim of the work reported here is to con-
tribute to a better understanding of dynamic models and to support the modeling
process.

For designing static models designers or analysts start from an initial model
and successively transform this model to achieve design goals and meet quality
criteria. In the end the model is in a form which is well suited to be mapped to a
logical model and thus serves as a specification of the implementation. This pro-
cess is supported by a well understood representation language and the provision
of schema transformations which maintain the semantics of the model (compare
[BCN92]). In our opinion, a similar process should be made available for the
development of dynamic models.

Assumptions and scope

For this work we assume that the static part of the model is already developed. For
the representation of dynamic aspects we focus on the modeling of the dynamics
of a single type or class of the static model. We represent dynamic models with a
popular state chart language (compare [RBP�91, Rum93, Har88]). We consider
these state charts to serve several purposes. First they are a representation tech-
nique to capture the dynamics of objects in the universe of discourse. Second,
dynamic models support the communication between users, analysts, designers
and implementors. Finally, state charts are (partial) specifications for the imple-
mentation of an information system.

The major contributions of this paper are

formalization of state charts for conceptual modeling

definition of the semantics of state charts

model-theoretic definition of the equivalence of state charts together with a
sound and complete axiomatization

a complete set of basic schema transformations for deriving equivalent dynamic
models
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The paper is organized as follows. In section 2 we introduce the state chart lan-
guage and a meta-model for dynamic models. In section 3 we discuss the equiv-
alence of dynamic models as equivalence of method specifications. In section 4
we present a set of basic equivalence transformations for dynamic models. The
inverse transformations of the basic transformations are presented in section 5. In
section 6 we discuss some properties of the schema transformation. We prove,
that if two dynamic models are equivalent then they can be transformed into each
other. In section 7 we draw some conclusions and discuss some applications of
this work.

2 The meta-model
2.1 Overview
The dynamic model for a given type consists primarily ofmodel restrictions,
states andevents. In figure 1 we present a meta-model for dynamic models. In
the following we will present all components of dynamic models and give the
necessary formalization for the succeeding sections.

We assume that the static model (types and their relationships) have already
be defined. Furthermore, we assume that there is a language for defining predi-
cates on objects. We useT QL �� ([FM94a, FM94b, Mos95]) for this purpose,
however, the following does not depend on this choice of a language.

Model restrictions:

Model restrictions are conditions that an object must comply with in order to be
able to travel actually through a dynamic model.

States:

A state is a collection of values and relationships of an object, it is a subspace of
the attribute and relationship space of a type. Intensionally, a state is defined by a
predicate on objects of the given type. Extensionally a state is considered as the
set of all objects which fulfill this predicate.

States have got aname, which must be unique within a dynamic model. The
(redundant) attributekind divides states inatomic states, generalizing superstates
andaggregating superstates. States can beinitial or final states. Each state has
a range (represented as a meta-method) which we will define later on. Generally
speaking we understand by the range on a state a condition which an object must
comply with, so that it can be in the state. The condition of a state can be regarded
as a predicate supplyingtrue if an object is in a state,false otherwise. As spec-
ification language for conditions we useT QL�� ([FM94a, FM94b, Mos95]).
Each atomic state is provided with such a condition that is listed in the attribute
condition. To each structured state belongs at least one further state.
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Figure 1: A meta-model for dynamic models

Events:

An event is an incident focused on an object with the aim to carry out a change
of state (compare [RBP�91]). Events have got a uniquename, attributes and
actions. We distinguish betweenobject producing, object destroying and trans-
forming events, this information is stored in the attributekind.

Object producing events create a new object (compare initial states in OMT
of [RBP�91]). Object destroying events being carried out delete an object out of
the database (compare final states in OMT). Transforming events represent state
transitions as defined by OMT. Each event may occur in a dynamic model several
times because an event may cause state transitions on different parts of a dynamic
model. Let’s take e. g. a dynamic models describing the order of an article. It is
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on various points of this model possible to cancel the order, the eventcancel can
be found in the model several times. Therefore, we say that each event has at least
one event occurrence. Event occurrences have got the attributessync, guard and
postcondition. The attribute sync tells us, if the event occurrence is a synchroniz-
ing one in the sense of OMT. A synchronizing event occurrence leads from and/or
to a state aggregation. The guard of an event occurrence are those conditions that
must be true to apply an event occurrence to an certain object. In other words, the
object must comply with the guard of the event occurrence. Postconditions are
those conditions that an object complies with after its execution.

Event occurrences can havesource andtarget states. We designate that states
in which an object is before the execution of the event occurrence as source states,
the target states are that states in which an object is after its execution. Synchro-
nizing event occurrences, namely event occurrences that lead to or out of a state
aggregation can have several source and target states. Not synchronizing event oc-
currences have exactly one source and exactly one target state respectively in the
case of object producing or object destroying event occurrences have no source or
no target state.

States, events, event occurrences and dynamic models have further character-
istics which we will concentrate later on. For instance we talk about the range of
a state or of a dynamic model. In our meta-model these characteristics are real-
ized as meta-methods (resp. as “calculated” attributes). The advantage of such a
description in comparison to an (non calculated) attribute is that redundancies can
be avoided.

When we talk about these meta-methods or we apply them, we do not mean
the meta-method itself, but the result of the carrying-out applied on a precise
component of the dynamic model. We writeZ��Range�� and mean the result of
the meta-methodRange�� applied on the stateZ�.

In the following sections we derive from the meta-model aT QL�� schema
for the most interesting parts of a dynamic model. Concerning the relationships
we are very broad minded, we will (sometimes) derive them redundantly.

As an example we refer to figure 2 representing the static model and the dy-
namic behavior of a book from the view point of a library. Note that we use the
notation of OMT for dynamic models which is suggested in [Rum93] and sup-
ported by OMTOOL ([OMT93]).

2.2 Model restrictions
Model restrictions are conditions that an object must comply with in order to
be able to travel actually through a dynamic model. Each dynamic model can
have such model restrictions, but they are not absolutely necessary. All integrity
constraints which are defined for the static parts of the type of the dynamic model
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Figure 2: An example

must be added to the model restrictions. Further model restrictions, based upon
the attribute and relationship space of the type, can be specified as conditions
for the dynamic model. We useT QL�� as specification language for model
restrictions.

Let’s take for instance a dynamic model which only is applicable for a certain kind
of books, e. g. for didactic books. An adequate model restriction for the dynamic
model of the typebook looks like this.catalogue = ”didactic book”

Model restrictions are only a more comfortable way of naming the conditions
for states. For each state of a model a certain model restrictions is valid, also for
the postconditions of the event occurrences. For all following explanations we
must extend the conditions of atomic states and the postconditions of the event
occurrences with the model restrictions. The necessary algorithm in pseudo code:
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for all z �M .Atomic Statesdo
z.Condition :=z.Condition � M .Model Restriction

end for
for all ex �M .EventOccurrencesdo
ex.Postcondition :=ex.Postcondition� M .Model Restriction

end for

2.3 States
A state is a collection of values and relationships of an object, it is a subspace of
the attribute and relationship space of a type. Intensionally, a state is defined by a
predicate on objects of the given type. Extensionally a state is considered as the
set of all objects which fulfill this predicate.

States have the form

State := [
Name: str,
Kind: (atomic, generalizing superstate,

aggregating superstate),
IS: bool,
FS: bool,
Belongs_to: Structured_State,
Covers: {State}

]

Atomic_State := ISA State
[

Condition: Condition_T
]

A state consists of several components which can be addressed individually.
When we use e. g.Z�Name, the name of the stateZ is meant.

First of all each state has got aname which must be unique within a dynamic
model. We use the termkind in order to distinguish between generalizing super-
states, aggregating superstates and atomic states. We mark the initial and the final
states of dynamic models withIS (for initial state) andFS (for final states). An ob-
jects “enters” a dynamic model through a initial state and analogous to that leaves
it through a final state.

Atomic states, which are states too and therefore inherit all characteristics of
states, have in addition the attributeCondition. In this attribute the condition of
an atomic state is stored. Each atomic state has exactly one condition, which can
be a trough conjunction and disjunction constructed complex term. We demand
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the specification of the conditions for all atomic states of the dynamic model. For
our approach we useT QL�� as specification language.

By the condition of a state we understand the representation of all prerequisites
an object must comply with to be in this state. In other terms it is possible to find
all objects that are at the moment in this state using the state’s condition. The
condition of a state itself is based on the attribute and relationship space of a type.

A state of a book in our example isbook in text book collection. The condition for
this state would look likethis.position = ”text book collection” � this.reserved
= false.

Structured states are generalizing or aggregating superstates. To each struc-
tured statebelongs at least one further state, one structured state maycover several
other states. We use structured states to represent alternatives (state generaliza-
tions) or parallelism (state aggregations).

In our example of figure 2 the statebook administration is an aggregating super-
state. The statesbook registration, book preparation andbook not on stock
are generalizing superstates. All other states are atomic states. The statesbook
borrowed andbook in text book collection belong to the structured statebook
not on stock.

Furthermore states are divided intoelementary andnon-elementary states.

DEFINITION: An elementary state which can be an atomic state, a gen-
eralizing superstate or an aggregating superstate, doesn’t belong itself
to a structured state.

(1)

Elementary states are in a way the “elements” of a dynamic model which can
be split up further more. An elementary state doesn’t belong to any other state.
Elementary states are therefore the ’top-level’ states of a dynamic model.

In the library example the statesnew book, book administration, book on stock,
book not on stock andbook lost are elementary states. All other states are non-
elementary states.

While the conditions of atomic states have to be stored in the meta-model, the
conditions of structured states are computed. We define theRange of a stateZ as
follows:
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Definition of the range of states

DEFINITION: The range of a stateZ is defined as

Z�Condition, if Z is an atomic state.

the disjunction of all the states’Zi ranges, that belongs toZ if Z is
a generalizing superstate.

the conjunction of all the states’Zi ranges, that belongs toZ if Z
is an aggregating superstate.

(2)

In the meta-model the range of a state is realized as a meta-method (calculated
attribute). As result we get the condition of a state. From now onZ�Range�� will
be used as an abbreviation for the condition of the stateZ.

For instancebook in text book collection.Range() results inthis.position = ”text
book collection” � this.reserved = false.

In addition we define the predicateZ�o� which suppliestrue if the objecto
complies with the condition (the range) of the stateZ, otherwise it suppliesfalse.

The ranges of the states form the basis for the definition of relationships be-
tween states. Five different relationships are defined:equivalent states, included
states, overlapping states, orthogonal states, anddisjoint states. The set of all
possible extensions of the typeT is calledP �T �.

Definition of relationships between states

DEFINITION: The statesZ� andZ� of the typeT are calledequivalent,
if

�o � P �T � � Z��o�� Z��o�

(3)

DEFINITION: The stateZ� of the typeT includes the stateZ� of the
typeT , if

�o � P �T � � Z��o�� Z��o�

(4)

DEFINITION: The statesZ� andZ� of the typeT are calledoverlap-
ping, if

�o � P �T � � Z��o� � Z��o�

(5)
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DEFINITION: The generalizing superstatesZ� andZ� of the typeT
are calledorthogonal, if

Z� equivalent Z� � �z � Z��Covers� �z
� � Z��Covers�

�o � P �T � � z�o� � z��o�

(6)

A generalizing superstate consists of a set of states which are stored in the
attributeCovers. For two generalizing superstatesZ� andZ� being orthogonal
their ranges must be equivalent and each statez of Z� overlaps with each statez�

of Z� (and vice versa).

DEFINITION: The statesZ� andZ� of the typeT are calleddisjoint,
if

�o � P �T � � � �Z��o� � Z��o��

(7)

Based on the ranges of the states and the definitions of relationships between
states we think about the correctness of the states of a dynamic model. The state-
ments of OMT are followed, but we are able to describe them in a more formal
way.

DEFINITION: The states of a dynamic model arecorrect, if

1 all elementary states are disjoint,

2 all states, belonging to the same generalizing superstate are dis-
joint,

3 all states, belonging to the same aggregating superstate are orthog-
onal.

(8)

THEOREM: The orthogonal relationshipis not transitive in dynamic
models with correct states.

(9)

PROOF: The orthogonality is symmetrical (Z� orthogonalZ� impliesZ� orthogo-
nalZ�) but not reflexive.Z� is not orthogonal toZ� as, according to the definition
of the orthogonal relationship,Z� must be a generalizing superstate and all states
belonging toZ� must be disjoint (compare definition 8, p. 12). It is obvious, that
therefore the orthogonality of states in a dynamic model with correct states is not
transitive.
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2.4 Events and event occurrences
An event is an incident focused on an object with the aim to carry out a change of
state. An event is set off explicitly (compare [RBP�91]). Events for a book could
be e. g.borrow or lose.

In dynamic modeling events represent (partial) specifications of the methods
for the object type. If an event is set off an object is transfered to a new state. The
model defines which conditions (preconditions) an object has to fulfill in order
to be able to react to an event and which conditions (postconditions) an object
fulfills after the state change. These pre- and postconditions are primarily states
of the dynamic models. Events are therefore usually represented as arcs between
the states of the model. However, it is not always possible to find a partition of the
range of a model into states, such that each pre- and postcondition of all events
equal exactly one state. To overcome this situation we allow that an event appears
several times in a dynamic model and we distinguish between the event andevent
occurrences.

Consider the eventlose with its two event occurrenceslose 1 andlose 2 (figure 2).
We numbered the event occurrences in order to differ between them. If the event
lose is transmitted to a book, in subordination to the concrete state of the book one
of the two event occurrences is activated with the consequence of a state change
(supposing that the book is in one of the statesbook on stock or book not on
stock).

An event looks like

Event := [
Name: str,
Kind: (transforming,object producing,

object destroying),
Attribute: {str},
Action: str,
has: {Event Occurrence}

]

The name of an event must be unique in a dynamic model, inkind events
are divided intotransforming, object producing andobject destroying events. In
attributes all attributes of an event are listed which are needed when activating the
event. Inactions we describe in an informal way what an event has to do when it
is activated. Each eventhas several (at least one) event occurrences.

An event occurrence looks like

Event Occurrence := [
Guard: Condition_T,
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Postcondition: Condition_T,
Sync: bool,
Source_States: {State},
Target_States: {State},
has_Event: Event

]

Event occurrences could possess aguard. This is a (complex) condition an
object must comply with so that the event occurrence can cause a state change. If
there is no such condition the guard of an event occurrence istrue (again we use
T QL�� for specifying guards).

An object complies with the condition of apostcondition after the event occur-
rence had been applied.Sync states whether the event occurrence is asynchroniz-
ing one or not. Synchronizing event occurrences always lead from and/or to a state
aggregation.Sync is a redundant attribute (computed) which istrue, if an event
occurrence has several source or target states,false otherwise. Insource states
andtarget states the source and target states of an event occurrence are stored. In
the case on a synchronizing event occurrence there can be more source and target
states (that’s the reason why these attributes are multi-value attributes).Has event
is the connection to the event of the event occurrence.

The postcondition of an event occurrence must imply the range of its target
state. Object destroying event occurrences don’t have target states, their post-
condition is alwaystrue. If an event occurrence has got several target states the
postcondition must imply the ranges of all these states.

Event occurrences havepreconditions, which are the conditions that an object
must fulfill so that an event occurrence can cause a state change of an object. To
cause a state change the object must be in the source state of the event occurrence
(in the case of synchronizing event occurrences in all source states) and the object
must fulfill the condition of the guard of the event occurrence. Therefore the
precondition of an event occurrence equals to the conjunction of the guard with
the ranges of its source states. Object producing event occurrences don’t have
source states, their precondition is equivalent with its guard (ortrue, if there is no
guard). In our meta-model the precondition of an event occurrence is represented
as meta-methodPreC��, which will be used to find out the precondition of an
event occurrence.

According to the source and target state of event occurrences we define the
correctness of event occurrences.
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DEFINITION: Event occurrences are correct, it they have source and
target states according to the following conditions:

1 Non-synchronizing event occurrences of transforming events have
exactly one source and one target state.

2 Synchronizing event occurrences could have several source and tar-
get states. However, if there are several source states they must be-
long to the same state aggregation. Several target states must belong
to the same state aggregation too.

3 Event occurrences of object producing events do not have source
states.

4 Event occurrences of object destroying events do not have target
states. Therefore, the postcondition of such event occurrences is
true.

5 The postcondition of an event occurrence implies the ranges of all
its target states.

(10)

Regarding the pre- and postconditions of event occurrences one should con-
sider that they are independent from each other. It is not possible to conclude the
postcondition of an event occurrence from its precondition. We only know that if
an event occurrence should be applied to an object, the object must comply with
the precondition. After the application of the event occurrence the object must
fulfill the postcondition.

Furthermore events have got a specification which is represented as meta-
methodSpec�� in the meta-model. We refer to the definition 13, p. 17, where
we will define the specification of an event.

Like states, we can consider each part of events and event occurrences, e. g.
when we use the terme�Name we mean the name of the evente. The kind of the
event of the event occurrenceex is meant by the termex�has Event�Kind.

Consider the example in figure 2. States in these example arenew book, book
administration, book registration etc. Events for instance arenew or lose The
eventslose andborrow occur several times in the dynamic model, we numbered
their event occurrences.

Book not on stock is a generalizing superstate covering the statesbook borrowed
andbook in text book collection. Their ranges must be disjoint.

The statebook administration is an aggregating superstate to which the gener-
alizing superstatesbook registration and book preparation belong to. These
generalizing superstates must be orthogonal.

The event occurrencenew is an object producing one with the target statenew
book. Its precondition istrue, its postcondition must imply the range ofnew
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book. The precondition of the event occurrencereturn 1 is the conjunction its
guardthis.reserved = true with the range ofbook borrowed, its postcondition
must imply the range ofbook in text book collection .

The event occurrenceplace is a synchronizing one with the source statesbook
registered andbook in subject catalogue. Its precondition results from the con-
junction of the source states’ ranges.

Catalogue is a synchronizing event occurrence with the target statesbook in cat-
alogue andbook signed. Its postcondition must imply the ranges of both target
states.

Based upon the dynamic model we can derive (partial) method specifications
from the events and their event occurrences. Each event of the dynamic model
becomes a method (with the attributes as parameters). The event occurrences
preconditions are used in order to determine the conditions in which the method
can be applied to an object. The postconditions of the event occurrences specify
the conditions (in subordination to the corresponding precondition) an object must
comply with after the application of the method.

2.5 Correct dynamic models
A dynamic model looks like:

Dynamic Model = [
Name: str,
States: {State},
Events: {Event},
Model_Restriction: Condition_T

]

Each component of a dynamic model can be addressed, we useM�Name and
mean the name of the dynamic modelM . By Z � M�States is meant thatZ is
a state of the dynamic modelM . Although they don’t exist explicitly the set of
event occurrences can be addressed withM�Event Occurrences (we stored all
the event occurrences of an event in the attributehas).

