Technical Report, University of Klagenfurt, 1997

A Meta-Model for Dynamic Models

Technical Report
(Draft)

Heinz Frank and Johann Eder

Universitt Klagenfurt
Institut flr Informatik
Universittsstral3e 65 - 67, A-9020 Klagenfurt, Austria
e-mail: {heinz, edef@ifi.uni-klu.ac.at

Abstract

State charts are a popular representation technique for the conceptual mod-
eling of the dynamics of a universe of discourse. However, designers are
not supported in their work with dynamic models as they are for working
with static models. We present a meta-model and a formalization of the se-
mantics of a state chart language. Important results are the definition of the
equivalence of dynamic models and a sound and complete axiomatization
of the equivalence. Based on this we define a set of basic schema trans-
formations which do not change the semantics of a model. These schema
transformations can be used to successively transform dynamic models to
achieve design goals or to prepare dynamic models for implementation.

katja
Technical Report, University of Klagenfurt, 1997

Contents

Contents
1 Introduction 4
2 Themeta-model 5
2.1 OVEeIVIEW e e 5
2.2 Modelrestrictions oL 7
23 States 9
2.4 Eventsand eventOCCUITENCES v v v v v v v v v .. 13
2.5 Correctdynamicmodels 16
3 Equivalence of dynamic models 17
4 Schema transformations 24
4.1 OVEIVIEW o e e e e 24
4.2 Shifting event occurrences within a generalization 25
4.2.1 Shifting event occurrences to a generalizing superstate . . 25
4.2.2 Shifting event occurrences from a generalizing superstate . 28
4.3 Shifting event occurrences within a state aggregation. 33
4.3.1 Shifting event occurrences to an aggregating state 34
4.3.2 Shifting event occurrences from an aggregating state . . . 37
4.4 The combination of eventoccurrences 41
4.5 The splitting of event occurrences 43
4.6 Thecombinationofstates.... 45
4.7 Thesplittingofastate. 49
4.8 The generalizationofstates. 52
4.9 The decomposition of a state generalization 54
4.10 The aggregationofstates 56
4.11 The decomposition of a state aggregation 58
4.12 Deleting and combining event occurrences. 61
5 Inverse schema transformations 63
5.1 Theinverse transformation®®pSg 64
5.2 Theinverse transformation®o®Zg 65
5.3 The inverse transformation dfounSg 66
5.4 The inverse transformation dfounTg 67
5.5 Theinverse transformation®®Sa 68
5.6 The inverse transformation®®pZa 69
5.7 The inverse transformation dfounSa 71
5.8 The inverse transformation dfounTa 71
5.9 The inverse transformation dfounSas 72

CONTENTS

5.10 The inverse transformation DlownT as

5.11 The inverse transformation ©bm.Se
5.12 The inverse transformation ©bmTe
5.13 The inverse transformation 8plitSe
5.14 The inverse transformation 8plitTe

5.15 The inverse transformation 6bmbine
5.16 The inverse transformation 8plit
5.17 The inverse transformation@eng
5.18 The inverse transformation®ecg
5.19 The inverse transformation@¢na
5.20 The inverse transformation bfeca

6 Properties of the schema transformations
7 Conclusion and Future Work

8 Appendix

Introduction 4

1 Introduction

Conceptual modeling of a universe of discourse has two dimensions: the struc-
ture of objects and their relationships are represented in a static model (or object
model) and the behavior of the objects is documented in a dynamic model (com-
pare [Boo91, RBP91, CAB"94]). While the techniques for structural modeling
have a long tradition and are already quite elaborated, conceptual modeling tech-
niques for the dynamics of a mini-world is not supported as well. Open issues are
for example the formalization of the semantics of dynamic models, generaliza-
tion and inheritance of dynamic models, and transformations of dynamic models
(compare [KS94, Fir96, KS96]). The aim of the work reported here is to con-
tribute to a better understanding of dynamic models and to support the modeling
process.

For designing static models designers or analysts start from an initial model
and successively transform this model to achieve design goals and meet quality
criteria. In the end the model is in a form which is well suited to be mapped to a
logical model and thus serves as a specification of the implementation. This pro-
cess is supported by a well understood representation language and the provision
of schema transformations which maintain the semantics of the model (compare
[BCN92]). In our opinion, a similar process should be made available for the
development of dynamic models.

Assumptions and scope

For this work we assume that the static part of the model is already developed. For
the representation of dynamic aspects we focus on the modeling of the dynamics
of a single type or class of the static model. We represent dynamic models with a
popular state chart language (compare [R8E, Rum93, Har88]). We consider
these state charts to serve several purposes. First they are a representation tech-
nique to capture the dynamics of objects in the universe of discourse. Second,
dynamic models support the communication between users, analysts, designers
and implementors. Finally, state charts are (partial) specifications for the imple-
mentation of an information system.

The major contributions of this paper are

formalization of state charts for conceptual modeling

definition of the semantics of state charts

model-theoretic definition of the equivalence of state charts together with a
sound and complete axiomatization

a complete set of basic schema transformations for deriving equivalent dynamic
models

The meta-model 5

The paper is organized as follows. In section 2 we introduce the state chart lan-
guage and a meta-model for dynamic models. In section 3 we discuss the equiv-
alence of dynamic models as equivalence of method specifications. In section 4
we present a set of basic equivalence transformations for dynamic models. The
inverse transformations of the basic transformations are presented in section 5. In
section 6 we discuss some properties of the schema transformation. We prove,
that if two dynamic models are equivalent then they can be transformed into each
other. In section 7 we draw some conclusions and discuss some applications of
this work.

2 The meta-model

2.1 Overview

The dynamic model for a given type consists primarilynaddel restrictions,
states andevents. In figure 1 we present a meta-model for dynamic models. In
the following we will present all components of dynamic models and give the
necessary formalization for the succeeding sections.

We assume that the static model (types and their relationships) have already
be defined. Furthermore, we assume that there is a language for defining predi-
cates on objects. We useQL + + ([FM94a, FM94b, Mos95]) for this purpose,
however, the following does not depend on this choice of a language.