Based upon the ranges of states and the correctness of event occurrences we
define a correct dynamic model. In our following considerations we assume cor-
rect dynamic models.

DEFINITION: A dynamic model is calledcorrect if

1 all states are correct according to definition 8, p. 12, and

2 all event occurrences are correct according to definition 10, p. 15

(11)
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In analogy to states, dynamic models have also a range which is defined as:

DEFINITION: Therange of a correct dynamic model results from the
range’s disjunction of allelementary states of the dynamic model.

(12)

The range of a dynamic model is again a (complex) condition, constructed by
the disjunction of the elementary states’ ranges of the dynamic model (and that
is under no circumstances automatically true). In our meta-model the range of a
dynamic model is represented as meta-methodRange��.

3 Equivalence of dynamic models
We wish to support designers to work with dynamic models in a similar way as
they already can do with the static models. In particular, our goal is to support
the transformation of dynamic schemas without changing the semantics. For this
purpose we need a clear definition when dynamic models are equivalent. Our
definition is based on the consideration that dynamic models are equivalent, if
they provide the same partial specification for the development of methods. So
the equivalence of correct dynamic models (M� �M�) bases on equivalent model
ranges and equivalent events. We will first define the equivalence in a model-
theoretic way and then present a sound and complete axiomatization which will
then be used to prove that schema transformations preserve equivalence.

First of all we define what is understood by the specification of an event. The
specification of an event is the set of conditional pairs of the formf�Pre�� P ost���
� � � � �Pren� P ostn�g. One pair�Prei� P osti� indicates that an object which sat-
isfies the conditionPrei (we sayPrei�o�, if the object satisfies the condition)
after the application of the event (actually of the corresponding event occurrence)
satisfies the conditionPosti. We take the pre- and postconditions of the event
occurrences of the evente in order to calculate the specification of the event:

DEFINITION: The specificationSpec of the evente is defined as

e�Spec � f�ex�PreC��� ex�Postcondition� j ex � e�hasg

(13)

The specification of an event is computed in our meta-model by collecting all
the pre- and postconditions of the corresponding event occurrences of the event
(listed in the attributee.has). In the meta-model the specification of an event is
realized as meta-methodSpec��.

The predicatee�Post�o� is defined as the postcondition an object o statisfies
after the evente occurred.
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DEFINITION: The predicatee�Post�o� for an evente and an objecto
is defined as

e�Post�o� ��
�
fPostj�Pre � �Pre� Post� � e�Spec�� � Pre�o�g

whereby
�
� � false

�
fPostg � Post

�
fPost� � � � P ostng � Post� 	 � � � 	 Postn

(14)

The predicatePost�o� is defined as the disjunction of all postconditions of
conditional pairs (Pre� Post) from e�Spec�� for which the objecto satisfy the
precondition (Pre�o�). The predicate suppliesfalse, if the objecto doesn’t fulfill
any of the preconditions of the event specification ofe.

DEFINITION: The event specifications of the two eventse� ande� are
equivalent (e��Spec�� � e��Spec��), if

�o � P �T � � e��P ost�o�� e��P ost�o�

(15)

We say that two event specifications are equivalent ifPost applied to both
specifications for all objects fromP �T � supplies equivalent conditions.

DEFINITION: Two eventse� ande� areequivalent (e� � e�), if they
have the same name, the same attributes and the same kind and their
event specifications are equivalent.

(16)

THEOREM: The equivalence of events isreflexive, symmetrical and
transitive, consequently an equivalence relation.

(17)

PROOF: The equivalence of two eventse� ande� is due to the same name, the
same attributes and the same kind of events and based on equivalent event specifi-
cations ofe� ande� (compare definition 16). The conformity of event names, the
attributes of events and the kind of events is trivially reflexive, symmetrical and
transitive. We must show this for the event specifications, that means:

(1) e��Spec�� � e��Spec�� (reflexivity)

(2) e��Spec�� � e��Spec��� e��Spec�� � e��Spec�� (symmetry)
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(3) �e��Spec�� � e��Spec��� � �e��Spec�� � e��Spec����
e��Spec�� � e��Spec�� (transitivity)

ad (1) e��Spec�� � e��Spec�� follows directly from the definition of event
specifications (compare definitions 13 and 14).

ad (2)e��Spec�� � e��Spec�� � e��Spec�� � e��Spec�� is valid because of
the symmetry of equivalent logical terms (in our approachT QL�� terms).

ad (3)�e��Spec�� � e��Spec��� � �e��Spec�� � e��Spec��� � �e��Spec�� �
e��Spec��� follows because of the transitivity of equivalent logical terms (in our
approachT QL�� terms).

Now we are interested which changes of event specifications are possible in
this equivalence relation since manipulations of event occurrences lead to a change
of event specifications. We define the relation� for event specifications. It means
the left part of the relation� can be changed to the right part and vice versa.

DEFINITION: Let S, S�, S� andS� be event specifications. Let ad-
ditionally Pre, Pre�, Pre�, Prei andPrej as well asPost, Post�,
Post�,Posti andPostj be Pre- and Postconditions (T QL�� terms).
Then:

(1) S 
 f�Pre�� P ost�� �Pre�� P ost�g�S 
 f�Pre� 	 Pre�� P ost�g

(2) S 
 f�Pre� Post��� �Pre� Post��g�S 
 f�Pre� Post� 	 Post��g

(3) f�false� Post�g � �

(4) f�Pre� false�g � �

(5) f�Prei� P osti�g � f�Prej� P ostj�g if Prei � Prej �
Posti � Postj

(6) �S� � S�� � �S� � S�� � S� � S�

(18)

According to the definitions 18(1) and (2) we may summarize event specifi-
cations with equivalent postconditions through disjunction of their preconditions
as well as event specifications with equivalent preconditions through disjunction
of their postconditions. The definitions 18(3) and (4) allow us to remove event
specifications whose pre- or postconditions result infalse. The definition 18(5)
states that pairs of event specifications following to the relation� are equivalent
if their pre- and postconditions are equivalent terms (in our approach equvalent
T QL�� terms). In definition 18(6) the transitivity of the relation� is deter-
mined.
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THEOREM: Let S�, S� andT be event specifications. Then

(1) S� � S� and

(2) S� � S� � �S� 
 T � � �S� 
 T �

(19)

PROOF:

(1) S� � S� follows from the transitivity of logical terms (in our approach
T QL�� terms; compare definition 18, p. 19).

(2) If S� � S�, then there must be a sequence of event specificationsSi � � � Sk
based upon operations according to the definition 18, p. 19, so that

S� � Si � � � � � Sk � S��

It is easy to see, that, because of the same operations:

�S� 
 T � � �Si 
 T � � � � � � �Sk 
 T � � �S� 
 T ��

THEOREM: Let S� andS� be event specifications. FromS� � S� fol-
lowsS� � S�.

(20)

PROOF: In order to prove this theorem for the different operations of the defini-
tions 18, p. 19 we have to show thate�Post�o� for any objecto returns equivalent
terms before and after an operation of the relation�.

(1) The definition 18(1) states, thatS 
 f�Pre�� P ost�� �Pre�� P ost�g � S 

f�Pre� 
 Pre�� P ost�g. LetS� � S 
 f�Pre�� P ost�� �Pre�� P ost�g, with
S �� � S 
 f�Pre� 	 Pre�� P ost�g. Let e� be the event with the event
specificationS�, e�� the event with the event specificationS�� ande the event
with the event specificationS.

(a) Let o be an object fromP �T � with Pre��o�. P � e�Post�o�; P � �
e��P ost�o� andP �� � e���P ost�o�. ThenP � is equal toP 	 Post andP �� is
equal toP 	 Post. It is easy to see thatP � � P ��.

(b) Let o be an object fromP �T � with Pre��o�. Analogous to (a) it is easy
to see thatP � � P ��.

(c) Leto be an object fromP �T � with Pre��o� � Pre��o�; P � e�Post�o�.
P � � e��P ost�o� andP �� � e���P ost�o�. P � is equal toP 	 Post 	 Post,
P �� is equal toP 	 Post. It is easy to see thatP � � P ��.
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(d) Let o be an object fromP �T � with � Pre��o� � � Pre��o�. It follows
directly thatP � P � � P ��.

From (a) to (d) follows, thatS 
 f�Pre�� P ost�� �Pre�� P ost�g � S 
 f�Pre�
	 Pre�� P ost�g

(2) The definition 18(2) states, thatS 
 f�Pre� Post��� �Pre� Post��g � S 

f�Pre� Post� 	 Post��g. LetS� beS 
 f�Pre� Post��� �Pre� Post��g and
S �� beS 
 f�Pre� Post� 	 Post��g. Let e� be the event with the event spec-
ification S�, e�� be the event with the event specificationS�� and e be the
event with the event specificationS.

(a) Let o be an object fromP �T � with Pre�o�. P � e�Post�o�, P � �
e��P ost�o� andP �� � e���P ost�o�. P � is equal toP 	 Post� 	 Post� and
P �� equal toP 	 �Post� 	 Post��. ObviousP � � P ��.

(b) Leto be an object fromP �T � with � Pre�o�. It follows thatP � P � �
P ��.

It is easy to see thatS 
 f�Pre� Post��� �Pre� Post��g � S 
 f�Pre� Post�
	 Post��g

(3) The definition 18(3) states, thatf�false� Post�g � �. There can be no ob-
ject fromP �T �, that fulfills the preconditionfalse. The predicatePost�o�
applied to an event specificationf�false� Post�g results in an empty set of
postconditions and therefore returnsfalse (compare definition 14, p. 18).
The predicatePost�o� applied to an empty event specification again re-
sults in an empty set of postconditions and returnsfalse too. Obvious
f�false� Post�g � �

(4) The definition 18(4) states, thatf�Pre� false�g � �. Each objecto from
P �T � either fulfills the PreconditionPre or does not.

(a) Leto be an object fromP �T � with Pre�o�. Post�o� applied to the event
specificationf�Pre� false�g returnsfalse (compare definition 14, p. 18).
Post�o� applied to an empty event specification returns an empty set of
postconditions and, therefore,false.

(b) Let o be an object fromP �T � with � Pre�o�. Post�o� applied to
f�Pre� false�g results in an empty set of postconditions and therefore re-
turnsfalse, as well asPost�o� applied to an empty event specification.

It follows, thatf�Pre� false�g � �

(5) f�Prei� P osti�g � f�Prej� P ostj�g ifPrei � Prej � Posti � Postj fol-
lows from the equivalence of logical terms (in our approach ofT QL��
terms).
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(6) The transitivity of event specifications follows from the transitivity of equiv-
alent logical terms (in our approach ofT QL�� terms).

From (1) to (6) follows, thatS� � S� � S� � S�.

THEOREM: Let S� andS� be event specifications. FromS� � S�
follows S� � S�.

(21)

PROOF: To prove this theorem it is sufficient to show that:

(1) � R jR � S� � ��Prei� P osti�� �Prej� P ostj� � R �

(a) Prei� P rej� P osti� P ostj �� false

(b) Prei � Prej �� false� Prei � Prej

(2) �Q jQ � S� � ��Prei� P osti�� �Prej� P ostj� �Q �

(a) Prei� P rej� P osti� P ostj �� false

(b) Prei � Prej �� false� Prei � Prej

(3) ��Pre�i� P ost�i� �Q �R� with

(a) R� 
 R �R and

(b) R� � �Pre�i� P ost�i�

ad (1) and (2) We transformS� andS� into event specifications where none
of the pre- and postconditions results in false. Furthermore the preconditions are
demanded to be disjoint. It is easy to see that this can be done by using the
operations of the definitions 18(1) - (4) resulting into the event specificationsR

andQ which are equivalent toS� andS�. FromS� � S�, S� � R andS� � Q

follows thatR � Q.
ad (3) Let�Pre�i� P ost�i� �Q, thanR� � f�Pre�j� P ostj�gj��Prej� P ostj� � R

with Prej � Pre�i �� false � Pre�j � Prej � Pre�i.
It is easy to see, thatR� �� � asR � Q and therefore there must be at least

one pair�Prej� P ostj� � R with Prej � Pre�i �� false (compare definitions 16,
p. 18, 15, p. 18 and 14, p. 18).

ad (3a) For each pair�Pre�j� P ost
�

j� �R
� there must be a pair�Prej� P ostj� �R

with Post�j � Postj. According to definition 18, p. 19(1) they can be combined to
�Pre�j 	 Prej� P ostj� which results in�Prej� P ostj� asPre�j � Prej (compare
the construction ofR�). ThereforeR� 
R �R.
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ad (3b)�Pre�i� P ost�i� �Q andR� is the setf�Pre��� P ost�� � � � �Pre
�

n� P ostn�g.
Due to the construction ofR� eachPre�i has the formP � � Pre�i. Therefore each
Pre�i � Pre�i.

We transform�Pre�i� P ost�i� into Q� � f�Pre��i� P ost�i�� �Pre
��

�i� P ost�i�g j
��Prei� P osti� � R� with Pre��i � Pre�i � Prei andPre���i � Pre�i � � Prei.
Q� results into the setf�Pre�i � Pre�� P ost�i�� �Pre�i � � Pre�� P ost�i� � � �
�Pre�i � Pren� P ost�i�� �Pre�i � � Pren� P ost�i�g. According to definition 18(1)
�Pre�i� P ost�i� � Q�. With definition 18(2)Q� can be transformed into the set
f�Pre�i � Pre�� P ost�i�� � � � � �Pre�i � Pren� P ost�i�� �Pre�i � � �Pre� 	 � � �

	 Pren�� P ost�i�g.
However,Pre�i � � �Pre� 	 � � � 	 Pren� results infalse, asR � Q. Oth-

erwise there might be an objecto fulfilling Pre�i but not any precondition from
R. According to definition 18(3) we can remove this fromQ�.

FurthermoreQ� can be transformed intof�Pre�� P ost�i�� � � � �Pren� P ost�i�g
as eachPrei � Pre�i.

Now ��Prej� P ostj� � R� ��Prej� P ost�i� � Q� and vice versa. Note, that
according to the conditions forR the preconditions ofR� must be disjoint. The
preconditions ofQ� must be disjoint too. If follows thatPostj � Post�i. Other-
wise there would be contradiction as the predicatePost�o� for an object fulfilling
the preconditionPrej would result in not equivalent postconditions forR andQ.

From (1) to (3) follows, thatS� � S� � S� � S�.

We define the equivalence of dynamic models on the base of the equivalence
of events.

DEFINITION: Two correct dynamic modelsM� andM� are equivalent
(M� �M�), if

(1) their ranges are equivalent and

(2) all their events are equivalent.

(22)

THEOREM: The equivalence of correct dynamic models isreflexive,
symmetrical andtransitive.

(23)

PROOF: The equivalence of dynamic models is based on equivalent ranges and
equivalent events. We’ve already proved that the equivalence of events is reflexive,
symmetrical and transitive (compare theorem 17, p. 18). This is also valid for the
range of dynamic models which are logical terms (in our approachT QL��
terms).
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Now we have the formal basis for discussing equivalence transformations of
dynamic models. In the following section we introduce a set of basic schema
transformations which have the important property that they deliver equivalent
dynamic models.

4 Schema transformations
4.1 Overview
Schema transformations are operations on a dynamic modelM� resulting in a dif-
ferent dynamic modelM�. Each schema transformation deals with a certain aspect
of the dynamic model (e. g combines states or shifts event occurrences within a
state generalization). In the following we present a set of 21 basic schema trans-
formations which do not change the semantics of the dynamic model according
to the definition of equivalence given above. Due to the transitivity of the equiv-
alence of dynamic models complex transformations can be established on this
basic set of transformations. In our approach the transformations are treated as
meta-methods of the meta-model (e. g. as meta-methods for states).

Each schema transformation changes a correct dynamic modelM� into a cor-
rect dynamic modelM�. We will prove, thatM� andM� are equivalent as defined
by definition 22, p. 23. For that it is sufficient to show that

(1) the ranges ofM� andM� are equivalent,

(2) M� is a correct dynamic models according to definition 11, p. 16 and

(3) thecontributions of the changed event occurrences to the event specifica-
tions are equivalent before and after the schema transformation. We prove
this for the most general case, all other cases result trivially from that.

Thecontribution of an event occurrenceex to the event specification is a con-
ditional pair�ex�PreC��� ex�Postcondition� (compare definition 13, p. 17). The
preconditionex�PreC�� is regarded as�Z��Range�� � ex�Guard �R�. R repre-
sents according to this point of view the conjunction of the source states’ ranges
of the event occurrenceex except the stateZ� if ex is a synchronizing event oc-
currence (remember, synchronizing event occurrences could have several source
states; compare page 7). In the case of a non synchronizing event occurrenceex

or if Z� is the only source state ofex R is true. The source stateZ� of ex plays
an important role during a schema transformation and therefore will be treated
especially. In order to get a better view we use for the contribution of an event oc-
currence�Z� �G � R�P � but we mean�Z��Range�� � ex�Guard � R� ex�Post-
condition�.
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If a transformation is applied, a new dynamic modelM� based onM� is con-
structed. Basically this means that the complete dynamic modelM� must be
copied before the transformation is applied. However, we do not consider that,
we take that granted.

Combined schema transformations can be defined on the base of this transfor-
mations which are equivalence transformations too, as the equivalence of dynamic
models is transitive (compare theorem 23, p. 23). We will present some combined
schema transformations, further combinations are of course possible.

4.2 Shifting event occurrences within a generalization
In a correct dynamic model event occurrences can be shifted within a state gen-
eralization. They can be shifted from a state of the state generalization to the
generalizing superstate or can be shifted from the generalizing superstate to the
states belonging to it.

4.2.1 Shifting event occurrences to a generalizing superstate
With the aid of these schema transformation we shift an event occurrence from
a state of a state generalization to the generalizing superstate. We distinguish
between the transformationsUpSg andUpTg. The transformationUpSg shifts
an event occurrence with a source stateZ to the generalizing superstate ofZ.
The transformationUpTg shifts an event occurrence with a target stateZ to the
generalizing superstate ofZ.

The schema transformationUpSg�Z� shifts an event occurrence with a source
stateZ to the generalizing superstate ofZ. UpSg�Z� can be regarded as meta-
method in our meta-model and looks like:

if Z.Belongsto.Kind = generalizing superstatethen
self .Guard :=self .PreC()
replace inself .SourceStatesZ throughZ.Belongsto

end if
At this point we want to emphasize again that the components of a dynamic

model can be addressed as single parts. We useZ�Belongs to�Kind and the kind
of the structured state thatZ belongs to is meant. In other words we “navigate”
through the dynamic model by using so calledpath expressions.

The stateZ is replaced by its generalizing superstate in the source states of the
shifted event occurrence. However, as the generalizing superstate has a “wider”
range than the original stateZ the guard of the event occurrence is replaced by
its precondition to guarantee that the event occurrence could only be applied to
objects that comply with the original precondition.
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THEOREM: If a correct dynamic modelM� is transformed by shifting
an event occurrence using the schema transformationUpSg�Z� into a
dynamic modelM� thenM� �M�.

(24)

PROOF: To prove this theorem it is sufficient to show that

(1) the ranges ofM� andM� are equivalent,

(2) M� is a correct dynamic model and

(3) all event occurrences before and after the transformation supply an equiva-
lent contribution to the event specification.

ad (1) The ranges ofM� andM� are equivalent, as states remain unchanged
by the transformationUpSg.

ad (2) It is easy to see that the conditions of definition 11, p. 16 holds forM�.

ad (3) The events remains unchanged if we shift event occurrences, therefore
the conformity of the name, kind and attributes of events is automatically given.
However, we must show that the contributions of the event occurrences to the
event specifications are equivalent before and after the transformation.

Let ex be an event’se event occurrence of the dynamic model havingZ� as
source state. LetZ� belonging to the generalizing superstateZ�. Let B� be the
disjunction of the ranges of all states (exceptZ�) belonging to the generalizing
superstateZ�. The contribution ofex to the event specification ofe before and
after the schema transformationUpSg�Z�� �

before � �Z� �G � R�P �

afterwards � �Z� � �Z� �G� �R�P �, comp. algorithm

� ��Z� 	 B�� � �Z� �G� �R�P �, comp def. 2

� �Z� �G � R�P �

Obviously the contributions of the event occurrenceex to the event specifica-
tion of e are equivalent before and after the schema transformation.

From (1) to (3) follows that the application of the schema transformation
UpSg to an event occurrence ofM� results into an equivalent dynamic model
M�

The transformationUpTg shifts an event occurrence with a target stateZ to
the generalizing superstate ofZ. UpTg�Z� can be regarded as meta-method in
our meta-model and looks like:
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if Z.Belongsto.Kind = generalizing superstatethen
replace inself .TargetStatesZ throughZ.Belongsto

end if
This transformation only changes the target state of the event occurrence by

replacingZ through the generalizing superstate ofZ.

THEOREM: If a correct dynamic modelM� is transformed by shifting
an event occurrence using the schema transformationUpTg�Z� into a
dynamic modelM� thenM� �M�.

(25)

PROOF: To prove this theorem it is sufficient to illustrate that

(1) the ranges ofM� andM� are equivalent,

(2) M� is a correct dynamic model and

(3) all event occurrences before and after the transformation supply an equiva-
lent contribution to the event specification.

ad (1) The ranges ofM� andM� are equivalent, as states remain unchanged
by the transformationUpTg.

ad (2) Obvious the conditions of definition 11, p. 16 holds forM� too, as the
transformation does not change the states of the dynamic model. The postcon-
dition of the shifted event occurrence implies the range of its new target state
(the generalizing superstate; compare definition 10, p. 15) as the range of the
generalizing superstate contains the range of the original target state of the event
occurrence (compare definition 2, p. 11).

ad (3) The events remain unchanged by the transformationUpTg, therefore
the conformity of the names, kind and attributes is granted. Furthermore we have
to prove that the contributions of the shifted event occurrence before and after
the transformation are equivalent. Obvious the contributions must be equivalent
as neither the source states nor the postconditions of the event occurrence are
changed.

From (1) to (3) follows that the application of the schema transformation
UpTg to an event occurrence ofM� results into an equivalent dynamic model
M�.
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c.UpSTg  (Z1)

Figure 3: Shifting of event occurrences

Combined schema transformations

Based on the two transformationsUpSg andUpTg we can determine a schema
transformationUpSTg�Z� shifting event occurrences havingZ as source and tar-
get state to the generalizing superstate ofZ. A corresponding algorithm in pseudo
code:

if Z.Belongsto.Kind = generalizing superstatethen
self .UpSg(Z)
self .UpTg(Z)

end if

By applyingUpSTg to an event occurrence ofM� an equivalent dynamic
modelM� is produced, as only the equivalence transformationsUpSg andUpTg
are used and the equivalence of dynamic models is transitive (compare theo-
rem 23, p. 23).

Let’s consider the example in figure 3 where we shift the event occurrencesa, b
and c from the statesZ� or Z� to the generalizing superstateZ by applying the
corresponding schema transformations.

4.2.2 Shifting event occurrences from a generalizing superstate
With the aid of these schema transformations we shift event occurrences of a gen-
eralizing superstate to those states belonging to the generalizing superstate. We
distinguish betweenDownSg andDownTg (in analogy toUpSg andUpTg).
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The schema transformationDownSg�G� shifts an event occurrence having
the generalizing superstateG as source state to all states belonging toG. The
schema transformation can be regarded as a meta-method in our meta-model. A
corresponding algorithm in pseudo code:

EX := �
if G.Kind = generalizing superstatethen

for all Zi � G.Coversdo
ex := self .shallowcopy()
EX := EX 
 ex
ex.hasEvent.has :=ex.hasEvent.has +ex
replace inex.SourceStatesG throughZi

end for
self .hasEvent.has :=self .hasEvent.has -self
self .delete()

end if
returnEX

For each state belonging toG the event occurrence must be copied and the
source states are adopted. The functionshallow copy is a usual process of copy-
ing in object oriented databases. In that way a copy of the object with identical
attribute values is produced. The original event occurrence is deleted. After-
wards some of the copied event occurrences may have preconditions resulting in
false. However, according to definition 18, p. 19, these event occurrences can be
deleted. Later we present the schema transformationClean for such situations.
The shifted and therefore copied event occurrences are collected in the setEX

which are returned as result of the transformation. We will need this set of event
occurrences for another schema transformation.

THEOREM: If a correct dynamic modelM� is transformed by shifting
an event occurrenceex using the schema transformationDownSg�G�
into a dynamic modelM� thenM� �M�.

(26)

PROOF: To prove this theorem it is sufficient to show that

(1) the ranges ofM� andM� are equivalent,

(2) M� is a correct dynamic model and

(3) all event occurrences before and after the transformation supply an equiva-
lent contribution to the event specification.

ad (1) The ranges ofM� andM� are equivalent as states remain unchanged by
the transformationDownSg.
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ad (2) It is easy to see thatM� is a correct dynamic model according to defini-
tion 11, p. 16.

ad (3) The events remain unchanged by the transformationDownSg. There-
fore the uniformity of the name, kind and attributes is automatically given. In ad-
dition we must prove that the contributions of the event occurrences to the event
specifications are equivalent too.

Let ex be an event’se event occurrence without any restrictions having the
generalizing superstateZ as source state. LetZ� � � � Zi be those states belonging
to the generalizing superstateZ. The contribution ofex to the event specification
of the evente before the transformation is:

before � �Z �G � R�P �

The event occurrenceex is removed by the transformation and replaced by the
event occurrencesex� � � � exi. The contributions for these event occurrences look
like:

afterwards � ex� � �Z� �G � R�P �, comp. algorithm

� � �

exi � �Zi �G �R�P �, comp. algorithm

� ���Z� �G �R� 	 � � � 	 �Zi �G � R��� P �, comp. def. 18(1)

� ��Z� 	 � � � 	 Zi� �G �R�P �

� �Z �G �R�P �, comp def. 2

The transformation produces the event occurrencesex� � � � exi. Their con-
tributions to the event specification can be combined by the disjunction of their
preconditions as their postconditions are equivalent according to the relation�
(compare definition 18, p. 19). We get�Z� 	 � � � 	 Zi� �G � R by transforming
the preconditions. However, this is equivalent toZ �G � R because the disjunc-
tion of the states’ ranges belonging to the generalizing superstate is equivalent to
the range of the generalizing superstate (comp. definition 2, p. 11).

The contribution ofex to the event specification of the evente is equivalent to
the contributions that the event occurrencesex� � � � exi supply to the event speci-
fication.

From (1) to (3) follows that the application of the transformationDownSg to
an event occurrence ofM� results into an equivalent dynamic modelM�.
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The schema transformationDownTg�G� shifts an event occurrence having
the generalizing superstateG as target state to all states belonging toG. The
schema transformationDownTg can be regarded as a meta-method of the meta-
model. A corresponding algorithm looks like:

if G.Kind = generalizing superstatethen
for all Zi � G.Coversdo
ex := self .shallowcopy()
ex.hasEvent.has :=ex.hasEvent.has +ex
ex.Postcondition :=ex.Postcondition� Zi.Range()
replace inex.TargetStatesG throughZi

end for
self .hasEvent.has :=self .hasEvent.has -self
self .delete()

end if
Again for each state belonging to the generalizing superstate the shifted event

occurrence must be copied and the target states are changed. Furthermore the
postconditions of the copied event occurrences are adopted by the conjunction of
the original postcondition with the range of their new target states. The original
event occurrence is deleted. If afterwards the postcondition of an event occurrence
results infalse, it can be deleted (compare definition 18, p. 19).

THEOREM: If a correct dynamic modelM� is transformed by shifting
an event occurrenceex using the schema transformationDownTg�G�
into a dynamic modelM� thenM� �M�.

(27)

PROOF: To prove this theorem it is sufficient to illustrate that

(1) the ranges ofM� andM� are equivalent,

(2) M� is a correct dynamic model and

(3) all event occurrences before and after the transformation supply an equiva-
lent contribution to the event specification.

ad (1) The ranges ofM� andM� are equivalent, as states remain unchanged
by the transformationDownTg.

ad (2) The transformation doesn’t change anything on states of the dynamic
model. The conditions of definition 8, p. 12 hold automatically.

By shifting an event occurrence from the generalizing superstate to its cov-
ering states the event occurrence is copied. Target states and postconditions are
changed. The new postcondition of a copied event occurrences either implies the
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range of its new target state or results infalse (those event occurrences may be
removed without loosing the equivalence according to the definition 20, p. 20).
Therefore the conditions of correct occurrences hold forM� (compare defini-
tion 10, p. 15).M� is a correct dynamic model.

ad (3) The events remain unchanged by the transformationDownTg. There-
fore the uniformity of the name, kind and attributes is automatically given. In
addition we must prove that the contributions to the event specifications are equiv-
alent too.

Let ex be an event’se event occurrence without any restrictions having the
generalizing superstateZ as target state. LetZ� � � � Zi be those states belonging
to the generalizing superstateZ. The contribution ofex to the event specification
of the evente before the transformation is:

before � �ex�PreC��� P �

Let ex� � � � exi be the event occurrences produced by the transformation. The
contributions of these event occurrences to the event specification ofe (as the
source states remain unchanged by the transformation the preconditions of the
copied event occurrences are equivalent toex�PreC��):

afterwards � ex� � �ex�PreC��� P � Z��, comp. algorithm

� � �

exi � �ex�PreC��� P � Zi�, comp. algorithm

� �ex�PreC��� P � �Z� 	 � � � 	 Zi��, comp. def. 18(2)

� �ex�PreC��� P � Z�, comp. def. 2

� �ex�PreC��� P �, comp. def. 11

The transformation produces the event occurrencesex� � � � exi. Their con-
tributions to the event specification can be combined by the disjunction of their
postconditions as their preconditions are equivalent (according to definition 18,
p. 19, of the relation�). We getP � �Z� 	 � � � 	 Zi� by transforming, which
is equivalent toP � Z as the disjunction of the states’ ranges belonging to the
generalizing superstate is equivalent to the range of the generalizing superstate
(compare definition 2, p. 11). As the postconditionP of the event occurrenceex
fromM� must imply the range of its target stateZ, P � Z is equivalent toP .

The contribution ofex to the event specification of the evente is equivalent to
the contributions that the event occurrencesex� � � � exi supply to the event speci-
fication.
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From (1) to (3) follows that the application of the transformationDownTg to
an event occurrence ofM� results into an equivalent dynamic modelM�.

Combined schema transformations

Based on the two transformations the schema transformationDownSTg�G� is
defined. The transformation shifts an event occurrence having the generalizing
superstateG as source state and as target state to the states belonging to the gen-
eralizing superstate. The schema transformationDownSTg can be regarded as
meta-method of the meta-model. A corresponding algorithm looks like:

if G.Kind = generalizing superstatethen
EX := self .DownSg(G)
for all ex � EX do
ex.DownTg(G)

end for
end if

First of all the event occurrence is copied for each state belonging to the gen-
eralizing superstate with the aid of the transformationDonwSg and the source
states adopted, resulting in a set of new event occurrences stored in the setEX.
For each event occurrence in this set the transformationDownTg is performed
whereby the target states are adopted.

For the schema transformationDownSTg only the transformationsDownSg
andDownTg are used. As both transformations are equivalence transformation
and the equivalence of dynamic model is transitive (compare theorem 23, p. 23)
the usage ofDownSTg on an event occurrence ofM� results into an equivalent
dynamic modelM�.

Let’s consider the example in figure 4. In this example we want to shift the event
occurrencea from the generalizing superstateZ to the statesZ� andZ�. First of
all we apply the transformationDownSg. The event occurrence is copied and the
source states are adopted. We receive the event occurrencesa� anda� (compare
figure 4(b)). Then the transformationDownTg is performed to each event occur-
rence produced at first and change the target states. We get the event occurrences
a��, a��, a�� anda�� (compare figure 4(c)).

4.3 Shifting event occurrences within a state aggrega-
tion

In a correct dynamic model event occurrences can be shifted within a state aggre-
gation. Event occurrences can be shifted from a state of the state aggregation to
its corresponding aggregating superstate and vice versa.
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Z

Z2Z1

a [G1]

Z

Z2Z1

a   [G1]1 a   [G1]2

Z

Z2Z1

11a      [G1]
a      [G1]12

22a      [G1]

a      [G1]21

(a) starting point
(b) situation after the first step

(c) situation after the second step

a.DownSg(Z)

a1.DownTg(Z)
a2.DownTg(Z)

Figure 4: Shifting of event occurrences

4.3.1 Shifting event occurrences to an aggregating state
With the aid of these schema transformations we shift an event occurrence from
a state of a state aggregation to its corresponding aggregating superstate. The
transformationUpSa shifts an event occurrence with a source stateZ to the ag-
gregating superstate ofZ. The transformationUpTa shifts an event occurrence
with a target stateZ to the aggregating superstate ofZ.

The transformationUpSa�Z� shifts an event occurrence with a source state
Z to the aggregating superstate ofZ. It can be regarded as a meta-method of the
meta-model and looks like:

if Z.Belongsto.Kind = aggregating superstatethen
replace inself .SourceStatesZ throughZ.Belongsto

end if

The transformation replaces the source stateZ of the event occurrence through
the aggregating superstate ofZ. According to the conditions of a correct dynamic
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model (compare definition 11, p. 16) the states belonging to an aggregating super-
state must be generalizing superstates with equivalent ranges. Therefore, accord-
ing to the definition 2, p. 11, the range of the aggregating superstate is equivalent
to the ranges of its covering generalizing superstates.

Synchronizing event occurrences automatically are transformed to unsyncroniz-
ing one if afterwards the event occurrences have only one or less source and target
states. Note that the attributeSnyc of event occurrences is a computed one.

THEOREM: If a correct dynamic modelM� is transformed by shifting
an event occurrence using the schema transformationUpSa�Z� into a
dynamic modelM� thenM� �M�.

(28)

PROOF: To prove this theorem it is sufficient to illustrate that

(1) the ranges ofM� andM� are equivalent,

(2) M� is a correct dynamic model and

(3) all event occurrences before and after the transformation supply an equiva-
lent contribution to the event specification.

ad (1) The ranges ofM� andM� are equivalent, as states remain unchanged
by the transformationUpSa.

ad (2) Obvious the conditions of definition 11, p. 16 holds forM� too.

ad (3) The events remains unchanged when we shift event occurrences, there-
fore the conformity of the name, kind and attributes of events is automatically
given. Furthermore the contributions of the changed event occurrence are equiv-
alent in both dynamic models, as the source state is changed by an equivalent
state.

Note that the state aggregation fulfills the condition of orthogonality. That
means, that all states directly belonging to an aggregating superstate must be gen-
eralizing superstates with equivalent ranges (compare definition 6, p. 12). There-
fore the range of the aggregating superstate is equivalent to the ranges of its cov-
ering generalizing superstates (compare definition 2, p. 11).

From (1) to (3) follows that the application of the schema transformation
UpSa to an event occurrence ofM� results into an equivalent dynamic model
M�

The transformationUpTa�Z� shifts an event occurrence with a target stateZ

to the aggregating superstate ofZ. It can be regarded as a meta-method of the
meta-model and looks like:
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if Z.Belongsto.Kind = aggregating superstatethen
replace inself .TargetStatesZ throughZ.Belongsto

end if

The target stateZ is replaced by the aggregating superstate ofZ (both states
have equivalent ranges).

THEOREM: If a correct dynamic modelM� is transformed by shifting
an event occurrence using the schema transformationUpTa�Z� into a
dynamic modelM� thenM� �M�.

(29)

PROOF: To prove this theorem it is sufficient to show that

(1) the ranges ofM� andM� are equivalent,

(2) M� is a correct dynamic model and

(3) all event occurrences before and after the transformation supply an equiva-
lent contribution to the event specification.

ad (1) The ranges ofM� andM� are equivalent, as states remain unchanged
by the transformationUpTa.

ad (2) It is easy to the thatM� is a correct dynamic model according to the
conditions of definition 11, p. 16.

ad (3) Events remain unchanged by the transformation therefore the confor-
mity of the name, kind and attributes of events is automatically given. Further-
more the contributions of the changed event occurrence are equivalent in both
dynamic models, as source states or postconditions of the event occurrences are
not changed.

From (1) to (3) follows that the application of the transformationUpTa to an
event occurrence ofM� results into an equivalent dynamic modelM�

Combined schema transformations

Based on the two transformationsUpSa andUpTa we can determine a schema
transformationUpSTa�Z� shifting event occurrences havingZ as source and tar-
get state to the aggregating superstate ofZ. A corresponding algorithm:

if Z.Belongsto.Kind = aggregating superstatethen
self .UpSa(Z)
self .UpTa(Z)

end if
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By applyingUpSTa to an event occurrence ofM� an equivalent dynamic
modelM� is produced, as the equivalence transformationsUpSa andUpTa are
used only and the equivalence of dynamic models is transitive (compare theo-
rem 23, p. 23).

4.3.2 Shifting event occurrences from an aggregating state
With the aid of these schema transformation we shift event occurrences of an ag-
gregating superstate to a state belonging directly to the aggregating superstate.
Again we distinguish betweenDownSa andDownTa. Furthermore we have
two more schema transformationsDownSas andDownTas to change an un-
synchronizing event occurrence to a synchronizing one when shifting it from the
aggregating superstate.