Model restrictions:

Model restrictions are conditions that an object must comply with in order to be
able to travel actually through a dynamic model.

Sates:

A state is a collection of values and relationships of an object, it is a subspace of
the attribute and relationship space of a type. Intensionally, a state is defined by a
predicate on objects of the given type. Extensionally a state is considered as the
set of all objects which fulfill this predicate.

States have gotmame, which must be unique within a dynamic model. The
(redundant) attributkind divides states iatomic states, generalizing super states
andaggregating superstates. States can baitial or final states. Each state has
arange (represented as a meta-method) which we will define later on. Generally
speaking we understand by the range on a state a condition which an object must
comply with, so that it can be in the state. The condition of a state can be regarded
as a predicate supplyirtgue if an object is in a statefalse otherwise. As spec-
ification language for conditions we usEQL + + ([FM94a, FM94b, Mos95)).

Each atomic state is provided with such a condition that is listed in the attribute
condition. To each structured state belongs at least one further state.

The meta-model 6

dynamic model

Name
Range()
L .

model restrictions event

Condition Name
Attributes
Action
Kind

Spec()

1+

1+ has

state

Name i
Kind

Initial State (IS)
Final State (FS) target states

Guard
Postcondition
Sync

ﬂ PreC()

source states ﬂevent occurrence

Range() o
belongs to

— &

atomic state structured state

Condition

generalizing aggregating
superstate superstate

Figure 1. A meta-model for dynamic models

Events:

An event is an incident focused on an object with the aim to carry out a change
of state (compare [RBM1]). Events have got a uniqueme, attributes and
actions. We distinguish betweeabject producing, object destroying andtrans-
forming events, this information is stored in the attribiged.

Object producing events create a new object (compare initial states in OMT
of [RBP*91]). Object destroying events being carried out delete an object out of
the database (compare final states in OMT). Transforming events represent state
transitions as defined by OMT. Each event may occur in a dynamic model several
times because an event may cause state transitions on different parts of a dynamic
model. Let’s take e. g. a dynamic models describing the order of an article. It is

The meta-model 7

on various points of this model possible to cancel the order, the egectl can
be found in the model several times. Therefore, we say that each event has at least
one event occurrence. Event occurrences have got the attriynteguard and
postcondition. The attribute sync tells us, if the event occurrence is a synchroniz-
ing one in the sense of OMT. A synchronizing event occurrence leads from and/or
to a state aggregation. The guard of an event occurrence are those conditions that
must be true to apply an event occurrence to an certain object. In other words, the
object must comply with the guard of the event occurrence. Postconditions are
those conditions that an object complies with after its execution.

Event occurrences can hasairce andtarget states. We designate that states
in which an object is before the execution of the event occurrence as source states,
the target states are that states in which an object is after its execution. Synchro-
nizing event occurrences, namely event occurrences that lead to or out of a state
aggregation can have several source and target states. Not synchronizing event oc-
currences have exactly one source and exactly one target state respectively in the
case of object producing or object destroying event occurrences have no source or
no target state.

States, events, event occurrences and dynamic models have further character-
istics which we will concentrate later on. For instance we talk about the range of
a state or of a dynamic model. In our meta-model these characteristics are real-
ized as meta-methods (resp. as “calculated” attributes). The advantage of such a
description in comparison to an (non calculated) attribute is that redundancies can
be avoided.

When we talk about these meta-methods or we apply them, we do not mean
the meta-method itself, but the result of the carrying-out applied on a precise
component of the dynamic model. We write. Range() and mean the result of
the meta-method&ange() applied on the staté;.

In the following sections we derive from the meta-modéf @ L + + schema
for the most interesting parts of a dynamic model. Concerning the relationships
we are very broad minded, we will (sometimes) derive them redundantly.

As an example we refer to figure 2 representing the static model and the dy-
namic behavior of a book from the view point of a library. Note that we use the
notation of OMT for dynamic models which is suggested in [Rum93] and sup-
ported by OMTOOL ([OMT93])).

2.2 Model restrictions

Model restrictions are conditions that an object must comply with in order to

be able to travel actually through a dynamic model. Each dynamic model can
have such model restrictions, but they are not absolutely necessary. All integrity
constraints which are defined for the static parts of the type of the dynamic model

The meta-model 8

Book

title: string
signatur: string
katalog: string
reserved: bool
position: string
author: {Person}

new
new
O
book

catalogue

book
administration
0
book book
registration preparation
aN AN

book in book “book in book
catalogue registered subject catalogue signed

register place make headwords
lose 1

book book in text
borrowed book collection

I

return 2 [reserved = true]

Figure 2: An example

must be added to the model restrictions. Further model restrictions, based upon
the attribute and relationship space of the type, can be specified as conditions
for the dynamic model. We us& QL + + as specification language for model
restrictions.

Let’s take for instance a dynamic model which only is applicable for a certain kind
of books, e. g. for didactic books. An adequate model restriction for the dynamic
model of the typdook looks likethis.catalogue = "didactic book”

Model restrictions are only a more comfortable way of naming the conditions
for states. For each state of a model a certain model restrictions is valid, also for
the postconditions of the event occurrences. For all following explanations we
must extend the conditions of atomic states and the postconditions of the event
occurrences with the model restrictions. The necessary algorithm in pseudo code:

The meta-model 9

for all = € M.Atomic_Statesdo
z.Condition :=z.Condition A M .ModelRestriction
end for
for all ex € M.EventOccurrenceslo
ex.Postcondition :=x.PostconditionA M .ModelRestriction
end for

2.3 States

A state is a collection of values and relationships of an object, it is a subspace of
the attribute and relationship space of a type. Intensionally, a state is defined by a
predicate on objects of the given type. Extensionally a state is considered as the
set of all objects which fulfill this predicate.

States have the form

State := |
Nane: str,
Ki nd: (atom c, generalizing superstate,
aggregating superstate),
| S: bool ,
FS: bool ,
Bel ongs_to: Structured_State,
Covers: { St at e}
]
Atomic_State := | SA State

[
Condition: Condition_T

]

A state consists of several components which can be addressed individually.
When we use e. ¢Z. Name, the name of the staté is meant.