The schema transformationDownSa�Z� shifts an event occurrence from the
aggregating superstate ofZ to Z, if the aggregating superstate ofZ is a source
state of the event occurrence. It can be regarded as a meta-method of the meta-
model and looks like:

if Z.Belongsto = aggregating superstateand
Z.Belongsto� self .SourceStatesthen

replaceZ.Belongsto in self .SourceStates byZ
end if

The transformation replaces in the source states of the event occurrence the
aggregating superstate ofZ by Z. Both states have, due to the orthogonality
constraint, equivalent ranges.

THEOREM: If a correct dynamic modelM� is transformed by shifting
an event occurrence using the schema transformationDownSa�Z� into
a dynamic modelM� thenM� �M�.

(30)

PROOF: To prove this theorem it is sufficient to show that

(1) the ranges ofM� andM� are equivalent,

(2) M� is a correct dynamic model and

(3) all event occurrences before and after the transformation supply an equiva-
lent contribution to the event specification.

ad (1) None of the states are changed, the ranges ofM� andM� are equivalent.

ad (2)M� is a correct dynamic model, in the source state of the shifted event
occurrence a state is replaced by an other equivalent state.
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ad (3) Events and event occurrences remain unchanged by the transformation.
In event occurrences a source state is replaced by an equivalent state, which does
not influence the preconditions of these event occurrences. Therefore the events
of M� andM� are equivalent.

From (1) to (3) follows that the application of the transformationDownSa�Z�
to an event occurrence ofM� results into an equivalent dynamic modelM�.

The schema transformationDownTa�Z� shifts an event occurrence from the
aggregating superstate ofZ to Z, if the aggregating superstate ofZ is a target
states of the event occurrence. It can be regarded as a meta-method of the meta-
model and looks like:

if Z.Belongsto = aggregating superstateand
Z.Belongsto� self .TargetStatesthen

replaceZ.Belongsto in self .TargetStates byZ
end if

The transformation replaces in the target states of the event occurrence the
aggregating superstate ofZ by Z. Both states have, due to the orthogonality
constraint, equivalent ranges.

THEOREM: If a correct dynamic modelM� is transformed by shifting
an event occurrence using the schema transformationDownTa�Z� into
a dynamic modelM� thenM� �M�.

(31)

PROOF: To prove this theorem it is sufficient to show that

(1) the ranges ofM� andM� are equivalent,

(2) M� is a correct dynamic model and

(3) all event occurrences before and after the transformation supply an equiva-
lent contribution to the event specification.

ad (1) None of the states are changed, the ranges ofM� andM� are equivalent.

ad (2) In the event occurrence a target state is replaced by an other equivalent
state. The postcondition of the event occurrences implies the range of the new
state too.M� is a correct dynamic model.

ad (3) Events and event occurrences remain unchanged by the transformation.
In the event occurrence a target state is replaced by an equivalent state. Therefore
the events ofM� andM� are equivalent.
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From (1) to (3) follows that the application of the transformationDownTa�Z�
to an event occurrence ofM� results into an equivalent dynamic modelM�.

The schema transformationDownSas�Z� adds the stateZ as further source
state to an event occurrence.Z must belong to an aggregating superstateA, which
already is a source state of the event occurrence.DownSas�Z� can be regarded
as a meta-method of the meta-model and looks like:

if Z.Belongsto = aggregating superstateand
Z.Belongsto� self .SourceStatesthen

self .SourceStates :=self .SourceStates +Z
end if

Note that afterwards the event occurrence is a synchronizing one as it has
several source states and the attributeSync of event occurrences is a computed
one.

THEOREM: If a correct dynamic modelM� is transformed by adding
a new source state to the source states of an event occurrence using the
schema transformationDownSas�Z� into a dynamic modelM� then
M� �M�.

(32)

PROOF: To prove this theorem it is sufficient to show that

(1) the ranges ofM� andM� are equivalent,

(2) M� is a correct dynamic model and

(3) all event occurrences before and after the transformation supply an equiva-
lent contribution to the event specification.

ad (1) None of the states are changed, the ranges ofM� andM� are equivalent.

ad (2) It is easy to see, thatM� is a correct dynamic model.

ad (3) A new source state is added to the source states of the event occurrence.
However, the aggregating superstate ofZ is already a source state of the event oc-
currence. Due to the orthogonality constraint the ranges ofZ and the aggregating
superstate ofZ are equivalent. Therefore the contributions of the shifted event
occurrence to its event specification are equivalent in both dynamic models.

From (1) to (3) follows that the application of the transformationDownSas�Z�
to an event occurrence ofM� results into an equivalent dynamic modelM�.
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The schema transformationDownTas�Z� adds the stateZ as further target
state to an event occurrence.Z must belong to an aggregating superstateA, which
already is a target state of the event occurrence.DownTas�Z� can be regarded as
a meta-method of the meta-model and looks like:

if Z.Belongsto = aggregating superstateand
Z.Belongsto� self .TargetStatesthen

self .TargetStates :=self .TargetStates +Z
end if
Note that afterwards the event occurrence is a synchronizing one as it has

several target states and the attributeSync of event occurrences is a computed
one.

THEOREM: If a correct dynamic modelM� is transformed by adding
a new target state to the target states of an event occurrence using the
schema transformationDownTas�Z� into a dynamic modelM� then
M� �M�.

(33)

PROOF: To prove this theorem it is sufficient to show that

(1) the ranges ofM� andM� are equivalent,

(2) M� is a correct dynamic model and

(3) all event occurrences before and after the transformation supply an equiva-
lent contribution to the event specification.

ad (1) None of the states are changed, the ranges ofM� andM� are equivalent.

ad (2) A new target state is added to the target states of the event occurrence.
The event occurrence is changed to a synchronizing one. However, as the aggre-
gating superstate ofZ must already be a target state of the event occurrence and
the states are equivalent,M� is a correct dynamic model.

ad (3) Events, pre- and the postconditions of event occurrences remain un-
changed by the transformation. Therefore the events ofM� andM� are equivalent.

From (1) to (3) follows that the application of the transformationDownTas�Z�
to an event occurrence ofM� results into an equivalent dynamic modelM�.

Let’s consider the example in figure 5 where a (incomplete) state aggregation is
shown. Note, that the aggregating superstateZA and the statesG� andG� (which
are generalizing superstates) have equivalent ranges. In a first step the event oc-
currencesa andb are shifted down from the aggregating superstate. Furthermore
the event occurrenceb is transformed to a synchronizing one. In a second stepb is
againg shifted fromZA toG�.
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ZA
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b [G]
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a.DownSa(G1)
b.DownTas(G2)
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1G G2

b [G]

a [G]

b.DownTa(G1)

(a) starting point (b) shifting the event occurrences a and b

(c) shifting the event occurrence b again

Figure 5: Shifting event occurrences within a state aggregation

4.4 The combination of event occurrences
In a correct dynamic modelM two event occurrences of the same event can be
combined, if they have equivalent pre- or postconditions.

The schema transformationComSe�e�� e�� e� combines the event occurrences
e� ande� of the same event toe, if the preconditions ofe� ande� are equivalent and
both have the same source states and target states. The result of the transformation
is the event occurrencee which is defined as:

e ��

��������
�������

e�Guard �� e��P reC��
e�Postcondition �� e��P ostcondition 	 e��P ostcondition

e�Source States �� e��Source States

e�Target States �� e��T arget States

e�has Event �� e��has Event

(34)

In e�has Event�has e� ande� are replaced bye. Afterwardse� ande� are
deleted.
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THEOREM: If a correct dynamic modelM� is transformed by the com-
bination of two event occurrencese� ande� to an event occurrencee
with the transformationComSe�e�� e�� e� thenM� � M�.

(35)

PROOF: To prove this theorem it is sufficient to show that

(1) the ranges ofM� andM� are equivalent,

(2) M� is a correct dynamic model and

(3) all event occurrences before and after the transformation supply an equiva-
lent contribution to the event specification.

ad (1) The ranges ofM� andM� are equivalent as states remain unchanged.

ad (2) ObviouslyM� is a correct dynamic model asM� was a correct one.

ad (3) We refer to the relation� (definition 18(2)), which states that event oc-
currences with equivalent preconditions can be combinded through the disjunction
of their postconditions without losing the equivalence.

From (1) to (3) follows that the application of the transformationComSe to
event occurrences ofM� results into an equivalent dynamic modelM�.

The schema transformationComTe�e�� e�� e� combines the event occurrences
e� ande� of the same event toe, if the postconditions ofe� ande� are equivalent
and both have the same source states and target states. The result of the transfor-
mation is the event occurrencee which is defined as:

e ��

��������
�������

e�Guard �� e��P reC�� 	 e��P reC��
e�Postcondition �� e��P ostcondition

e�Source States �� e��Source States

e�Target States �� e��T arget States

e�has Event �� e��has Event

(36)

In e�has Event�has e� ande� are replaced bye. Afterwardse� ande� are
deleted.

THEOREM: If a correct dynamic modelM� is transformed by the com-
bination of two event occurrencese� ande� to an event occurrencee
with the transformationComTe�e�� e�� e� thenM� �M�.

(37)

PROOF: To prove this theorem it is sufficient to show that

(1) the ranges ofM� andM� are equivalent,
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(2) M� is a correct dynamic model and

(3) all event occurrences before and after the transformation supply an equiva-
lent contribution to the event specification.

ad (1) The ranges ofM� andM� are equivalent as states remain unchanged.

ad (2) ObviouslyM� is a correct dynamic model asM� was a correct one.

ad (3) We refer to the relation� (definition 18(1)), which states that event
occurrences with equivalent postconditions can be combinded through the dis-
junction of their preconditions without losing the equivalence.

From (1) to (3) follows that the application of the schema transformation
ComTe to event occurrences ofM� results into an equivalent dynamic model
M�.

4.5 The splitting of event occurrences
In a correct dynamic modelM an event occurrence can be splitted into two event
occurrences.

The schema transformationSplitSe�e� P�� P�� e�� e�� splits the event occur-
rencee into the event occurrencese� ande�. The parametersP� andP� are pre-
conditions, their disjunction must be equivalent to the precondition ofe. The
result of the transformation are the event occurrencese� ande� which are defined
as:

e� ��

��������
�������

e��Guard �� P�

e��P ostcondition �� e�Postcondition

e��Source States �� e�Source States

e��T arget States �� e�Target States

e��has Event �� e�has Event

(38)

e� ��

��������
�������

e��Guard �� P�

e��P ostcondition �� e�Postcondition

e��Source States �� e�Source States

e��T arget States �� e�Target States

e��has Event �� e�has Event

(39)

In e�has Event�has e is replaced bye� ande�. Afterwardse is deleted.

THEOREM: If a correct dynamic modelM� is transformed by splitting
an event occurrencee into two event occurrencese� and e� with the
transformationSplitSe�e� P�� P�� e�� e�� thenM� �M�.

(40)
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PROOF: To prove this theorem it is sufficient to show that

(1) the ranges ofM� andM� are equivalent,

(2) M� is a correct dynamic model and

(3) all event occurrences before and after the transformation supply an equiva-
lent contribution to the event specification.

ad (1) The ranges ofM� andM� are equivalent as states remain unchanged.

ad (2) ObviouslyM� is a correct dynamic model asM� was a correct one.

ad (3) We refer to the relation� (definition 18(1)), which states that an event
occurrence can be splitted into two event occurrences without losing the equiva-
lence.

From (1) to (3) follows that the application of the transformationSplitSe to
event occurrences ofM� results into an equivalent dynamic modelM�

The schema transformationSplitT e�e� P�� P�� e�� e�� splits the event occur-
rencee into the event occurrencese� ande�. The parametersP� andP� are post-
conditions, their disjunction must be equivalent to the postcondition ofe. The
result of the transformation are the event occurrencese� ande� which are defined
as:

e� ��

��������
�������

e��Guard �� e�Guard

e��P ostcondition �� P�

e��Source States �� e�Source States

e��T arget States �� e�Target States

e��has Event �� e�has Event

(41)

e� ��

��������
�������

e��Guard �� e�Guard

e��P ostcondition �� P�

e��Source States �� e�Source States

e��T arget States �� e�Target States

e��has Event �� e�has Event

(42)

In e�has Event�has e is replaced bye� ande�. Afterwardse is deleted.

THEOREM: If a correct dynamic modelM� is transformed by splitting
an event occurrencee into two event occurrencese� and e� with the
transformationSplitT e�e� P�� P�� e�� e�� thenM� �M�.

(43)
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PROOF: To prove this theorem it is sufficient to show that

(1) the ranges ofM� andM� are equivalent,

(2) M� is a correct dynamic model and

(3) all event occurrences before and after the transformation supply an equiva-
lent contribution to the event specification.

ad (1) The ranges ofM� andM� are equivalent as states remain unchanged.

ad (2) ObviouslyM� is a correct dynamic model asM� was a correct one.

ad (3) We refer to the relation� (definition 18(2)), which states that an event
occurrence can be splitted into two event occurrences without losing the equiva-
lence.

From (1) to (3) follows that the application of the transformationSplitT e to
event occurrences ofM� results into an equivalent dynamic modelM�

4.6 The combination of states
In a correct dynamic modelM two atomic states (compare page 9) can be com-
bined to one state. Both states must be eitherelementary states (compare def-
inition 1, p. 10) or belonging to the same structured state. The transformation
Combine�Z�� Z�� Z� of two statesZ� andZ� results in a stateZ being defined as

Z ��

����������
���������

Z�Name �� Z��Name � Z��Name

Z�Kind �� atomic

Z�IS �� Z��IS � Z��IS

Z�FS �� Z��FS � Z��FS

Z�Belongs to �� Z��Belongs to

Z�Condition �� Z��Range�� 	 Z��Range��

(44)

We need a name for the new stateZ. Trying to be as simple as possible we
choose the concatenation of the names ofZ� andZ�. We combine two atomic
states, soZ is an atomic state too. If both combined states are initial statesZ is an
initial state (IS); it is a final state (FS) if both states are final states. The condition
of the new states derives from theZ� andZ� ranges’ disjunction. IfZ� andZ�

belongs to a structured stateZS, Z� andZ� must be replaced byZ in ZS�Covers.
In all event occurrences ofM havingZ� or Z� as source or target states,Z�

andZ� must be replaced byZ. AsZ� andZ� must be either elementary states or
belonging to the same structured state (which must be a generalizing superstate)
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Figure 6: Combination of states

the states are disjoint. Therefore, it is not possible that both states are source or
target states of an event occurrence.

However, the guard of an event occurrence must be replaced by its precon-
dition if Z� or Z� is the source state of the event occurrence. The combination
of states generates a new state with a “wider” range, nevertheless we want that
event occurrences could only be applied to objects that comply with the original
precondition of the event occurrences. A corresponding algorithm look like:

for all ex �M .EventOccurrenceswith Z� � ex.TargetStates or
Z� � ex.TargetStatesdo

replaceZ� orZ� in ex.TargetStates withZ
end for
for all ex �M .EventOccurrenceswith Z� � ex.SourceStates or

Z� � ex.SourceStatesdo
ex.Guard :=ex.PreC()
replaceZ� orZ� in ex.SourceStates withZ

end for
Z�.delete()
Z�.delete()

In figure 6 an example is illustrated.Z� andZ� are combined toZ. In event
occurrences havingZ� or Z� as source state we replace their guards by their pre-
condition. The event occurrencec, e. g. gets the guardc�P reC�� that is, according



Schema transformations 47

to the definition, the conjunction of the source state’s range ofc and the guard ofc.
The source state ofc wasZ�.

THEOREM: If a correct dynamic modelM� is transformed by the com-
bination of two statesZ� andZ� to a stateZ with the transformation
Combine�Z�� Z�� Z� thenM� �M�.

(45)

PROOF: To prove this theorem it is sufficient to show that

(1) the ranges ofM� andM� are equivalent,

(2) M� is a correct dynamic model and

(3) all event occurrences before and after the transformation supply an equiva-
lent contribution to the event specification.

ad (1) The range of a dynamic model derives from the disjunction of the ranges
of the model’s elementary states (compare definition 12, p. 17).

If both states areatomic andelementary states then the range ofM� � B� 	
Z��Range�� 	 Z��Range�� wherebyB� is the disjunction of all elementary states
of M exceptZ� andZ�. The dynamic modelM� results from the combination
of Z� andZ� to Z. All states ofM� (particularly the elementary states) are also
states ofM�, only Z� andZ� are replaced byZ. Therefore the range ofM� �
B� 	 Z�Range��. The range ofZ is equivalent to the disjunction of the ranges of
Z� andZ� (compare definition 44, p. 45) and therefore the ranges ofM� andM�

are equivalent.
If the states are notelementary they must belong to the same structured state

ZS which must be a generalizing superstate. It is easy to see that the ranges ofZS
in M� andM� are equivalent as we replace two states ofZS with one equivalent
state. The ranges ofZS in both dynamic models are equivalent and therefore, the
ranges ofM� andM� are equivalent.

ad (2) The conditions of the definition 8, p. 12 are valid forM� ifZ� andZ�

areelementary states because they are valid forM�. It is easy to see, thatM� is
a correct dynamic model ifZ� andZ� belong to the same state generalization. If
both states belong indirectly to a state aggregation, the orthogonality condition
holds for the combined state, as its range is equivalent to the disjunction of the
original states.

The postconditions of the event occurrences must imply the ranges of their
target states (according to definition 11, p. 16). It is easy to see, that each event
occurrence implying the range ofZ� orZ� implies the range ofZ too, as, accord-
ing to definition 44, p. 45, the range ofZ results from the disjunction of the ranges
of Z� andZ�.
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ad (3) Events stay unchanged by the combination of two states. Therefore
the uniformity of their names, attributes and kind is valid. In addition to that we
have to show that all event occurrences before and after the transformation sup-
ply equivalent contributions to the event specifications. This is trivially true for
event occurrences having neitherZ� nor Z� as source or target states. They are
not touched by the transformation. In event occurrences which haveZ� or Z� as
target state, the target state is replaced byZ. However, the pre- and postcondi-
tion of those event occurrences remain unchanged. Therefore such event occur-
rences supply equivalent contributions to the event specification before and after
the transformation. The guard of event occurrences havingZ� or Z� as source
state is changed. Those event occurrences must be analyzed, as the guard of an
event occurrence influences its precondition.

Let ex be an event’se event occurrence of the dynamic modelM� havingZ�

as source state. The contribution ofex to the event specification ofe is:

before � �Z� �G �R�P �

afterwards � �Z � �Z� �G� � R�P �, comp. algorithm

� ��Z� 	 Z�� � �Z� �G� � R�P �, comp. def. 44

� �Z� �G �R�P �

The contributions of the event occurrenceex to the event specification of the event
e before and after the schema transformation are equivalent. Therefore the event
specifications ofe in M� ande in M� are equivalent. The same holds, ifZ� is the
source state ofex.

From (1) to (3) follows, that the application of the transformationCombine

on states ofM� results into an equivalent dynamic modelM�.

Let’s take the event occurrencec of the dynamic model represented in figure 6,
p. 46 and consider the third point of this proof. We check whether the contribu-
tion of the event occurrence before and after the combination ofZ� andZ� are
equivalent. The postcondition (in the proof the abbreviationP is used) can be ig-
nored, it isn’t changed by the schema transformation. Therefore we concentrate on
the precondition ofc without consideringR (that is the conjunction of all source
states ofe exceptZ�) becauseR remains constant. The precondition ofc equals
Z��Range�� � c�Guard before the schema transformation and after the combina-
tion of Z� andZ� to Z the precondition ofc equalsZ�Range�� � Z��Range�� �

c�Guard. The Preconditions ofc before and after the schema transformation are
equivalent because the range ofZ results from the disjunction of the ranges ofZ�
andZ� (which must be disjoint according to definition 11, p. 16 as both states are
elementary states).
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4.7 The splitting of a state
In a correct dynamic model we can split anatomic state into two states. The
schema transformationSplit�Z�B�� B�� Z�� Z�� needs twoT QL�� conditions
as parameters, namelyB� andB�, their disjunction must be equivalent to the range
of Z. AdditionallyB� andB� must be disjoint. IfZ belongs to a state aggregation
the splitting must not injure the orthogonality condition (compare definition 6,
p. 12) . Otherwise the transformation is rejected. Furthermore ifZ is not an
elementary state,Z must be a source or target state of event occurrences. The
result ofSplit�Z�B�� B�� Z�� Z�� are two statesZ� andZ� defined as:

Z� ��

����������
���������

Z��Name �� Z�Name � �
Z��Kind �� atomic

Z��IS �� Z�IS

Z��FS �� Z�FS

Z��Belongs to �� Z�Belongs to

Z��Condition �� B�

(46)

Z� ��

����������
���������

Z��Name �� Z�Name � �
Z��Kind �� atomic

Z��IS �� Z�IS

Z��FS �� Z�FS

Z��Belongs to �� Z�Belongs to

Z��Condition �� B�

(47)

If Z belongs to a structured stateZS, Z must be replaced byZ� andZ� in
ZS�Covers.

All event occurrences havingZ as source or target states must be duplicated.
As Z may only be source or target state of event occurrences ifZ is an atomic
and elementary stateZ in those event occurrences is the only source respec-
tively target state. In the original event occurrencesZ is replaced byZ�, in
the duplicated event occurrencesZ is replaced byZ�. The postcondition of an
event occurrence havingZ� as target state is replaced byex�Postcondition ��
ex�Postcondition � Z��Range��. Analogousex�Postcondition �� ex�Post-
condition � Z��Range�� is the postcondition of event occurrences havingZ� as
target state. AfterwardsZ can be deleted. A corresponding algorithm looks like:

for all ex �M .EventOccurrenceswith ex.TargetStates =fZg do
ex� := ex.shallowcopy()
ex.hasEvent.has :=ex.hasEvent.has +ex�
ex.TargetStates :=fZ�g
ex�.TargetStates :=fZ�g
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Figure 7: Splitting a state

ex.Postcondition :=ex.Postcondition� Z�.Range()
ex�.Postcondition :=ex�.Postcondition� Z�.Range()

end for
for all ex �M .EventOccurrenceswith ex.SourceStates =fZg do
ex� := ex.shallowcopy()
ex.hasEvent.has :=ex.hasEvent.has +ex�
ex.SourceStates :=fZ�g
ex�.SourceStates :=fZ�g

end for
Z.delete()

If afterwards event occurrences have pre- or postconditions resulting infalse

the are deleted (compare definition 18, p. 19).

An example is illustrated in figure 7. The stateZ is splitted in the statesZ� andZ�

and deleted afterwards. Note thatZ is an atomic and elementary state and therefore
may be source or target state of event occurrences.

THEOREM: If a correct dynamic modelM� is transformed by split-
ting a stateZ into two statesZ� and Z� using the transformation
Split�Z�B�� B�� Z�� Z�� to a dynamic modelM� thenM� �M�.

(48)

PROOF: To prove this theorem it is sufficient to show that

(1) the ranges ofM� andM� are equivalent,
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(2) M� is a correct dynamic model and

(3) all event occurrences before and after the transformation supply an equiva-
lent contribution to the event specification.

ad (1) The ranges ofM� andM� are equivalent, if the range ofZ is equivalent
to the disjunction of the ranges ofZ� andZ�. This is obvious, as the ranges ofZ�

andZ� equal toB� andB� and their disjunction must be equivalent to the range
of Z.

ad (2) The conditions of the definition 8, p. 12, are valid forM� as they where
valid for M� too if Z does not belong to a state aggregation. Otherwise it must
be guaranteed, that the splitting does not violate the orthogonality condition of
the state aggregation. We prove this and reject the transformation in the case of a
contradiction.

Event occurrences havingZ as target state are copied and the target states are
adapted. The postcondition of a copied event occurrence results in the conjunc-
tion of the original postcondition and the new target state’s range. Obvious the
postcondition of an event occurrence results infalse (according to definition 18,
p. 19, they can be removed without loosing the equivalence) or implies the range
of the new target state. Therefore, the condition of definition 10, p. 15, that the
postcondition of an event occurrence must imply the range of its target states,
holds too.

ad (3) Events remains unchanged by splitting up a state. Therefore the unifor-
mity of their names, attributes and kind obvious is valid. Furthermore we must
prove, that the event specifications are equivalent too.

This is obvious ifZ is not an elementary state. In this case the transforma-
tion demands thatZ is not a source or target state of any event occurrence and,
therefore, event occurrences remain unchanged by the transformation.

If Z is an atomic and elementary state event occurrences havingZ as source
or target state are duplicated. Note thatZ is the only source or target state of
such event occurrences. We have to prove that the contributions of the copied
event occurrences to the event specification is equivalent to the contribution of the
origin event occurrence.

Let ex be an event’se event occurrence of the dynamic model havingZ as
source or target state without any restrictions. In the most general case, havingex

Z as source and target state,ex is replaced by the event occurrencesex� � � � ex�.
The contribution ofex to the event specification ofe before the schema transfor-
mation:

before � �Z �G � R�P �
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The contributions of the event occurrencesex� � � � ex� to the event specifica-
tion of e after the schema transformation:

afterwards � ex� � �Z� �G � R�Z� � P �

ex� � �Z� �G � R�Z� � P �

ex� � �Z� �G � R�Z� � P �

ex� � �Z� �G � R�Z� � P �

� ��Z� 	 Z�� �G � R�Z� � P �, comp. def. 18(1)

��Z� 	 Z�� �G � R�Z� � P �, comp. def. 18(1)

� ��Z� 	 Z�� �G � R� �Z� 	 Z�� � P �, comp. def. 18(2)

� ��Z� 	 Z�� �G � R�P �, comp. def. 11

� �Z �G � R�P �

The contributions to the event specification ofe before and after the schema
transformation are equivalent. All other cases follow immediately from this most
general case.

From (1) to (3) follows that the application of the schema transformationSplit

on a state ofM� results into an equivalent dynamic modelM�.

The restriction, that in the case of a non elementary state,Z must not be a
source or target state of event occurrences is not very extensive. In the previous
sections we presented schema transformations to shift event occurrences within a
state generalization or state aggregation. If we would like to split a non elementary
stateZ we are able to shift its event occurrences to the structured stateZ belongs
to and splitZ afterwards.

4.8 The generalization of states
In a correct dynamic model we can generalize states. The schema transformation
Geng�Z� � � � Zi� G� produces a state generalization with the generalizing super-
stateG. The statesZ� � � � Zi must be elementary states or belonging to the same
generalizing superstate.Geng�Z� � � � Zi� G� is defined as:

G ��

����������
���������

G�Name �� Z��Name � � � �� Zi�Name

G�Kind �� generalizing superstate
G�IS �� FALSE
G�FS �� FALSE

G�Belongs to �� Z��Belongs to

G�Covers �� fZ�� � � � � Zig

(49)
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Furthermore the generalizing superstateG has to be stored in the attribute
Belongs to of each stateZ� � � � Zi. The statesZ� � � � Zi have to be removed in
Z��Belongs to�Covers. A corresponding algorithm looks like:

if fZ� � � � Zig belongs to the same generalizing superstateor
are elementary statesthen

for all Zk � fZ� � � � Zig do
Zk.Belongsto :=G

end for
Z�.Belongsto.Covers :=Z�.Belongsto.Covers -fZ� � � � Zig + fGg

end if

THEOREM: If a correct dynamic modelM� is transformed by general-
izing states using the schema transformationGeng�Z� � � � Zi� G� into a
dynamic modelM� thenM� �M�.

(50)

PROOF: To prove this theorem it is sufficient to show that

(1) the ranges ofM� andM� are equivalent,

(2) M� is a correct dynamic model and

(3) all event occurrences before and after the transformation supply an equiva-
lent contribution to the event specification.

ad (1) LetZ� � � � Zi be states without any restrictions which should be general-
ized with the aid of the transformationGeng. LetG be the generalizing superstate
of the resulting state generalization. The range ofG is defined as the disjunction
of the ranges of all states belonging toG, that isZ��Range�� 	 � � � 	 Zi�Range��
(compare definition 2, p. 11). Obvious the ranges ofM� andM� are equivalent.

ad (2) It is easy to see thatM� complies with the conditions of the defini-
tions 11, p. 16 asM� was a correct dynamic model.

ad (3) Events and event occurrences remain unchanged by the transformation
Geng. Therefore the events ofM� andM� are equivalent.

From (1) to (3) follows that the application of the schema transformationGeng

to states ofM� results into an equivalent dynamic modelM�.

Let’s consider the example in figure 8 where we put the statesZ�,Z� andZ� into a
state generalization. We introduce the generalizing superstateG and link all states
to G. All event occurrences of the states remain unchanged, they can be shifted to
the new generalizing superstate with the aid of the corresponding schema transfor-
mations.



Schema transformations 54

Z1

Z2

Z3

a

a

1e   [G1]

3e   [G3]

c

Z1 Z2 Z3

a
1e   [G1] c a

3e   [G3]

G

1

2 1 2

(a) starting point (b) state generalization

Gen (Z1, Z2, Z3, G)

Figure 8: Building a state generalization

4.9 The decomposition of a state generalization
In a correct dynamic model we can decompose a state generalization with a gener-
alizing superstate not belonging to an aggregating superstate and not being sorce
or target state of event occurrences.Decg�G� can be regarded as a meta-method
of the meta-model. Applied to a generalizing superstate the state generalization is
decomposed. The generalizing superstate is removed. A corresponding algorithm
looks like:

if G not in source or target states of an event occurrenceand
G.Belongsto �� aggregating superstatethen

for all Z � G.Coversdo
Z.Belongsto :=G.Belongsto
G.Belongsto.Covers :=G.Belongsto.Covers +Z

end for
G.Belongsto.Covers :=G.Belongsto.Covers -G
G.delete()

end if

THEOREM: If a correct dynamic modelM� is transformed by de-
composing an generalizing superstate using the schema transformation
Decg�G� into a dynamic modelM� thenM� �M�.

(51)

PROOF: To prove this theorem it is sufficient to show that

(1) the ranges ofM� andM� are equivalent,
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Figure 9: Decomposing a generalizing superstate

(2) M� is a correct dynamic model and

(3) all event occurrences before and after the transformation supply an equiva-
lent contribution to the event specification.

ad (1) Let without any restrictionsG be a generalizing superstate ofM� cov-
ering the statesZ� � � � Zi. G is deleted, afterwardsZ� � � � Zi either be elementary
states or belongs to the same structured state. Obvious the ranges ofM� andM�

are equivalent.

ad (2) It is easy to see thatM� complies with the conditions of the defini-
tions 11, p. 16, asM� was a correct dynamic model.

ad (3) Events and event occurrences remain unchanged by the transformation
Decg. Therefore the events ofM� andM� are equivalent.

From (1) to (3) follows that the application of the transformationDecg to a
generalizing superstate ofM� results into an equivalent dynamic modelM�.

Let’s consider the example in figure 9 where we decompose the generalizing super-
stateG. Nothing happens with the events and on the event occurrences.

Combined schema transformations

At first the restriction of the transformationDecg that the generalizing superstate
must not occur in any source or target states of event occurrences seems to be
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very extensive. However, we have illustrated in section 4.2 that event occurrences
within a state generalization can be shifted without losing the equivalence. Before
decomposing a state generalization all event occurrences of the generalizing su-
perstate can be shifted to the states covered by the generalizing superstate without
losing the equivalence as the equivalence of dynamic models is transitive (com-
pare theorem 23, p. 23). A corresponding algorithm looks like:

for all ex �M .EventOccurrenceswith G � ex.SourceStates and
G � ex.TargetStatesdo

ex.DownSTg(G)
end for
for all ex �M .EventOccurrenceswith G � ex.SourceStatesdo
ex.DownSg(G)

end for
for all ex �M .EventOccurrenceswith G � ex.TargetStatesdo
ex.DownTg(G)

end for
Decg(G)

4.10 The aggregation of states
In a dynamic model we can build a state aggregation based upon anatomic state.
The transformationGena�Z� n� A� produces a state aggregation with the aggre-
gating superstateA andn generalizing superstatesGi belonging toA, which itself
covers one atomic state.A belongs to that structured stateZ belongs to. The
schema transformation is defined as:

A ��

����������
���������

A�Name �� Z�Name

A�Kind �� aggregating superstate
A�IS �� Z�IS

A�FS �� Z�FS

A�Covers �� fG�� � � � � Gng
A�Belongs to �� Z�Belongs to

(52)

Gi ��

����������
���������

Gi�Name �� Z�Name �Gi

Gi�Kind �� generalizing superstate
Gi�IS �� Z�IS

Gi�FS �� Z�FS

Gi�Covers �� fZig
Gi�Belongs to �� A

(53)
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Zi ��

����������
���������

Zi�Name �� Z�Name � i

Zi�Kind �� atomic state
Zi�IS �� Z�IS

Zi�FS �� Z�FS

Zi�Belongs to �� Gi

Zi�Condition �� Z�Range��

(54)

In all event occurrences havingZ as source or target stateZ must be replaced
byA, afterwardsZ is deleted. A corresponding algorithm looks like:

for all ex �M .EventOccurrenceswith Z � ex.SourceStatesdo
replaceZ in ex.SourceStates withA

end for
for all ex �M .EventOccurrenceswith Z � ex.TargetStatesdo

replaceZ in ex.TargetStates withA
end for
Z.Belongsto.Covers :=Z.Belongsto.Covers -Z + A

Z.delete()

THEOREM: If a correct dynamic modelM� is transformed by con-
structing a state aggregation based on an atomic state with the aid of the
schema transformationGena�Z� n� A� into a dynamic modelM� then
M� �M�.

(55)

PROOF: To prove this theorem it is sufficient to show that

(1) the ranges ofM� andM� are equivalent,

(2) M� is a correct dynamic model and

(3) all event occurrences before and after the transformation supply an equiva-
lent contribution to the event specification.

ad (1) Obvious the ranges ofM� andM� are equivalent,Z is replaced by a
state aggregation with an equivalent range.

ad (2) The constructed state aggregation fulfills the orthogonal condition, as
all states are equivalent (compare definition 6, p. 12). In event occurrences with
Z as target stateZ is replaced by an equivalent state. Therefore the postconditions
of these event occurrences imply the range of their new target state.M� complies
with the conditions of the definition 11, p. 16, of correct dynamic models.
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Figure 10: Building a state aggregation

ad (3) Events remain unchanged by the transformationGena. In event oc-
currences havingZ as source or target stateZ is replaced by an equivalent state.
Therefore the events ofM� andM� are equivalent.

From (1) to (3) follows that the application of the schema transformationGena

to an atomic state ofM� results into an equivalent dynamic modelM�.

Let’s consider the example in figure 10 where we build a state aggregation on the
base of the atomic stateZ. We introduce the aggregating superstateZA with three
generalizing superstatesG� � � � G�, which belongs toZA. Each generalizing super-
state consists of one further atomic state (the statesZ� � � � Z�).

4.11 The decomposition of a state aggregation
In a dynamic model we can decompose a state aggregation consisting ofn gener-
alizing superstate where each of these states covers only one further atomic state.
Furthermore none of the states belonging to the state aggregation (except the ag-
gregation superstate) must be source or target state of an event occurrence. The
schema transformationDeca�A�Z� decomposes a state aggregation with aggre-
gating superstateA resulting in the atomic stateZ which is defined as:

Z ��

����������
���������

Z�Name �� A�Name

Z�Kind �� atomic state
Z�IS �� A�IS

Z�FS �� A�FS

Z�Condition �� A�Range��
Z�Belongs to �� A�Belongs to

(56)
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In all event occurrences, havingA as source or target stateA is replaced by
Z. Afterwards all states of the state aggregation are deleted. A corresponding
algorithm looks like:

for all ex �M .EventOccurrenceswith A � ex.SourceStatesdo
replaceA in ex.SourceStates withZ

end for
for all ex �M .EventOccurrenceswith A � ex.TargetStatesdo

replaceZ in ex.TargetStates withZ
end for
A.Belongsto.Covers :=A.Belongsto.Covers -A + Z

deleteA and all states belonging to the state aggregation

THEOREM: If a correct dynamic modelM� is transformed by decom-
posing a state aggregation using the schema transformationDeca�A�Z�
into a dynamic modelM� thenM� �M�.

(57)

PROOF: To prove this theorem it is sufficient to show that

(1) the ranges ofM� andM� are equivalent,

(2) M� is a correct dynamic model and

(3) all event occurrences before and after the transformation supply an equiva-
lent contribution to the event specification.

ad (1) Obvious the ranges ofM� andM� are equivalent, the aggregating su-
perstateA and all other states belonging to the state aggregation are replaced by
an equivalent atomic stateZ.

ad (2) It is easy to see thatM� is a correct dynamic model, an aggregating
superstate is replaced by another atomic equivalent state (compare definitions 11,
p. 16).

ad (3) Events remain unchanged by the transformationDeca. In event oc-
currences havingA as source or target stateA is replaced by an equivalent state.
Therefore the events ofM� andM� are equivalent.

From (1) to (3) follows that the application of the transformationDeca to an
aggregating superstate ofM� results into an equivalent dynamic modelM�.
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Figure 11: Combined schema transformations

Combined schema transformations

Decomposing a state aggregation is allowed only if the state aggragation consits of
generalizing superstates each covers only one atomic state. Furthermore none of
the states of the aggregation except the aggregating superstate is a source or target
state of an event occurrence. However, these not extensive restrictions, as we
are able to shift event occurrences up to generalizing and aggregating superstates,
decompose state aggregations and generalisations as well as combine states.

Let’s consider the example in figure 11 where we would like to decompose the state
aggregation. However, there are states within the aggregation which are source and
target states of an event occurrence. Furthermore the generalizing superstateG�
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covers more than one state.