First of all each state has goname which must be unique within a dynamic
model. We use the terkind in order to distinguish between generalizing super-
states, aggregating superstates and atomic states. We mark the initial and the final
states of dynamic models witB (for initial state) and=S(for final states). An ob-
jects “enters” a dynamic model through a initial state and analogous to that leaves
it through a final state.

Atomic states, which are states too and therefore inherit all characteristics of
states, have in addition the attribu@endition. In this attribute the condition of
an atomic state is stored. Each atomic state has exactly one condition, which can
be a trough conjunction and disjunction constructed complex term. We demand

The meta-model 10

the specification of the conditions for all atomic states of the dynamic model. For
our approach we us& QL + + as specification language.

By the condition of a state we understand the representation of all prerequisites
an object must comply with to be in this state. In other terms it is possible to find
all objects that are at the moment in this state using the state’s condition. The
condition of a state itself is based on the attribute and relationship space of a type.

A state of a book in our examplel®ok in text book collection. The condition for
this state would look likehis.position = "text book collection” A this.reserved
= false.

Sructured states are generalizing or aggregating superstates. To each struc-
tured statdoelongsat least one further state, one structured statecoagy several
other states. We use structured states to represent alternatives (state generaliza-
tions) or parallelism (state aggregations).

In our example of figure 2 the stalmok administration is an aggregating super-
state. The statelsook registration, book preparation andbook not on stock
are generalizing superstates. All other states are atomic states. Thebsiaites
borrowed andbook in text book collection belong to the structured stalb®ok
not on stock.

Furthermore states are divided irdementary andnon-elementary states.

DEFINITION: An elementary state which can be an atomic state, agen- (1)
eralizing superstate or an aggregating superstate, doesn't belong itself
to a structured state.

Elementary states are in a way the “elements” of a dynamic model which can
be split up further more. An elementary state doesn’'t belong to any other state.
Elementary states are therefore the 'top-level’ states of a dynamic model.

In the library example the stategsw book, book administration, book on stock,
book not on stock andbook lost are elementary states. All other states are non-
elementary states.

While the conditions of atomic states have to be stored in the meta-model, the
conditions of structured states are computed. We definBdhge of a stateZ as
follows:

The meta-model 11

Definition of the range of states
DEFINITION: The range of a statg is defined as (2)
Z.Condition, if 7 is an atomic state.

the disjunction of all the stateg’; ranges, that belongs o if 7 is
a generalizing superstate.

the conjunction of all the stateg; ranges, that belongs 6 if Z
IS an aggregating superstate.

In the meta-model the range of a state is realized as a meta-method (calculated
attribute). As result we get the condition of a state. From nou dtunge() will
be used as an abbreviation for the condition of the sfate

For instancdook in text book collection.Range() results inthis.position = "text
book collection” A this.reserved = false.

In addition we define the predicat®(o) which suppliegrue if the objecto
complies with the condition (the range) of the stateotherwise it suppliefalse.

The ranges of the states form the basis for the definition of relationships be-
tween states. Five different relationships are defiragdivalent states, included
states, overlapping states, orthogonal states, anddigoint states. The set of all
possible extensions of the tyfieis calledP(T).

Definition of relationships between states

DEFINITION: The stateg/; andZ, of the typ€eTl” are calledequivalent, (3)
if

Vo € P(T) : Z1(0) <> Zs(0)

DEFINITION: The stateZ, of the typeT includes the stateZ; of the 4)
typeT, if

VYo € P(T) : Z1(0) — Zs(0)

DEFINITION: The states?; and 7, of the typeT are calledoverlap- (5)
ping, if

do € P(T) : Zi(o) N Zs(o)

The meta-model 12

DEFINITION: The generalizing superstat&s and 7, of the typeT (6)
are calledbrthogonal, if

71 equivalent Zy ANz € Z,.Covers,Vz' € Zy.Covers —
Jdo € P(T) : z(0) A 2'(0)

A generalizing superstate consists of a set of states which are stored in the
attribute Covers. For two generalizing superstat&s and 7, being orthogonal
their ranges must be equivalent and each state”; overlaps with each staté
of Z, (and vice versa).

DEFINITION: The states’; andZ, of the typeT are calleddigoint, (7)
if

Yo € P(T): = (Z1(0) A Zs(0))

Based on the ranges of the states and the definitions of relationships between
states we think about the correctness of the states of a dynamic model. The state-
ments of OMT are followed, but we are able to describe them in a more formal
way.

DEFINITION: The states of a dynamic model a@rect, if (8)
all elementary states are disjoint,
all states, belonging to the same generalizing superstate are dis-
joint,
all states, belonging to the same aggregating superstate are orthog-
onal.

THEOREM: The orthogonal relationshiis not transitive in dynamic (9)
models with correct states.

PROOF: The orthogonality is symmetrica¥{ orthogonalZ, impliesZ, orthogo-

nal Z;) but not reflexive 7; is not orthogonal td; as, according to the definition

of the orthogonal relationshig;; must be a generalizing superstate and all states
belonging toZ; must be disjoint (compare definition 8, p. 12). It is obvious, that
therefore the orthogonality of states in a dynamic model with correct states is not
transitive.

The meta-model 13

2.4 Events and event occurrences

An event is an incident focused on an object with the aim to carry out a change of
state. An event is set off explicitly (compare [RBIL]). Events for a book could
be e. g.borrow or lose.

In dynamic modeling events represent (partial) specifications of the methods
for the object type. If an event is set off an object is transfered to a new state. The
model defines which conditions (preconditions) an object has to fulfill in order
to be able to react to an event and which conditions (postconditions) an object
fulfills after the state change. These pre- and postconditions are primarily states
of the dynamic models. Events are therefore usually represented as arcs between
the states of the model. However, it is not always possible to find a partition of the
range of a model into states, such that each pre- and postcondition of all events
equal exactly one state. To overcome this situation we allow that an event appears
several times in a dynamic model and we distinguish between the eveetamd
OCCUr rences.

Consider the everbse with its two event occurrencdgse 1 andlose 2 (figure 2).

We numbered the event occurrences in order to differ between them. If the event

lose is transmitted to a book, in subordination to the concrete state of the book one

of the two event occurrences is activated with the consequence of a state change
(supposing that the book is in one of the statesk on stock or book not on

stock).

An event looks like

Event = |
Name: str,
Ki nd: (transform ng, obj ect producing,

obj ect destroying),
Attribute: {str},
Acti on: str,
has: {Event Cccurrence}

]

The name of an event must be unique in a dynamic modelkiind events
are divided intaransforming, object producing andobject destroying events. In
attributes all attributes of an event are listed which are needed when activating the
event. Inactions we describe in an informal way what an event has to do when it
is activated. Each evehas several (at least one) event occurrences.

An event occurrence looks like

Event Cccurrence : = |
Guar d: Condition_T,

The meta-model 14

Post condi ti on: Condition_ T,
Sync: bool ,

Sour ce_St at es: {State},

Tar get _St at es: {State},
has_Event: Event

]

Event occurrences could possesguard. This is a (complex) condition an
object must comply with so that the event occurrence can cause a state change. If
there is no such condition the guard of an event occurrenitaggagain we use
T QL + + for specifying guards).

An object complies with the condition offgstcondition after the event occur-
rence had been appliefync states whether the event occurrence sgrehroniz-
ing one or not. Synchronizing event occurrences always lead from and/or to a state
aggregation.Sync is a redundant attribute (computed) whichrige, if an event
occurrence has several source or target stébs® otherwise. Insource states
andtarget_states the source and target states of an event occurrence are stored. In
the case on a synchronizing event occurrence there can be more source and target
states (that’s the reason why these attributes are multi-value attribidtesgvent
Is the connection to the event of the event occurrence.

The postcondition of an event occurrence must imply the range of its target
state. Object destroying event occurrences don’t have target states, their post-
condition is alwaygrue. If an event occurrence has got several target states the
postcondition must imply the ranges of all these states.

Event occurrences hayeeconditions, which are the conditions that an object
must fulfill so that an event occurrence can cause a state change of an object. To
cause a state change the object must be in the source state of the event occurrence
(in the case of synchronizing event occurrences in all source states) and the object
must fulfill the condition of the guard of the event occurrence. Therefore the
precondition of an event occurrence equals to the conjunction of the guard with
the ranges of its source states. Object producing event occurrences don’t have
source states, their precondition is equivalent with its guartrgey if there is no
guard). In our meta-model the precondition of an event occurrence is represented
as meta-method®reC/(), which will be used to find out the precondition of an
event occurrence.

According to the source and target state of event occurrences we define the
correctness of event occurrences.

The meta-model 15

DEFINITION: Event occurrences are correct, it they have source and(10)
target states according to the following conditions:

Non-synchronizing event occurrences of transforming events have
exactly one source and one target state.

Synchronizing event occurrences could have several source and tar-
get states. However, if there are several source states they must be-
long to the same state aggregation. Several target states must belong
to the same state aggregation too.

Event occurrences of object producing events do not have source
states.

Event occurrences of object destroying events do not have target
states. Therefore, the postcondition of such event occurrences is
true.

The postcondition of an event occurrence implies the ranges of all
its target states.

Regarding the pre- and postconditions of event occurrences one should con-
sider that they are independent from each other. It is not possible to conclude the
postcondition of an event occurrence from its precondition. We only know that if
an event occurrence should be applied to an object, the object must comply with
the precondition. After the application of the event occurrence the object must
fulfill the postcondition.

Furthermore events have got a specification which is represented as meta-
methodSpec() in the meta-model. We refer to the definition 13, p. 17, where
we will define the specification of an event.

Like states, we can consider each part of events and event occurrences, e. g.
when we use the termm Name we mean the name of the eventThe kind of the
event of the event occurrenee is meant by the terrax.has_ Event. Kind.

Consider the example in figure 2. States in these examplaearebook, book
administration, book registration etc. Events for instance arew or lose The
eventslose andborrow occur several times in the dynamic model, we numbered
their event occurrences.

Book not on stock is a generalizing superstate covering the statesk borrowed
andbook in text book collection. Their ranges must be disjoint.

The statebook administration is an aggregating superstate to which the gener-
alizing superstatebook registration and book preparation belong to. These
generalizing superstates must be orthogonal.

The event occurrenceew is an object producing one with the target stagsv
book. Its precondition istrue, its postcondition must imply the range néw

The meta-model 16

book. The precondition of the event occurrenadurn 1 is the conjunction its
guardthis.reserved = true with the range obook borrowed, its postcondition
must imply the range dbook in text book collection .

The event occurrencplace is a synchronizing one with the source stae®k
registered andbook in subject catalogue. Its precondition results from the con-
junction of the source states’ ranges.

Catalogue is a synchronizing event occurrence with the target stadek in cat-
alogue andbook signed. Its postcondition must imply the ranges of both target
states.

Based upon the dynamic model we can derive (partial) method specifications
from the events and their event occurrences. Each event of the dynamic model
becomes a method (with the attributes as parameters). The event occurrences
preconditions are used in order to determine the conditions in which the method
can be applied to an object. The postconditions of the event occurrences specify
the conditions (in subordination to the corresponding precondition) an object must
comply with after the application of the method.

2.5 Correct dynamic models
A dynamic model looks like:

Dynami ¢ Model = |

Name: str,
St ates: {State},
Event s: {Event},

Model Restriction: Condition_T
]

Each component of a dynamic model can be addressed, wd ugeme and
mean the name of the dynamic modél By Z € M.States is meant that” is
a state of the dynamic modéf. Although they don’t exist explicitly the set of
event occurrences can be addressed Witlvvent_Occurrences (we stored all
the event occurrences of an event in the attriliais.

Based upon the ranges of states and the correctness of event occurrences we
define a correct dynamic model. In our following considerations we assume cor-
rect dynamic models.

DEFINITION: A dynamic model is calledorrect if (11)
all states are correct according to definition 8, p. 12, and
all event occurrences are correct according to definition 10, p. 15

Equivalence of dynamic models 17

In analogy to states, dynamic models have also a range which is defined as:

DEFINITION: Therange of a correct dynamic model results from the (12)
range’s disjunction of akklementary states of the dynamic model.