First we shift the event occurrence to the generalizing superstate ofZ� andZ�

using the schema transformationsUpSg andUpTg (note that the guard of the event
occurrence changes when applying the transformations). Second we shift the event
occurrence to the aggregating superstate using the schema transformationUpSTa

and combineZ� andZ� to Z�. Afterwards we decompose the state aggregation
using the transformationDeca (we suppose that the other components of the state
aggregation fulfills the necessary conditions).

The dynamic models shown in figure 11 are equivalent as we use equivalence trans-
formations only, and, according to theorem 23, p. 23, the equivalence of dynamic
models is transitive.

4.12 Deleting and combining event occurrences
In a correct dynamic model we would like to be able to delete and to combine
event occurrences for instance when we decompose a states generalization or shift
event occurrences within state hierarchies.

The deletion of event occurrences

With the aid of the schema transformationDelEx we delete event occurrences
whose preconditions or postconditions result infalse. However, we don’t want
to remove incorrect event occurrences by this transformation but we want to delete
“deceased” event occurrences after applying a schema transformation.

The transformationDelEx can be regarded as meta-method of the meta-
model and deletes event occurrences whose pre- or postconditions result infalse.
A corresponding algorithm looks like:

for all ex � self .EventOccurrenceswith ex.PreC() =false or
ex.Postcondition =false do

ex.hasEvent.has :=ex.hasEvent.has -ex
ex.delete()

end for

THEOREM: If a correct dynamic modelM� is transformed with the aid
of the schema transformationDelEx into a dynamic modelM� then
M� �M�.

(58)

PROOF: We refer to the definition 18, p. 19, which states that event occurrences
can be deleted without loosing the equivalence if their pre- and/or postconditions
result infalse. States remain unchanged by the transformation.
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The combination of event occurrences

With the aid of the schema transformationComExwe combine event occurrences
of the same event having equal source states and equivalent postconditions respec-
tively having equivalent preconditions and equal target states (compare transfor-
mationsComSe andComTe, page 41ff). A corresponding algorithm looks like:

repeat
EX := self .EventOccurrences
for all ex� � self .EventOccurrences,ex� � self .EventOccurrenceswith

ex� �� ex� andex�.hasEvent =ex�.hasEvent and
ex�.TargetStates =ex�.TargetStates and
ex�.SourceStates =ex�.SourceStates and
ex�.PreC()� ex�.PreC()do

ComSe�e�� e�� e�
end for
for all ex� � self .EventOccurrences,ex� � self .EventOccurrenceswith

ex� �� ex� andex�.hasEvent =ex�.hasEvent and
ex�.SourceStates =ex�.SourceStates and
ex�.SourceStates =ex�.SourceStates and
ex�.Postcondition� ex�.Postconditiondo

ComTe�e�� e�� e�
end for

until EX = self .EventOccurrences

The transformationComEx combines event occurrences as long as possible
according to the relation� (compare definition 18, p. 19) with the aid of the
transformationsComSe andComTe. As both transformations are equivalence
transformationsComEx is an equivalence transformation too.

Based on the schema transformationsDelEx andComExwe define the trans-
formationClean which deletes and combines event occurrences. The transforma-
tion can be regarded as meta-method of the meta-model. A corresponding algo-
rithm looks like:

self .DelEx
self .ComEx

Clean preserves the equivalence of the dynamic model as we only use the
equivalence transformationsDelEx andComEx and the equivalence of dynamic
models is transitive (compare theorem 23, p. 23). For exampleClean can be
applied after states were generalized and event occurrences were shifted to the
generalizing superstate if these event occurrences should be combined.
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Figure 12: Usage of Clean

Such a situation is illustrated in figure 12. After generalizingZ� andZ� we shift
the event occurrencesd� andd� with the schema transformationUpSg to the gen-
eralizing superstateZ. Supposing that the postconditions of the event occurrences
are equivalent we can combine them with the transformationClean to one event
occurrence.

5 Inverse schema transformations
In this section we will prove that each basic schema transformation has an inverse
transformation, which however may be a complex transformation. The application
of a transformation and its inverse on a dynamic modelM� results intoM�. To
prove this we have to show that

(1) the ranges are equivalent before and after the transformation,

(2) each state has a corresponding state with an equivalent range and the same
structure after the transformations,
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(3) each event has a corresponding event with an equivalent event specification
after the transformations and that

(4) each event occurrence has a corresponding event occurrence with equivalent
pre- and postconditions after the transformations.

For the following explanations we assume thatM� consists only of states
whose ranges are notfalse and that non of the event occurrences has pre- or
postconditions resulting tofalse.

5.1 The inverse transformation of UpSg
The transformationUpSg�Z� shifts an event occurrence having the stateZ as
source state to the generalizing superstate ofZ (see page 25). The inverse trans-
formation isDownSg�Z�Belongs to� (see page 29).

THEOREM: The inverse transformation ofex�UpSg�Z� is
ex�DownSg�Z�Belongs to�.

(59)

PROOF: To prove thatDownSg�Z�Belongs to� is the inverse transformation of
UpSg�Z� it is sufficient to show that

(1) the ranges are equivalent before and after the transformation,

(2) each state has a corresponding state with an equivalent range and the same
structure after the transformations,

(3) each event has a corresponding event with an equivalent event specification
after the transformations and that

(4) each event occurrence has a corresponding event occurrence with equivalent
pre- and postconditions after the transformations.

ad (1) The ranges are equivalent as only equivalence transformations are used.
ad (2) States remain unchanged by the transformation and its inverse.
ad (3) Events remain unchanged by the transformation and its inverse.
ad (4) The transformation replacesZ by the generalizing superstate ofZ in

the source states of the event occurrence. Furthermore the guard of the event oc-
currence is replaced by its precondition. LetZ� � � � Zn be the states covered by
the generalizing superstate ofZ. The inverse transformation producesn event
occurrences (for each state covered by the generalizing superstate one event oc-
currenc) and changes the source states of the copied event occurrences. The event
occurrenceex is deleted.
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The precondition of one copied event occurrences looks likeZi�Range �
Z�Range�� � ex�Guard � R whereZi � Z� � � � Zn. R is the conjunction of the
ranges of all other source states of the event occurrence ortrue, if there is only one
source state. However, in a correct dynamic model the ranges ofZ� � � � Zn must
be disjoint. The preconditions of the copied event occurrences results infalse

exceptZi � Z. In other wordsn � � of then copied event occurrences have
preconditions resulting infalse and are deleted by the transformationClean.

From (1) to (4) follows that the transformationDownSg�Z�Belongs to� is
the inverse transformation ofUpSg�Z�.

5.2 The inverse transformation of UpTg
The transformationUpTg�Z� shifts an event occurrence having the stateZ as
target state to the generalizing superstate ofZ (see page 26). The inverse trans-
formation isDownTg�Z�Belongs to� (see page 30).

THEOREM: The inverse transformation ofex�UpTg�Z� is
ex�DownTg�Z�Belongs to�.

(60)

PROOF: To prove thatDownTg�Z�Belongs to� is the inverse transformation of
UpTg�Z� it is sufficient to show that

(1) the ranges are equivalent before and after the transformation,

(2) each state has a corresponding state with an equivalent range and the same
structure after the transformations,

(3) each event has a corresponding event with an equivalent event specification
after the transformations and that

(4) each event occurrence has a corresponding event occurrence with equivalent
pre- and postconditions after the transformations.

ad (1) The ranges are equivalent as ony equivalence transformations are used.
ad (2) States remain unchanged by the transformation and its inverse.
ad (3) Events remain unchanged by the transformation and its inverse.
ad (4) The transformation replacesZ by the generalizing superstate ofZ in the

target states of the event occurrence. LetZ� � � � Zn the states covered by the gener-
alizing superstate ofZ. The inverse transformation producesn event occurrences
(for each state covered by the generalizing superstate one event occurrenc) and
changes the target states of the copied event occurrences. Furthermore the post-
condition of the copied event occurrences are replaced by the conjunction of the
original postcondition and the range of its new target state. The event occurrence
ex is deleted.
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The postcondition of the copied event occurrences looks likeZi�Range �
ex�Postcondition whereZi � Z� � � � Zn. However, in a correct dynamic model
the ranges ofZ� � � � Zn must be disjoint. Furthermore the postcondition ofex

must imply the range ofZ. Therefore, the postconditions of the copied event oc-
currences results infalse exceptZi � Z. In other wordsn � � of then copied
event occurrences have postconditions resulting infalse and are deleted by the
transformationClean.

From (1) to (4) follows that the transformationDownTg�Z�Belongs to� is
the inverse transformation ofUpTg�Z�.

5.3 The inverse transformation of DownSg

The transformationDownSg�Z� shifts an event occurrence having the generaliz-
ing superstateZ as source state to the states belonging toZ (see page 29). For each
state covered byZ the event occurrence is copied, the source states are adopted.
Some of the copied event occurrences may have preconditions resulting infalse.
These event occurrences are deleted by the transformationClean. If Ex is the
set of the copied event occurrences which remain than the inverse transformation
(lets call itDownSg���Z�) is defined as:

for all ei � Ex with Zj � ei�Source States and Zj � Z�Covers do
ei.UpSg(Zj)

end for

THEOREM: The inverse transformation ofex�DownSg�Z� is
DownSg���Z�.

(61)

PROOF: To prove thatDownSg���Z� is the inverse transformation ofDownSg�Z�
it is sufficient to show that

(1) the ranges are equivalent before and after the transformation,

(2) each state has a corresponding state with an equivalent range and the same
structure after the transformations,

(3) each event has a corresponding event with an equivalent event specification
after the transformations and that

(4) each event occurrence has a corresponding event occurrence with equivalent
pre- and postconditions after the transformations.

ad (1) The ranges are equivalent as ony equivalence transformations are used.
ad (2) States remain unchanged by the transformation and its inverse.
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ad (3) Events remain unchanged by the transformation and its inverse.
ad (4) The transformation copies the event occurrence for each state thatZ

covers and adopts the source states. The original event occurrence is deleted af-
terwards. Some of the copied event occurrences may have preconditions resulting
in false and are deleted by the transformationClean. The remaining event occur-
rences are collected in a setEx. As the original precondition of the shifted event
occurrence was notfalse and the range of the generalizing superstate is defined
as the disjunction of ranges of its covering stateEx is not empty.

Each copied event occurrence fromEx is shifted back to the generalizing
superstate using the transformationUpSg. By that the guards of these event oc-
currences are replaced by its precondition. Afterwards these event occurrences are
combined to one event occurrence using the transformationClean, as they have
the same event, the same source- and target states and equivalent postconditions by
the disjunction of their precondions. However, as all involved transformations are
equivalence transformations the precondition of the combined event occurrence
must be equivalent to the precondition of the original event occurrence.

From (1) to (4) follows that the transformationDownSg���Z� is the inverse
transformation ofDownSg�Z�.

5.4 The inverse transformation of DownTg

The transformationDownTg�Z� shifts an event occurrence having the generaliz-
ing superstateZ as target state to the states belonging toZ (see page 30). For each
state covered byZ the event occurrence is copied, the target states and postcondi-
tions are adopted. Some of the copied event occurrences may have postconditions
resulting infalse. These event occurrences are deleted by the transformation
Clean. If Ex is the set of the copied event occurrences which remain than the
inverse transformation (lets call itDownTg���Z�) is defined as:

for all ei � Ex with Zj � ei�T arget States and Zj � Z�Covers do
ei.UpTg(Zj)

end for

THEOREM: The inverse transformation ofex�DownTg�Z� is
DownTg���Z�.

(62)

PROOF: To prove thatDownTg���Z� is the inverse transformation ofDownTg�Z�
it is sufficient to show that

(1) the ranges are equivalent before and after the transformation,

(2) each state has a corresponding state with an equivalent range and the same
structure after the transformations,
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(3) each event has a corresponding event with an equivalent event specification
after the transformations and that

(4) each event occurrence has a corresponding event occurrence with equivalent
pre- and postconditions after the transformations.

ad (1) The ranges are equivalent as only equivalence transformation are used.
ad (2) States remain unchanged by the transformation and its inverse.
ad (3) Events remain unchanged by the transformation and its inverse.
ad (4) The transformation copies the event occurrence for each state thatZ

covers and adopts the source states and postcondition. The original event oc-
currence is deleted afterwards. Some of the copied event occurrences may have
postconditions resulting infalse and are deleted by the transformationClean.
The remaining event occurrences are collected in a setEx. As the original post-
condition of the shifted event occurrence was notfalse but implies the range ofZ
and the range of the generalizing superstate is defined of the disjunction of ranges
of its covering statesEx is not empty.

Each copied event occurrence fromEx is shifted back to the generalizing
superstate using the transformationUpSg. Afterwards these event occurrences are
combined to one event occurrence using the transformationClean, as they have
the same event, the same soure- and target states and equivalent preconditions by
the disjunction of their postcondions. However, as all involved transformations are
equivalence transformations the postcondition of the combined event occurrence
must be equivalent to the postcondition of the original event occurrence.

From (1) to (4) follows that the transformationDownTg���Z� is the inverse
transformation ofDownTg�Z�.

5.5 The inverse transformation of UpSa
The transformationUpSa�Z� shifts an event occurrence withZ as source state
to the aggregating superstate ofZ (see page 37). If the aggregating superstate
of Z already is a source state of the event occurrence the inverse transforma-
tion is DownSas�Z� (see page 39). Otherwise the inverse transformation is
DownSa�Z� (see page 37).

THEOREM: The inverse transformation ofex�UpSa�Z� is
ex�DownSas�Z� if the aggregating superstate ofZ already is a
source state of the event occurrenceex. Otherwise the inverse
transformation isex�DownSa�Z�.

(63)

PROOF: To prove thatDownSas�Z� andDownSa�Z� are the inverse transfor-
mations ofUpSa�Z� it is sufficient to show that
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(1) the ranges are equivalent before and after the transformation,

(2) each state has a corresponding state with an equivalent range and the same
structure after the transformations,

(3) each event has a corresponding event with an equivalent event specification
after the transformations and that

(4) each event occurrence has a corresponding event occurrence with equivalent
pre- and postconditions after the transformations.

ad (1) The ranges are equivalent as onle equivalence transformations are used.
ad (2) States remain unchanged by the transformation and its inverse.
ad (3) Events remain unchanged by the transformation and its inverse.
ad (4)
(a) The inverse transformation isex�DownSas�Z� if the aggregating super-

state ofZ already is a source state of the event occurrenceex. The aggregating
superstate andZ have equivalent ranges. The transformation replacesZ in the
source states by the aggregating superstate ofZ. However, as the source states
of an event occurrence is a set and the aggregating superstate ofZ already is a
member of this set, the transformation “removes”Z from the source states. The
inverse addsZ as further source state of the event occurrence.

The transformation may change the event occurrence to a non-synchronizing
one, if afterwardsex has only one or less source and target states (note that the
attributeSync is a computed one). The inverse adds a further source state, the
event occurrence is a synchronizing one again.

(b) The inverse transformation isex�DownSa�Z� if the aggregating superstate
of Z is not a source state of the event occurrenceex. The aggregating superstate
andZ have equivalent ranges. The transformation replacesZ by the aggregating
superstate ofZ in the source states of the event occurrence. The inverse changes
the aggregating superstate ofZ in the source states of the event occurrence back
toZ.

From (1) to (4) follows that the transformationsDownSas�Z� andDownSa�Z�
are the inverse transformations ofUpSa�Z�.

5.6 The inverse transformation of UpTa
The transformationUpTa�Z� shifts an event occurrence withZ as target state
to the aggregating superstate ofZ (see page 38). If the aggregating superstate
of Z already is a target state of the event occurrence the inverse transforma-
tion is DownTas�Z� (see page 39). Otherwise the inverse transformation is
DownTa�Z� (see page 38).
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THEOREM: The inverse transformation ofex�UpTa�Z� is
ex�DownTas�Z� if the aggregating superstate ofZ already is a
target state of the event occurrenceex. Otherwise the inverse
transformation isex�DownTa�Z�.

(64)

PROOF: To prove thatDownTas�Z� andDownTa�Z� are the inverse transfor-
mations ofUpTa�Z� it is sufficient to show that

(1) the ranges are equivalent before and after the transformation,

(2) each state has a corresponding state with an equivalent range and the same
structure after the transformations,

(3) each event has a corresponding event with an equivalent event specification
after the transformations and that

(4) each event occurrence has a corresponding event occurrence with equivalent
pre- and postconditions after the transformations.

ad (1) The ranges are equivalent as only equivalence transformations are used.
ad (2) States remain unchanged by the transformation and its inverse.
ad (3) Events remain unchanged by the transformation and its inverse.
ad (4)
(a) The inverse transformation isex�DownTas�Z� if the aggregating super-

state ofZ already is a target state of the event occurrenceex. The aggregating
superstate andZ have equivalent ranges. The transformation replacesZ in the
target states by the aggregating superstate ofZ. However, as the target states of
an event occurrence is a set and the aggregating superstate ofZ already is a mem-
ber of this set, the transformation “removes”Z from the target states. The inverse
addsZ as further target state of the event occurrence.

The transformation may change the event occurrence to a non-synchronizing
one, if afterwardsex has only one or less source and target states (note that the
attributeSync is a computed one). The inverse adds a further target state, the
event occurrence is a synchronizing one again.

(b) The inverse transformation isex�DownTa�Z� if the aggregating superstate
of Z is not a target state of the event occurrenceex. The aggregating superstate
andZ have equivalent ranges. The transformation replacesZ by the aggregating
superstate ofZ in the target states of the event occurrence. The inverse changes
the aggregating superstate ofZ in the target states of the event occurrence back to
Z.

From (1) to (4) follows that the transformationsDownTas�Z� andDownTa�Z�
are the inverse transformations ofUpTa�Z�.
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5.7 The inverse transformation of DownSa

The transformationDownSa�Z� shifts an event occurrence from the aggregating
superstate ofZ toZ, if the aggregating superstate ofZ is a source state of the event
occurrence (see page 37). The inverse transformation isUpSa�Z� (see page 34).

THEOREM: The inverse transformation ofex�DownSa�Z� is
ex�UpSa�Z�.

(65)

PROOF: To prove thatUpSa�Z� is the inverse transformation ofDownSa�Z� it
is sufficient to show that

(1) the ranges are equivalent before and after the transformation,

(2) each state has a corresponding state with an equivalent range and the same
structure after the transformations,

(3) each event has a corresponding event with an equivalent event specification
after the transformations and that

(4) each event occurrence has a corresponding event occurrence with equivalent
pre- and postconditions after the transformations.

ad (1) The ranges are equivalent as only equivalence transformations are used.
ad (2) States remain unchanged by the transformation and its inverse
ad (3) Events remain unchanged by the transformation and its inverse.
ad (4) The statesZ and the aggregating superstate ofZ have equivalent ranges.

The transformation replaces the aggregating superstate ofZ in the source state of
the event occurrenceex by Z. The inverse replacesZ in the source state of the
event occurrenceex by the aggregating superstate ofZ.

From (1) to (4) follows that the transformationUpSa�Z� is the inverse trans-
formation ofDownSa�Z�.

5.8 The inverse transformation of DownTa

The transformationDownTa�Z� shifts an event occurrence from the aggregating
superstate ofZ toZ, if the aggregating superstate ofZ is a target state of the event
occurrence (see page 38). The inverse transformation isUpTa�Z� (see page 35).

THEOREM: The inverse transformation ofex�DownTa�Z� is
ex�UpTa�Z�.

(66)

PROOF: To prove thatUpTa�Z� is the inverse transformation ofDownTa�Z� it
is sufficient to show that
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(1) the ranges are equivalent before and after the transformation,

(2) each state has a corresponding state with an equivalent range and the same
structure after the transformations,

(3) each event has a corresponding event with an equivalent event specification
after the transformations and that

(4) each event occurrence has a corresponding event occurrence with equivalent
pre- and postconditions after the transformations.

ad (1) The ranges are equivalent as only equivalence transformations are used.
ad (2) States remain unchanged by the transformation and its inverse
ad (3) Events remain unchanged by the transformation and its inverse.
ad (4) The statesZ and the aggregating superstate ofZ have equivalent ranges.

The transformation replaces the aggregating superstate ofZ in the target state of
the event occurrenceex by Z. The inverse replacesZ in the target state of the
event occurrenceex by the aggregating superstate ofZ.

From (1) to (4) follows that the transformationUpTa�Z� is the inverse trans-
formation ofDownTa�Z�.

5.9 The inverse transformation of DownSas

The transformationDownSas�Z� addsZ as a new source state to an event oc-
currence, if the aggregating superstate ofZ already is a source state of the event
occurrence. (see page 39). The inverse transformation isUpSa�Z� (see page 34).

THEOREM: The inverse transformation ofex�DownSas�Z� is
ex�UpSa�Z�.

(67)

PROOF: To prove thatUpSa�Z� is the inverse transformation ofDownSas�Z�
it is sufficient to show that

(1) the ranges are equivalent before and after the transformation,

(2) each state has a corresponding state with an equivalent range and the same
structure after the transformations,

(3) each event has a corresponding event with an equivalent event specification
after the transformations and that

(4) each event occurrence has a corresponding event occurrence with equivalent
pre- and postconditions after the transformations.
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ad (1) The ranges are equivalent only equivalence transformations are used.
ad (2) States remain unchanged by the transformation and its inverse
ad (3) Events remain unchanged by the transformation and its inverse.
ad (4) The aggregating superstate ofZ andZ have equivalent ranges.Z is

added as further source state of the event occurrenceex. The inverse replacesZ
in the source states of the event occurrenceex by the aggregating superstate ofZ.
However, the aggregating superstate already is a source state of the event occur-
rence and and the source states of an event occurrence is a set this replacement
removesZ from the source states ofex.

If ex is a non-synchronizing event occurrence the transformation changes it
to a synchronizing one (note that the attributeSync of an event occurrence is a
computed one) as afterwardsex has more than one source states. By applying
the inverseex is transformed back to a non-synchronizing event occurrence as
afterwardsex has only one source state.

From (1) to (4) follows that the transformationUpSa�Z� is the inverse trans-
formation ofDownSas�Z�.

5.10 The inverse transformation of DownTas

The transformationDownTas�Z� addsZ as a new target state to an event oc-
currence, if the aggregating superstate ofZ already is a target state of the event
occurrence. (see page 39). The inverse transformation isUpTa�Z� (see page 35).

THEOREM: The inverse transformation ofex�DownTas�Z� is
ex�UpTa�Z�.

(68)

PROOF: To prove thatUpTa�Z� is the inverse transformation ofDownTas�Z�
it is sufficient to show that

(1) the ranges are equivalent before and after the transformation,

(2) each state has a corresponding state with an equivalent range and the same
structure after the transformations,

(3) each event has a corresponding event with an equivalent event specification
after the transformations and that

(4) each event occurrence has a corresponding event occurrence with equivalent
pre- and postconditions after the transformations.

ad (1) The ranges are equivalent as only equivalence transformations are used.
ad (2) States remain unchanged by the transformation and its inverse
ad (3) Events remain unchanged by the transformation and its inverse.
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ad (4) The aggregating superstate ofZ andZ have equivalent ranges.Z is
added as further target state of the event occurrenceex. The inverse replaces
Z in the target states of the event occurrenceex by the aggregating superstate
of Z. However, the aggregating superstate already is a target state of the event
occurrence and as the target states of an event occurrence is a set this replacement
removesZ from the target states ofex.

If ex is a non-synchronizing event occurrence the transformation changes it
to a synchronizing one (note that the attributeSync of an event occurrence is a
computed one) as afterwardsex has more than one target states. By applying
the inverseex is transformed back to a non-synchronizing event occurrence as
afterwardsex has only one target state.

From (1) to (4) follows that the transformationUpTa�Z� is the inverse trans-
formation ofDownTas�Z�.

5.11 The inverse transformation of ComSe

The transformationComSe�e�� e�� e� combines the event occurrencese� ande�
with equivalent preconditions and the same source- and target states (see page 41).
The inverse transformation isSplitT e�e� P�� P�� e�� e�� whereP� � e��P ostcon-
dition andP� � e��P ostcondition (see page 44).

THEOREM: The inverse transformation ofComSe�e�� e�� e� is
SplitT e�e� P�� P�� e�� e�� with P� � e��P ostcondition and P� �
e��P ostcondition

(69)

PROOF: To prove thatSplitT e�e� P�� P�� e�� e�� with P� � e��P ostcondition

andP� � e��P ostcondition is the inverse transformation ofComSe�e�� e�� e� it
is sufficient to show that

(1) the ranges are equivalent before and after the transformation.

(2) each state has a corresponding state with an equivalent range and the same
structure after the transformations,

(3) each event has a corresponding event with an equivalent event specification
after the transformations,

(4) each event occurrence has a corresponding event occurrence with equivalent
pre- and postconditions after the transformations and that

ad (1) The ranges are equivalent as only equivalence transformations are used.
ad (2) States remain unchanged by the transformation and its inverse
ad (3) Events remain unchanged by the transformation and its inverse.
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ad (4) The transformation combines the event occurrencese� ande� to e. The
disjunction of the postconditions ofe� ande� is equivalent to the postcondition of
e. The preconditions ofe, e� ande� are equivalent. The inverse splitse again into
e� ande� with its original postconditions.

From (1) to (4) follows that the transformationSplitT e�e� P�� P�� e�� e�� is the
inverse transformation ofComSe�e�� e�� e�.

5.12 The inverse transformation of ComTe

The transformationComTe�e�� e�� e� combines the event occurrencese� ande�
with equivalent Postconditions and the same source- and target states (see page 42).
The inverse transformation isSplitSe�e� P�� P�� e�� e�� whereP� � e��P reC��
andP� � e��P reC�� (see page 43).

THEOREM: The inverse transformation ofComTe�e�� e�� e� is
SplitSe�e� P�� P�� e�� e�� with P� � e��P reC�� andP� � e��P reC��

(70)

PROOF: To prove thatSplitSe�e� P�� P�� e�� e�� with P� � e��P reC�� andP� �
e��P reC�� is the inverse transformation ofComTe�e�� e�� e� it is sufficient to
show that

(1) the ranges are equivalent before and after the transformation,

(2) each state has a corresponding state with an equivalent range and the same
structure after the transformations,

(3) each event has a corresponding event with an equivalent event specification
after the transformations and that

(4) each event occurrence has a corresponding event occurrence with equivalent
pre- and postconditions after the transformations.

ad (1) The ranges are equivalent as only equivalence transformations are used.
ad (2) States remain unchanged by the transformation and its inverse
ad (3) Events remain unchanged by the transformation and its inverse.
ad (4) The transformation combines the event occurrencese� ande� to e. The

disjunction of the preconditions ofe� ande� is equivalent to the precondition ofe.
The postconditions ofe, e� ande� are equivalent. The inverse splitse again into
e� ande� with its original preconditions.

From (1) to (4) follows that the transformationSplitSe�e� P�� P�� e�� e�� is the
inverse transformation ofComTe�e�� e�� e�.
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5.13 The inverse transformation of SplitSe
The transformationSplitSe�e� P�� P�� e�� e�� splits the event occurrencee into two
event occurrencese� ande�. The parametersP� andP� are preconditions. Their
disjuction must be equivalent to the precondition ofe (see page 43). The inverse
transformation isComTe�e�� e�� e� (see page 42).

THEOREM: The inverse transformation ofSplitSe�e� P�� P�� e�� e�� is
ComTe�e�� e�� e�.

(71)

PROOF: To prove thatComTe�e�� e�� e� is the inverse schema transformation of
SplitSe�e� P�� P�� e�� e�� it is sufficient to show that

(1) the ranges are equivalent before and after the transformation,

(2) each state has a corresponding state with an equivalent range and the same
structure after the transformations,

(3) each event has a corresponding event with an equivalent event specification
after the transformations and that

(4) each event occurrence has a corresponding event occurrence with equivalent
pre- and postconditions after the transformations.

ad (1) The ranges are equivalent as only equivalence transformations are used.
ad (2) States remain unchanged by the transformation and its inverse
ad (3) Events remain unchanged by the transformation and its inverse.
ad (4) The transformation splits the event occurrencee into e� ande�. Obvious

e� ande� have the same source- and target states. The postcondtions ofe, e� and
e� are equivalent. The precondition ofe is equivalent to the disjunction of the
preconditions ofe� ande�. The inverse combinese� ande� as they have equivalent
postconditions toe.

From (1) to (4) follows that the transformationComTe�e�� e�� e� is the inverse
transformation ofSplitSe�e� P�� P�� e�� e��.

5.14 The inverse transformation of SplitTe
The transformationSplitT e�e� P�� P�� e�� e�� splits the event occurrencee into
two event occurrencese� ande�. The parametersP� andP� are postconditions.
Their disjuction must be equivalent to the postcondition ofe (see page 44). The
inverse transformation isComSe�e�� e�� e� (see page 41).

THEOREM: The inverse transformation ofSplitT e�e� P�� P�� e�� e�� is
ComSe�e�� e�� e�.

(72)
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PROOF: To prove thatComSe�e�� e�� e� is the inverse schema transformation of
SplitT e�e� P�� P�� e�� e�� it is sufficient to show that

(1) the ranges are equivalent before and after the transformation,

(2) each state has a corresponding state with an equivalent range and the same
structure after the transformations,

(3) each event has a corresponding event with an equivalent event specification
after the transformations and that

(4) each event occurrence has a corresponding event occurrence with equivalent
pre- and postconditions after the transformations.

ad (1) The ranges are equivalent as only equivalence transformations are used.
ad (2) States remain unchanged by the transformation and its inverse
ad (3) Events remain unchanged by the transformation and its inverse.
ad (4) The transformation splits the event occurrencee into e� ande�. Obvious

e� and e� have the same source- and target states. The preconditions ofe, e�
ande� are equivalent. The postcondition ofe is equivalent to the disjunction of
the postconditions ofe� and e�. The inverse combinese� and e� as they have
equivalent preconditions toe.

From (1) to (4) follows that the transformationComSe�e�� e�� e� is the inverse
transformation ofSplitT e�e� P�� P�� e�� e��.

5.15 The inverse transformation of Combine

The transformationCombine�Z�� Z�� Z� combines two atomic statesZ� andZ�

to the stateZ (see page 45).Z� andZ� must be elementary states or belonging to
the same structured state.

For the inverse transformation we have to distinguish between two cases:

(1) if Z� andZ� are elementary states, than the inverse schema transformation
is Split�Z�Z��Range��� Z��Range��� Z�� Z�� (see page 49).

(2) if Z� andZ� are not elementary states, we need a more complex inverse
transformation. The combined state will be a non elementary state. How-
ever,Split demands that in the case of a non elementary state the state must
not be source or target state of event occurrences. AsZ� andZ� must be
atomic states they must belong to a generalizing superstate if the states are
not elementary states. After the transformationZ belongs to that generaliz-
ing superstate. For the inverse first we shift the event occurrences up to the
generalizing superstate ofZ. Second we splitZ back intoZ� andZ�. Last
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we shift the event occurrences back from the generalizing superstate. The
inverse transformationCombine���Z� is defined as:

ExS := �
ExT := �
for all ei �M�Event Occurrences and Z � ei�Source States do
ei.UpSg(Z)
ExS := ExS � ei

end for
for all ei �M�Event Occurrences and Z � ei�T arget States do
ei.UpTg(Z)
ExT := ExT � ei

end for
Split�Z�Z��Range��� Z��Range��� Z�� Z��
for all ei � ExS do
Ex := ei.DownSg(Z��Belongs to)
if ei � ExT then

replaceei in ExT byEx
end if

end for
for all ei � ExT do
ei.DownTg(Z��Belongs to)

end for

Note that an event occurrence if shifted down from a generalizing superstate
usingDownSg is replaced by several other event occurrences. The set of
these event occurrences are returned by the transformation. If a shifted event
occurrence is member ofExT too it must be replaced by the setEx.

To prove that both transformations are inverse schema transformations we dis-
tinguish between this two cases.

THEOREM: The inverse transformation ofCombine�Z�� Z�� Z� is
Split�Z�Z��Range��� Z��Range��� Z�� Z��, if Z� andZ� are elemen-
tary states.

(73)

PROOF: To prove thatSplit�Z�Z��Range��� Z��Range��� Z�� Z�� is the inverse
schema transformation ofCombine�Z�� Z�� Z� it is sufficient to show that

(1) the ranges are equivalent before and after the transformation,

(2) each state has a corresponding state with an equivalent range and the same
structure after the transformations,
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(3) each event has a corresponding event with an equivalent event specification
after the transformations and that

(4) each event occurrence has a corresponding event occurrence with equivalent
pre- and postconditions after the transformations.

ad (1) The ranges are equivalent as only equivalence transformations are used.
ad (2) The transformation combines the statesZ� andZ� which are atomic

and elementary states to an atomic and elementary stateZ. The disjunction of the
ranges ofZ� andZ� is equivalent to the range ofZ. The inverse splitsZ back to
Z� andZ�.

ad (3) Events remain unchanged by the transformation and its inverse.
ad (4) The transformation combines two states which are elementary and

atomic states. Event occurrences, havingZ� or Z� as source (target) state don’t
have further source (target) states. In such event occurrencesZ� orZ� are replaced
by Z in their source and target states. The guard of event occurrences havingZ�
orZ� as source state is replaced by its precondition.

The inverse splitsZ back intoZ� andZ� (which are disjoint). Event occur-
rences havingZ as source and target state are duplicated, their source and target
states are adopted. IfZ is a target state of an event occurrence its postcondition is
replaced by the conjunction of the original postcondition and its new target state
(Z� orZ�).

Let ex be an event occurrence havingZ as source or target state. In the most
general case (ex hasZ as source and target state)ex is replaced by the event oc-
currencesex� � � � ex�. For eachexi follows that its pre- and postconditions result
in false or not. If the conditions do not result infalse (otherwise it is deleted
by the transformationClean) and asZ� andZ� are disjoint states then there must
be an event occurrenceej before applying the transformation and its inverse with
equivalent pre- and postconditions as we use only equivalence transformations.
Otherwise the specification of the events would not be equivalent.

From (1) to (4) follows that the transformationSplit�Z�B�� B�� Z�� Z�� is the
inverse schema transformation ofCombine�Z�� Z�� Z� if Z� andZ� are elemen-
tary states.

THEOREM: The inverse transformation ofCombine�Z�� Z�� Z� is
Combine���Z�, if Z� andZ� are not elementary states.

(74)

PROOF: To prove thatCombine���Z� is the inverse schema transformation of
Combine�Z�� Z�� Z� it is sufficient to show that

(1) the ranges are equivalent before and after the transformation.
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(2) each state has a corresponding state with an equivalent range and the same
structure after the transformations,

(3) each event has a corresponding event with an equivalent event specification
after the transformations,

(4) each event occurrence has a corresponding event occurrence with equivalent
pre- and postconditions after the transformations and that

ad (1) The ranges are equivalent as only equivalence transformations are used.
ad (2) The transformation combines the atomic statesZ� andZ� belonging to

a stateZS to an atomic stateZ belonging toZS too. The disjunction of the ranges
of Z� andZ� is equivalent to the range ofZ. The inverse splitsZ back toZ� and
Z�, belonging toZS again.

ad (3) Events remain unchanged by the transformation and its inverse.
ad (4) The transformation combines two atomic states. As both states are

atomic states belonging to the same structured states not both states can be source
(target) states of an event occurrence.Z� andZ� are replaced byZ in the source-
and target states of event occurrences. The guard of event occurrences havingZ�
orZ� as source state is replaced by its precondition.

In the first steps the inverse transformation shifts the event occurrences of the
combined state to its structured state (which must be a generalizing superstate) us-
ing the transformationsUpSg andUpTg. The guard of event occurrences having
Z as source state is replaced by the precondition. The shifted event occurrences
are collected in the setExS andExT .

After thatZ is splitted intoZ� andZ�. Then each event occurrence of the sets
ExS andExT is shifted back from the generalizing superstate using the transfor-
mationsDownSg andDownTg.

The application of the transformationsUpSg orUpTg to an event occurrence
results into an event occurrence with equivalent pre- and postconditions. Using
UpSg replaces the guard of an event occurrence by its precondition.

Shifting down an event occurrence using the transformationDownSg results
in n new event occurrencese� � � � en, wheren is the number of states covered
by the generalizing superstate. The guards of the event occurrencese� � � � en are
equivalent to the guard of the shifted event occurrence. The generalizing super-
state is replaced by a stateZi, covered by the generalizing superstate in the source
states of anei. However, as the states covered by a generalizing superstate must
be disjoint it is easy to see thatn � � of the event occurrencese� � � � en have pre-
conditions resulting infalse and therefore are deleted byClean.

Analogous happens by shifting an event occurrence down using the trans-
formationDownSg. N event occurrences are produced, the target states are
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changed. The postcondition of an shifted event occurrence is replaced by the con-
junction of its original postcondition and the range of its new target state. Again
n�� of the event occurrencese� � � � en must have postconditions resulting infalse
as the states covered by a generalizing superstate must be disjoint. These event
occurrences are removed by the transformationClean.

From (1) to (4) follows that the transformationCombine���Z� is the inverse
transformation ofCombine�Z�� Z�� Z� if Z� andZ� are not elementary states.