The range of a dynamic model is again a (complex) condition, constructed by
the disjunction of the elementary states’ ranges of the dynamic model (and that
is under no circumstances automatically true). In our meta-model the range of a
dynamic model is represented as meta-metRodge/().

3 Equivalence of dynamic models

We wish to support designers to work with dynamic models in a similar way as
they already can do with the static models. In particular, our goal is to support
the transformation of dynamic schemas without changing the semantics. For this
purpose we need a clear definition when dynamic models are equivalent. Our
definition is based on the consideration that dynamic models are equivalent, if
they provide the same partial specification for the development of methods. So
the equivalence of correct dynamic models (= M) bases on equivalent model
ranges and equivalent events. We will first define the equivalence in a model-
theoretic way and then present a sound and complete axiomatization which will
then be used to prove that schema transformations preserve equivalence.

First of all we define what is understood by the specification of an event. The
specification of an event is the set of conditional pairs of the fifRre;, Post;),
..., (Prey, Post,)}. One pair(Pre;, Post;) indicates that an object which sat-
isfies the conditionPre; (we sayPre;(o), if the object satisfies the condition)
after the application of the event (actually of the corresponding event occurrence)
satisfies the conditio®ost;. We take the pre- and postconditions of the event
occurrences of the eveain order to calculate the specification of the event:

DEFINITION: The specificatiorbpec of the event is defined as (13)

e.Spec = {(ex.PreC(), ex.Postcondition) | ex € e.has}

The specification of an event is computed in our meta-model by collecting all
the pre- and postconditions of the corresponding event occurrences of the event
(listed in the attribute=.has). In the meta-model the specification of an event is
realized as meta-methdtbec().

The predicate. Post(o) is defined as the postcondition an object o statisfies
after the event occurred.

Equivalence of dynamic models 18

DEFINITION: The predicate. Post(o) for an event and an object (14)
is defined as

e.Post(0) := \/{Post|3Pre : (Pre, Post) € e.Spec() A Pre(o)}
whereby

V0 = false
\/{Post} = Post
\/{Postl ...Post,} = Post;V ...V Post,

The predicatePost (o) is defined as the disjunction of all postconditions of
conditional pairs Pre, Post) from e.Spec() for which the object satisfy the
precondition Pre(o)). The predicate supplieBilse, if the objecto doesn't fulfill
any of the preconditions of the event specificatiom.of

DEFINITION: The event specifications of the two eveatande, are (15)
equivalent (e;.Spec() = es.Spec()), if

Vo € P(T) : e1.Post(o) <> ey.Post(0)

We say that two event specifications are equivalemtdgt applied to both
specifications for all objects frorR(7") supplies equivalent conditions.

DEFINITION: Two eventse; ande, areequivalent (e; = e»), if they (16)
have the same name, the same attributes and the same kind and their
event specifications are equivalent.

THEOREM: The equivalence of events isflexive, symmetrical and (17)
transitive, consequently an equivalence relation.

PROOF: The equivalence of two events ande, is due to the same name, the
same attributes and the same kind of events and based on equivalent event specifi-
cations ofe; ande, (compare definition 16). The conformity of event names, the
attributes of events and the kind of events is trivially reflexive, symmetrical and
transitive. We must show this for the event specifications, that means:

(1) e1.Spec() = eg.Spec() (reflexivity)

(2) e1.Spec() = ey.Spec() «» ea.Spec() = e1.Spec() (Symmetry)

Equivalence of dynamic models 19

(3) (e1.Spec() = ey.Spec()) A (e2.Spec() = es.Spec()) —
e1.Spec() = e3.Spec() (transitivity)

ad (1)e;.Spec() = e;.Spec() follows directly from the definition of event
specifications (compare definitions 13 and 14).

ad (2)e;.Spec() = ea.Spec() » ey.Spec() = e1.Spec() is valid because of
the symmetry of equivalent logical terms (in our approdc L + + terms).

ad (3)(e1.Spec() = ey.Spec()) A (ez.Spec() = es.Spec()) — (e1.Spec() =
e3.Spec()) follows because of the transitivity of equivalent logical terms (in our
approach7 QL + + terms).

Now we are interested which changes of event specifications are possible in
this equivalence relation since manipulations of event occurrences lead to a change
of event specifications. We define the relatiofor event specifications. It means
the left part of the relatio& can be changed to the right part and vice versa.

DEFINITION: Let S, S;, S; andS; be event specifications. Let ad- (18)
ditionally Pre, Pre;, Pres, Pre; and Pre; as well asPost, Post,

Post,, Post; andPost; be Pre- and Postcondition§ QL + + terms).

Then:

(1) SU{(Prey, Post), (Prey, Post)} =S U {(Pre; V Preg, Post)}

(2) SU{(Pre, Posty), (Pre, Posty) }=S U {(Pre, Post; V Posts)}

(3) {(false, Post)} =
(4) {(Pre, false)} 20

(5) {(Pre;, Post;)} = {(Prej, Post;)} if Pre; <> Pre; A
Post; <+ Post;

(6) (Sl = 52) A (52 = Sg) — Sl = 53

According to the definitions 18(1) and (2) we may summarize event specifi-
cations with equivalent postconditions through disjunction of their preconditions
as well as event specifications with equivalent preconditions through disjunction
of their postconditions. The definitions 18(3) and (4) allow us to remove event
specifications whose pre- or postconditions resulfdlse. The definition 18(5)
states that pairs of event specifications following to the reldfi@me equivalent
if their pre- and postconditions are equivalent terms (in our approach equvalent
TOL + + terms). In definition 18(6) the transitivity of the relati@his deter-
mined.

Equivalence of dynamic models

THEOREM: LetS;, Sy andT be event specifications. Then (19)
(1) S =95 and
(2) S1 28, = (S1UT)ZE (S, UT)

PROOF:

(1) S; = 5, follows from the transitivity of logical terms (in our approach
T QL + + terms; compare definition 18, p. 19).

(2) If S; = 95, then there must be a sequence of event specifications Sy
based upon operations according to the definition 18, p. 19, so that

S1E25,=Z ... 25, Z05;.
It is easy to see, that, because of the same operations:

(SSUT)E(S;UT)E ... E(SpUT)Z (S, UT).