5.16 The inverse transformation of Split
The transformationSplit�Z�B�� B�� Z�� Z�� splits an atomic stateZ into two
statesZ� andZ� (see page 49). The parametersB� andB� are conditions of
the statesZ� andZ�. B� andB� have to be disjoint and their disjunction must be
equivalent to the range ofZ. If Z is not an elementary state it must not be a source
or target of an event occurrence. The inverse transformation isCombine�Z�� Z�� Z�
(see page 45).

THEOREM: The inverse transformation ofSplit�Z�B�� B�� Z�� Z�� is
Combine�Z�� Z�� Z�

(75)

PROOF: To prove thatCombine�Z�� Z�� Z� is the inverse schema transformation
of Split�Z�B�� B�� Z�� Z�� it is sufficient to show that

(1) the ranges are equivalent before and after the transformation,

(2) each state has a corresponding state with an equivalent range and the same
structure after the transformations,

(3) each event has a corresponding event with an equivalent event specification
after the transformations and that

(4) each event occurrence has a corresponding event occurrence with equivalent
pre- and postconditions after the transformations.

ad (1) The ranges are equivalent as only equivalence transformations are used.
ad (2) The transformation splits a stateZ into two statesZ� andZ�. The

disjunction of the ranges ofZ� andZ� is equivalent to the range ofZ. The inverse
combinesZ� andZ� toZ.

ad (3) Events remain unchanged by the transformation and its inverse.
ad (4)
(a) IfZ are not an elementary state, it must not be source or target state of event

occurrences when applying the transformation. In that case event occurrences
remain unchanged by the transformation and its inverse.
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(b) If Z is an elementary state event occurrences havingZ as source or target
state are copied. Letex be an event occurrence havingZ as source or target
state. In the most general case (Z is source- and target state)ex is replaced by
the event occurrencesex� � � � ex�. The guards of these event occurrences remain
unchanged. However the postcondition of the event occurrences are replaced by
the conjunction of their original postcondition and the range of their new target
state. If an event occurrence afterwards has pre- or postconditions resulting in
false it is removed by the transformationClean. However, it is easy to see that
at least one event occurrence remains.

The inverse transformation combines the stateZ� andZ� to Z. In event oc-
currences havingZ� or Z� as source state the guard of these event occurrences
are replaced by its precondition. However, as the range ofZ is equivalent to the
disjunction of the ranges ofZ� andZ�, which are disjoint, such preconditions are
equivalent to their original preconditions. The source and target states are adopted
resulting in the following set of event occurrences with their pre- and postcondi-
tion

ex� � �Z��Range�� � ex�Guard� Z��Range�� � ex�Postcondition�

ex� � �Z��Range�� � ex�Guard� Z��Range�� � ex�Postcondition�

ex� � �Z��Range�� � ex�Guard� Z��Range�� � ex�Postcondition�

ex� � �Z��Range�� � ex�Guard� Z��Range�� � ex�Postcondition�

Note, that some of these event occurrences might have pre- or postconditions
resulting infalse and therefore, are deleted byClean. In this case some of the
following explanations can be dropped.

After applying the inverse transformationClean is used. In a first stepClean
combines the event occurrencesex� andex� to one occurrence by the disjunction
of their preconditions as they have the same event and equivalent postconditions.
Furthermoreex� andex� are combined. Afterwards the combined event occur-
rences can be combined once again as they have now equivalent preconditions,
resulting in one event occurrence. As only equivalence transformations are used
the combined event occurrence andex have equivalent pre- and postconditions.

All other cases follow immediately from this most general case.
From (1) to (4) follows that the transformationCombine�Z�� Z�� Z� is the

inverse transformation ofSplit�Z�B�� B�� Z�� Z��.

5.17 The inverse transformation of Geng
The transformationGeng�Z� � � � Zi� G� produces a state generalization with the
generalizing superstateG covering the statesZ� � � � Zi (see page 52). The inverse
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transformation isDecg�G� (see page 54)) .

THEOREM: The inverse transformation ofGeng�Z� � � � Zi� G� is
Decg�G�

(76)

PROOF: To prove thatDecg�G� is the inverse transformation ofGeng�Z� � � � Zi� G�
it is sufficient to show that

(1) the ranges are equivalent before and after the transformation,

(2) each state has a corresponding state with an equivalent range and the same
structure after the transformations,

(3) each event has a corresponding event with an equivalent event specification
after the transformations and that

(4) each event occurrence has a corresponding event occurrence with equivalent
pre- and postconditions after the transformations.

ad (1) The ranges are equivalent as only equivalence transformations are used.
ad (2) The transformation indroduces a generalizing superstateG covering the

statesZ� � � � Zi. The inverse deletesG, the statesZ� � � � Zi either belongs to its
original structured state or are elementary states.

ad (3) Events remain unchanged by the transformation and its inverse.
ad (4) Event occurrences remain unchanged by the transformation and its in-

verse.
From (1) to (4) follows that the transformationDecg�G� is the inverse trans-

formation ofGeng�Z� � � � Zi� G�.

5.18 The inverse transformation of Decg

The transformationDecg�G� decomposes the a state generalization with the gen-
eralizing superstateG, which is not source or target state of event occurrences
(see page 54). The statesZ� � � � Zi covered byG either became elementary states
or belongs to the structured stateG belongs to. The inverse transformation is
Geng�Z� � � � Zi� G� (see page 52).

THEOREM: The inverse transformation ofDecg�G� is
Geng�Z� � � � Zi� G� where each stateZi � G�Covers.

(77)

PROOF: To prove thatDecg�G� is the inverse transformation ofGeng�Z� � � � Zi� G�
it is sufficient to show that

(1) the ranges are equivalent before and after the transformation,
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(2) each state has a corresponding state with an equivalent range and the same
structure after the transformations,

(3) each event has a corresponding event with an equivalent event specification
after the transformations and that

(4) each event occurrence has a corresponding event occurrence with equivalent
pre- and postconditions after the transformations.

ad (1) The ranges are equivalent as only equivalence transformations are.
ad (2) The transformation deletes the generalizing superstateG. The states

Z� � � � Zi coverd byG became elementary states or belongs to the generalizing
superstate ofG. The transformation demands thatG does not belong to an ag-
gregating superstate. The inverse transformation introducesG coveringZ� � � � Zi

again.G belongs is an elementary state or belongs to its original structured state.
ad (3) Events remain unchanged by the transformation and its inverse.
ad (4) Event occurrences remain unchanged by the transformation and its in-

verse.
From (1) to (4) follows that the transformationGeng�Z� � � � Zi� G� is the in-

verse transformation ofG�Decg.

5.19 The inverse transformation of Gena
The transformationGena�Z� n� A� builds a state aggregation based upon the atomic
stateZ resulting in the aggregating superstateA. The aggregating superstate cov-
ersn generalizing superstates. Each of them covers one atomic state (see page 56).
The inverse transformation isDeca�A�Z� (see page 58).

THEOREM: The inverse transformation ofGena�Z� n� A� is
Deca�A�Z�.

(78)

PROOF: To prove thatDeca�A�Z� is the inverse transformation ofGena�Z� n� A�
it is sufficient to show that

(1) the ranges are equivalent before and after the transformation,

(2) each state has a corresponding state with an equivalent range and the same
structure after the transformations,

(3) each event has a corresponding event with an equivalent event specification
after the transformations and that

(4) each event occurrence has a corresponding event occurrence with equivalent
pre- and postconditions after the transformations.
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ad (1) The ranges are equivalent as only equivalence transformations are.
ad (2) The transformation introduces a state aggregation based upon an atomic

stateZ. The inverse transformation deletes this state aggregation resulting in the
atomic stateZ.

ad (3) Events remain unchanged by the transformation and its inverse.
ad (4) The transformation replacesZ by A in the source and target states of

event occurrences. The inverse transformation replacesA by Z in the source and
target states of event occurrences. Both states have equivalent ranges.

From (1) to (4) follows that the transformationDeca�A�Z� is the inverse
transformation ofGena�Z� n� A�.

5.20 The inverse transformation of Deca

The transformationDeca�A�Z� decomposes a state aggregation with the aggre-
gating superstateA resulting into the atomic stateZ. The aggregating superstate
must covern generalizing superstates. Each of these generalizing superstates must
cover only one atomic state. Furthermore none of the states (exceptA) of the state
aggregation must be a source or target state of an event occurrence (see page 58).
The inverse transformation isGena�Z� n� A� wheren is the number of states in
A�Covers (see page 56).

THEOREM: The inverse transformation ofDeca�A�Z� is
Gena�Z� n� A�, wheren is the number of generalizing superstates of
A�Covers .

(79)

PROOF: To prove thatGena�Z� n� A� is the inverse transformation ofDeca�A�Z�
it is sufficient to show that

(1) the ranges are equivalent before and after the transformation,

(2) each state has a corresponding state with an equivalent range and the same
structure after the transformations,

(3) each event has a corresponding event with an equivalent event specification
after the transformations and that

(4) each event occurrence has a corresponding event occurrence with equivalent
pre- and postconditions after the transformations.

ad (1) The ranges are equivalent as only equivalence transformations are used.
ad (2) The transformation decomposes the complete state aggregation result-

ing into the atomic stateZ. The aggregating superstate must covern generalizing
superstates. Each of these states must cover exactly one atomic state. The inverse
transformation based uponZ introduces exactly the same state aggregation.
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ad (3) Events remain unchanged by the transformation and its inverse.
ad (4) The transformation replacesA by Z in the source and target states of

event occurrences. The inverse transformation replacesZ byA in the source and
target states of event occurrences. Both states have equivalent ranges. Other states
of the state aggregation must not be source or target states of event occurrences.

From (1) to (4) follows that the transformationGena�Z� n� A� is the inverse
transformation ofDeca�A�Z�.

6 Properties of the schema transformations
The main property of the presented schema transformation is that they are equiv-
alence transformation. The application of a schema transformation on a dynamic
model results into a diffent but equivalent dynamic model.

For each discussed schema transformation there exists an inverse schema trans-
formation, which, however, may be a complex transformations.

At last the presented set of schema transformations is complete. By that if
two dynamic models are equivalent according to our definition they can be trans-
formed into each other without changing the semantics of the dynamic models.

THEOREM: If the dynamic modelsM� andM� are equivalent than
there exists a sequence of schema transformations to transformM� into
M� and vice versa.

(80)

PROOF: To prove thatM� can be transformed toM� (and vice versa) ifM� and
M� are equivalent it is sufficient to show that

(1) M� can be transformed to one elementary and atomic stateZ� by using only
schema transformations,

(2) M� can be transformed to one elementary and atomic stateZ� by using only
schema transformations,

(3) Z� can be transformed such that for each event occurrence ofZ� there exists
an event occurrence ofZ� with equivalent pre- and postconditions and vice
versa and that

(4) each basic schema transformation has an inverse transformation

ad (1) and (2) A dynamic modelM can be transformed to only one atomic
state using the following schema transformations:

shift all event occurrences ofM down to atomic states using the corresponding
schema transformations



Properties of the schema transformations 87

repeat
for all generalizing superstatesG of M covering only atomic statesdo

combine the states covered byG to one atomic state using the transforma-
tionCombine

end for
for all generalizing superstatesG of M covering only one atomic stateand
G.Belongsto �� aggregating superstatedo

Decg(G)
end for
for all aggregating superstatesA ofM covering only generalizing superstates
where each of them covers only one atomic statedo

shifts the event occurrences from the atomic states toA using the corre-
sponding schema transformations
Deca(A,Z)

end for
until all states ofM are atomic states
combine all atomic states ofM using the transformationCombine

First we shift all event occurrences down to atomic states using the corre-
sponding transformationsDownSg, DownTg, DownSa andDownTa. After-
wards we loop untilM consists of atomic states only. These states can be com-
bined by a sequence ofCombine transformations to one atomic state.

Within the loop we search for generalizing superstates covering only atomic
states. These atomic states are combined to one atomic states by a sequence of
Combine transformations. Note, that due to the orthogonality and the fact, that at
least one state must belong to a structured state in each state hierarchy there must
be such a construct.

In the next step we search for generalizing superstates not belonging to an
aggregating superstate which covers only one atomic state. Such generalizing
superstates are decomposed byDecg resulting in one atomic state. Note that the
generalizing superstate is not a source or target state of event occurrences as we
have shifted down event occurrences to the atomic states.

At last we search for state aggregations having the structure demanded by the
transformationDeca, that is that the aggregating superstate only covers generaliz-
ing superstates which itself covers only one atomic state. In this situations we shift
the event occurrences of these state aggregations to the aggregating superstate and
decompose the state aggregating applying the transformationDeca, resulting in a
new atomic state.

ad (3) It is easy to see thatZ� can be transformed such that for each event oc-
currence ofZ� there exist an event occurrence ofZ� with equivalent pre- and post-
conditions as we have a schema transformation for each definition of the relation
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Figure 13: Transforming a state hierarchie into ony atomic state

�. These transformations areComSe, ComTe, SplitSe andSplitT e covering
the definitions (1) to (4) of the relation� (compare definition 18, p. 19). For the
definition (5) and (6) of� no transformations are necessary.

ad (4) We refer to section 5 where we proved that each basic schema transfor-
mation has an inverse schema transformation.

From (1) to (4) follows that ifM� �M� than there exists a sequence of schema
transformation to transformM� intoM� and vice versa.

Consider figure 13 where we show a state hierarchie which is transformed to
one atomic state. Please note that we do not consider event occurrences in this
example.

In the first step we combine the states of the generalizing superstatesG� and
G�. Furthermore the generalizing superstateG� can be decomposed as it consits
of only one atomic state.

In the second step we decompose the aggregating superstateA� as it fulfill
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the conditions demanded by the transformationDeca. The statesZ� andZ� are
combined to the stateZ��.

In the next iteration we combine the statesZ� andZ�� to one atomic state.
At last we decompose the aggregating superstateA� as afterwards it fulfill the
conditions demandet by the transformationDeca, resulting in one atomic state
Z��.

7 Conclusion and Future Work
We presented a formalization of a model for representing the dynamic behavior
of objects. We present a meta-model and define the (abstract) semantics of state
charts as partial specification of methods. This allows the definition of the equiva-
lence of dynamic models. The main contribution of this work is the development
of a complete set of basic schema transformation which maintain the semantics.
The presented set of transformations suffices to derive any equivalent dynamic
model from a given one.

There are several applications for the presented methodology. It serves as
sound basis for design tools. It enables analysts and designers to start from an
initial model and improve the quality of the model step by step. We can pro-
vide automatic support to achieve certain presentation characteristics of model. A
model can be transformed to inspect it from different points of view. In particular
a model suitable for conceptual comprehension can be transformed to a model
better suited for implementation similar to the transformation of static conceptual
models to logical models.

Our main application and motivation for the development of the model was to
support automatic integration of partial models. This is the extension of the view
integration approach in conceptual modeling to also incorporate dynamic models
([Fra96]).
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8 Appendix
In this appendix we present the defined schema transformations in alphabetical
order with a short textual description.

Name short textual description
Clean Deletes event occurrences whose pre- and/or post-

conditions results infalse and combines event oc-
currences with equivalent pre- or postconditions by
the disjunction of their post- respectively precondi-
tions (page 62).

Combine�Z�� Z�� Z� Combines two atomic statesZ� andZ� to the state
Z (page 45).

ComSe�e�� e�� e� Combines the event occurrencese� and e� with
equivalent preconditions and the same source- and
target states toe (page 41).

ComTe�e�� e�� e� Combines the event occurrencese� and e� with
equivalent postconditions and the same source-
and target states toe (page 42).

ComEx Combines event occurrences with equivalent pre-
resp. postconditions by disjunction of their post-
respectively preconditions (page 62).

Deca�A�Z� Decomposes a state aggregation with the aggre-
gating superstateA resulting in an atomic stateZ.
Each state covered byA must cover itself only one
atomic state. None of the states of the state aggre-
gation (exceptA) must occur in source or target
states of event occurrences (page 58).

Decg�G� Decomposes a generalizing superstateG not be-
longing to an aggregating superstate.G must not
be a source- or target state of event occurrences
(page 54).

DelEx Deletes event occurrences whose pre- and/or post-
conditions results infalse (page 61).

DownSa�Z� Shifts an event occurrence from the aggregating
superstate ofZ to Z, if the aggregating super-
state ofZ is a source state of the event occurrence
(page 37).
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Name short textual description
DownSas�Z� AddsZ as a new source state to an event occur-

rence, if the aggregating superstate ofZ is a source
state of the event occurrence (page 39).

DownSg�Z� Shifts an event occurrence having the generalizing
superstateZ as source state to the states belonging
toZ (page 29).

DownSTg�Z� Shifts an event occurrence having the generalizing
superstateZ as source and target state to the states
belonging toZ (page 33).

DownTa�Z� Shifts an event occurrence from the aggregating
superstate ofZ to Z, if the aggregating super-
state ofZ is a target state of the event occurrence
(page 38).

DownTas�Z� AddsZ as a new source state to an event occur-
rence, if the aggregating superstate ofZ is a target
state of the event occurrence (page 39).

DownTg�Z� Shifts an event occurrence having the generalizing
superstateZ as target state to the states belonging
toZ (page 30).

Gena�Z� n� A� Build a state aggregation based upon the atomic
stateZ resulting in the aggregating superstateA
which coversn generalizing superstates. To each
generalizing superstate belongs one atomic state
(page 56).

Geng�Z� � � � Zi� G� Produces a state generalization with a generalizing
superstateG and the statesZ� � � � Zi, which must
be elementary states or belonging to the same gen-
eralizing superstate (page 52).

Split�Z�B�� B�� Z�� Z�� Splits an atomic stateZ into two statesZ� andZ�

(page 49). The parametersB� andB� are condi-
tions of the statesZ� andZ�. B� andB� have to be
disjoint and their disjunction must be equivalent to
the range ofZ.

SplitSe�e� P�� P�� e�� e�� Splits an event occurrencee into two event occur-
rencese� ande�. The parametersP� andP� are the
preconditions ofe� ande�. Their disjunction must
be equivalent to the precondition ofe. (page 43).

SplitT e�e� P�� P�� e�� e�� Splits an event occurrencee into two event occur-
rencese� ande�. The parametersP� andP� are the
postconditions ofe� ande�. Their disjunction must
be equivalent to the postcondition ofe. (page 44).
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Name short textual description
UpSa�Z� Shifts an event occurrence withZ as source state

to the aggregating superstate ofZ. (page 34).
UpSg�Z� Shifts an event occurrence having the stateZ as

source state to the generalizing superstate ofZ

(page 25).
UpSTa�Z� Shifts an event occurrence withZ as source and

target state to the aggregating superstate ofZ

(page 36).
UpSTg�Z� Shifts an event occurrence having the stateZ as

source and target state to the generalizing super-
state ofZ (page 28).

UpTa�Z� Shifts an event occurrence withZ as target state to
the aggregating superstate ofZ.(page 35).

UpTg�Z� Shifts an event occurrence having the stateZ as
target state to the generalizing superstate ofZ

(page 26).