THEOREM: Let S; andS; be event specifications. Frof = S fol- (20)
|OWSSl = 52.

PROOF: In order to prove this theorem for the different operations of the defini-
tions 18, p. 19 we have to show thaPost(o) for any object returns equivalent
terms before and after an operation of the relafion

(1) The definition 18(1) states, th&tU {(Pre;, Post), (Pres, Post)} = S U
{(Prey U Preq, Post)}. LetS’ = S U {(Prey, Post), (Prey, Post)}, with
S" = SU{(Pre; V Prey, Post)}. Lete' be the event with the event
specifications’, ¢” the event with the event specificatiéfi ande the event
with the event specificatioS.

(a) Leto be an object fromP(T') with Pre,(0). P = e.Post(o); P' =
e¢/.Post(o) andP" = €".Post(0). ThenP' is equal toP Vv Post andP" is
equal toP Vv Post. Itis easy to see that’ = P".

(b) Leto be an object fromP(T") with Prey(0). Analogous to (a) it is easy
to see that”’ = P”.

(c) Leto be an object fronP(T") with Pre; (o) A Pres(o); P = e.Post(o).
P = ¢'.Post(o) and P" = ¢".Post(o). P'is equal toP Vv Post\ Post,
P"is equal toP Vv Post. Itis easy to see that’ = P".

20

Equivalence of dynamic models 21

(2)

3)

(4)

(5)

(d) Leto be an object fronP(T") with = Pre;(0) A = Pres(o). It follows
directly thatP = P’ = P".

From (a) to (d) follows, that U {(Prey, Post), (Prey, Post)} = S U {(Pre;
V Pres, Post)}

The definition 18(2) states, thatu {(Pre, Post;), (Pre, Posty)} = S U
{(Pre, Post, V Post,)}. LetS' beS U {(Pre, Post;), (Pre, Posts)} and
S" beS U {(Pre, Post; V Post,)}. Lete’ be the event with the event spec-
ification S’, ¢” be the event with the event specificatith ande be the
event with the event specificatigh

(a) Leto be an object fromP(T') with Pre(o). P = e.Post(o), P' =
e¢/.Post(o) and P" = €".Post(o). P'is equal toP Vv Post; V Post, and
P" equal toP V (Post;, V Posty). ObviousP' = P".

(b) Leto be an object fronP(T) with — Pre(o). It follows thatP = P’ =
P".

Itis easy to see that U {(Pre, Posty), (Pre, Posty)} = S U {(Pre, Post;
V Posty)}

The definition 18(3) states, thétfalse, Post)} = (). There can be no ob-
ject from P(T), that fulfills the preconditiorfalse. The predicaté’ost(o)
applied to an event specificatigf alse, Post)} results in an empty set of
postconditions and therefore returfiglse (compare definition 14, p. 18).
The predicatePost(o) applied to an empty event specification again re-
sults in an empty set of postconditions and retufagse too. Obvious

{(false, Post)} = 0

The definition 18(4) states, th&tPre, false)} = (). Each objecb from
P(T) either fulfills the Preconditio®re or does not.

(a) Leto be an object fronP(T") with Pre(o). Post(o) applied to the event
specification{(Pre, false)} returnsfalse (compare definition 14, p. 18).
Post(o) applied to an empty event specification returns an empty set of
postconditions and, thereforgglse.

(b) Let o be an object fromP(7T) with — Pre(o). Post(o) applied to
{(Pre, false)} results in an empty set of postconditions and therefore re-
turns false, as well asPost (o) applied to an empty event specification.

It follows, that{(Pre, false)} =
{(Pre;, Post;)} = {(Prej, Post;)}if Pre; <> Pre; A Post; <> Post; fol-

lows from the equivalence of logical terms (in our approaclva@ . + +
terms).

Equivalence of dynamic models 22

(6) The transitivity of event specifications follows from the transitivity of equiv-
alent logical terms (in our approach GfQL + + terms).

From (1) to (6) follows, thab; = S, — S; = 55.

THEOREM: Let S; andS; be event specifications. Frofy = S, (21)
follows S; = S,.

PROOF: To prove this theorem it is sufficient to show that:
(1) 3R | R = Sy ANV(Pre;, Post;), (Pre;j, Post;) € R :

(@) Pre;, Prej, Post;, Post; # false
(b) Pre; A Prej # false — Pre; = Pre;

(2) 3Q|Q = Sy AV(Pre;, Post;), (Prej, Post;) € Q :

(a) Pre;, Prej, Post;, Post; # false
(b) Pre; A Prej # false — Pre; = Pre,

(3) V(PTegi, POStQZ’) e R’ with

(@ RURZ R and
(b) R' = (Prey;, Posts;)

ad (1) and (2) We transforrfi; and S, into event specifications where none
of the pre- and postconditions results in false. Furthermore the preconditions are
demanded to be disjoint. It is easy to see that this can be done by using the
operations of the definitions 18(1) - (4) resulting into the event specificafions
and@ which are equivalent t6; andS,. FromS; = S5, S = RandS; = @
follows thatk = Q.

ad (3) Let(Prey;, Posty;) € Q, thanR’ = {(Pre}, Post;) }|3(Pre;, Post;) € R
with Pre; A Preg; # false A Pre}; = Pre; A\ Prey;.

It is easy to see, tha®’ # () askR = @ and therefore there must be at least
one pair(Pre;, Post;) € Rwith Pre; A Prey; # false (compare definitions 16,
p. 18, 15, p. 18 and 14, p. 18).

ad (3a) For each pafPre];, Post’;) € R' there mustbe a pai’re;, Post;) € R
with Post; = Post;. According to definition 18, p. 19(1) they can be combined to
(Pre’; vV Pre;, Post;) which results in(Pre;, Post;) asPrej; — Pre; (compare
the construction of?’). ThereforeR' U R = R.

Equivalence of dynamic models 23

ad (3b)(Prey;, Posty;) € Q andR' isthe se{ (Pre!, Posty) ... (Prel,, Post,)}.
Due to the construction @k’ eachPre, has the formP’ A Prey,;. Therefore each
Prel — Pres;.

We transform(Prey;, Posty;) into Q' = {(Preb;, Posty;), (Prey,, Posty;)} |
3(Pre;, Post;) € R with Prel,, = Prey; A Pre; and Prel, = Pres; A — Pre;.
()’ results into the sef(Prey; A Prey, Posty;), (Prey; A = Prey, Posty;) . ..
(Preg; A Pre,, Posty;), (Pres; A = Pre,, Posty;)}. According to definition 18(1)
(Presy;, Posty;) = Q'. With definition 18(2)Q" can be transformed into the set
{(Preg; A\ Prey, Posty;), ..., (Prey A Prey, Posty;), (Pres; A = (Preg V ...

V Prey), Posts;)}.

However,Prey; A = (Pre; V ... V Pre,) results infalse, asR = . Oth-
erwise there might be an objecftulfilling Pre,; but not any precondition from
R. According to definition 18(3) we can remove this frépgh

Furthermore)’ can be transformed intQ(Pre;, Posty;), . .. (Pre,, Posty;)}
as eachPre; — Pres,.

Now Y(Pre;, Post;) € R 3(Prej, Posty;) € (' and vice versa. Note, that
according to the conditions fdk the preconditions of?’ must be disjoint. The
preconditions of)’ must be disjoint too. If follows thaPost; = Post,;. Other-
wise there would be contradiction as the predidatet(o) for an object fulfilling
the preconditionPre; would result in not equivalent postconditions f#@rand().

From (1) to (3) follows, thab; = S; — S; = 5.

We define the equivalence of dynamic models on the base of the equivalence
of events.

DEFINITION: Two correct dynamic models/; and M, are equivalent (22)
(M, = M), if

(1) their ranges are equivalent and

(2) all their events are equivalent.

THEOREM: The equivalence of correct dynamic modelseafexive, (23)
symmetrical andtransitive.

PROOF: The equivalence of dynamic models is based on equivalent ranges and
equivalent events. We've already proved that the equivalence of events is reflexive,
symmetrical and transitive (compare theorem 17, p. 18). This is also valid for the
range of dynamic models which are logical terms (in our approachl + +
terms).

Schema transformations 24

Now we have the formal basis for discussing equivalence transformations of
dynamic models. In the following section we introduce a set of basic schema
transformations which have the important property that they deliver equivalent
dynamic models.

4 Schematransformations

4.1 Overview

Schema transformations are operations on a dynamic miédedsulting in a dif-
ferent dynamic model/,. Each schema transformation deals with a certain aspect
of the dynamic model (e. g combines states or shifts event occurrences within a
state generalization). In the following we present a set of 21 basic schema trans-
formations which do not change the semantics of the dynamic model according
to the definition of equivalence given above. Due to the transitivity of the equiv-
alence of dynamic models complex transformations can be established on this
basic set of transformations. In our approach the transformations are treated as
meta-methods of the meta-model (e. g. as meta-methods for states).

Each schema transformation changes a correct dynamic mgdato a cor-
rect dynamic model/,. We will prove, thatV/; and M, are equivalent as defined
by definition 22, p. 23. For that it is sufficient to show that

(1) the ranges o/, and M, are equivalent,
(2) M, is a correct dynamic models according to definition 11, p. 16 and

(3) thecontributions of the changed event occurrences to the event specifica-
tions are equivalent before and after the schema transformation. We prove
this for the most general case, all other cases result trivially from that.

Thecontribution of an event occurrenaer to the event specification is a con-
ditional pair(ex. PreC(), ex.Postcondition) (compare definition 13, p. 17). The
preconditiorez. PreC() is regarded ag”,.Range() A ex.Guard A R). R repre-
sents according to this point of view the conjunction of the source states’ ranges
of the event occurrencer except the state; if ex is a synchronizing event oc-
currence (remember, synchronizing event occurrences could have several source
states; compare page 7). In the case of a non synchronizing event occutrence
or if Z; is the only source state efc R is true. The source stat&; of ex plays
an important role during a schema transformation and therefore will be treated
especially. In order to get a better view we use for the contribution of an event oc-
currenceZ; A G A R, P) but we meanZ,.Range() A ex.Guard A\ R, ex.Post-
condition).

Schema transformations 25

If a transformation is applied, a new dynamic mode&l based onV/; is con-
structed. Basically this means that the complete dynamic mafemust be
copied before the transformation is applied. However, we do not consider that,
we take that granted.

Combined schema transformations can be defined on the base of this transfor-
mations which are equivalence transformations too, as the equivalence of dynamic
models is transitive (compare theorem 23, p. 23). We will present some combined
schema transformations, further combinations are of course possible.

4.2 Shifting event occurrences within a generalization

In a correct dynamic model event occurrences can be shifted within a state gen-
eralization. They can be shifted from a state of the state generalization to the

generalizing superstate or can be shifted from the generalizing superstate to the
states belonging to it.

4.2.1 Shifting event occurrences to a generalizing superstate

With the aid of these schema transformation we shift an event occurrence from
a state of a state generalization to the generalizing superstate. We distinguish
between the transformationgSg andUpTg. The transformatiod/pSg shifts

an event occurrence with a source stateo the generalizing superstate ot

The transformatio/pT'g shifts an event occurrence with a target stat® the
generalizing superstate 4f.

The schema transformati@mpSg¢(Z) shifts an event occurrence with a source
stateZ to the generalizing superstate 8f UpSg(Z) can be regarded as meta-
method in our meta-model and looks like:

if Z.Belongsto.Kind = generalizing superstaiieen

sel f.Guard :=sel f.PreC()

replace insel f.SourceStates” throughZ.Belongsto
end if

At this point we want to emphasize again that the components of a dynamic
model can be addressed as single parts. WeZuBelongs_to.Kind and the kind
of the structured state that belongs to is meant. In other words we “navigate”
through the dynamic model by using so calfeth expressions.

The state” is replaced by its generalizing superstate in the source states of the
shifted event occurrence. However, as the generalizing superstate has a “wider”
range than the original staté the guard of the event occurrence is replaced by
its precondition to guarantee that the event occurrence could only be applied to
objects that comply with the original precondition.

Schema transformations 26

THEOREM: If a correct dynamic model/; is transformed by shifting (24)
an event occurrence using the schema transforméaijgfy (7) into a
dynamic model, thenM; = Ms.

PROOF: To prove this theorem it is sufficient to show that

(1) the ranges o/, and M, are equivalent,
(2) M, is a correct dynamic model and

(3) all event occurrences before and after the transformation supply an equiva-
lent contribution to the event specification.

ad (1) The ranges a¥/; and M, are equivalent, as states remain unchanged
by the transformatiofpSyg.

ad (2) Itis easy to see that the conditions of definition 11, p. 16 hold&/for

ad (3) The events remains unchanged if we shift event occurrences, therefore
the conformity of the name, kind and attributes of events is automatically given.
However, we must show that the contributions of the event occurrences to the
event specifications are equivalent before and after the transformation.

Let ex be an event's event occurrence of the dynamic model havihgas
source state. Lef; belonging to the generalizing superstate Let B’ be the
disjunction of the ranges of all states (excefp) belonging to the generalizing
superstateZ,. The contribution okxz to the event specification ef before and
after the schema transformatidipSg (7,) :

before = (Z1ANGAR,P)
afterwards = (Zy N (Z1 ANG) A R, P), comp. algorithm
= ((ZyV B)A(Z, ANG) AR, P), comp def. 2
(Z1 NG AR, P)

Obviously the contributions of the event occurreageo the event specifica-
tion of e are equivalent before and after the schema transformation.

From (1) to (3) follows that the application of the schema transformation
UpSg to an event occurrence dfl; results into an equivalent dynamic model
M,

The transformatio/pT ¢ shifts an event occurrence with a target stéte®
the generalizing superstate 8t UpTg(Z) can be regarded as meta-method in
our meta-model and looks like:

Schema transformations 27

if Z.Belongsto.Kind = generalizing superstaiieen
replace insel f . TargetStates” throughZ.Belongsto
end if
This transformation only changes the target state of the event occurrence by
replacingZ through the generalizing superstate/of

THEOREM: If a correct dynamic model/; is transformed by shifting (25)
an event occurrence using the schema transformétjdhy(~7) into a
dynamic model\/; then M, = Ms.

PROOF: To prove this theorem it is sufficient to illustrate that
(1) the ranges o/, and M, are equivalent,
(2) M, is a correct dynamic model and

(3) all event occurrences before and after the transformation supply an equiva-
lent contribution to the event specification.

ad (1) The ranges a¥/; and M, are equivalent, as states remain unchanged
by the transformatiotpTg.

ad (2) Obvious the conditions of definition 11, p. 16 holdsfés too, as the
transformation does not change the states of the dynamic model. The postcon-
dition of the shifted event occurrence implies the range of its new target state
(the generalizing superstate; compare definition 10, p. 15) as the range of the
generalizing superstate contains the range of the original target state of the event
occurrence (compare definition 2, p. 11).

ad (3) The events remain unchanged by the transforméfjdhg, therefore
the conformity of the names, kind and attributes is granted. Furthermore we have
to prove that the contributions of the shifted event occurrence before and after
the transformation are equivalent. Obvious the contributions must be equivalent
as neither the source states nor the postconditions of the event occurrence are
changed.

From (1) to (3) follows that the application of the schema transformation

UpTg to an event occurrence dff; results into an equivalent dynamic model
M.

Schema transformations 28

¢ [G3 AND Z; .Range()]

Y

a[Gl]
Z — Z
oz o(52 10

Z - .Range()]

AN
a[G1] b [G2]
a2 .
[}
c [G3]
T~ auptg @) 7
b.UpSg (zZ2)
c.UpSTg (Z1)
(a) starting point (b) situation after the transformations

Figure 3: Shifting of event occurrences

Combined schema transfor mations

Based on the two transformatiob®Sg andUpT g we can determine a schema
transformatiorUpST g(Z) shifting event occurrences havitigas source and tar-
get state to the generalizing superstat& oA corresponding algorithm in pseudo
code:

if Z.Belongsto.Kind = generalizing superstaiieen
sel f.UpSg)
sel f.UpTg(Z)

end if

By applying UpSTg to an event occurrence df/; an equivalent dynamic
model M, is produced, as only the equivalence transformationSg andUpT g
are used and the equivalence of dynamic models is transitive (compare theo-
rem 23, p. 23).

Let’s consider the example in figure 3 where we shift the event occurrendes
and ¢ from the states7; or Z, to the generalizing superstae by applying the
corresponding schema transformations.

4.2.2 Shifting event occurrences from a generalizing superstate

With the aid of these schema transformations we shift event occurrences of a gen-
eralizing superstate to those states belonging to the generalizing superstate. We
distinguish betwee®ownSg and DownT g (in analogy talUpSg andUpT g).

Schema transformations 29

The schema transformatiadbownSg(G) shifts an event occurrence having
the generalizing superstafe as source state to all states belongingto The
schema transformation can be regarded as a meta-method in our meta-model. A
corresponding algorithm in pseudo code:

EX:=0
if G.Kind = generalizing superstatken
for all Z; € GG.Coversdo
ex ;= sel f.shallowcopy()
EX =EX Uex
ex.hasEvent.has :=x.hasEvent.has +x
replace irex.SourceStates~ throughZ;
end for
sel f.hasEvent.has :=e¢l f.hasEvent.has sel f
sel f.delete()
end if
return £.X

For each state belonging @ the event occurrence must be copied and the
source states are adopted. The functiballow_copy is a usual process of copy-
ing in object oriented databases. In that way a copy of the object with identical
attribute values is produced. The original event occurrence is deleted. After-
wards some of the copied event occurrences may have preconditions resulting in
false. However, according to definition 18, p. 19, these event occurrences can be
deleted. Later we present the schema transformétienn for such situations.

The shifted and therefore copied event occurrences are collected in the(set
which are returned as result of the transformation. We will need this set of event
occurrences for another schema transformation.

THEOREM: If a correct dynamic model/; is transformed by shifting (26)
an event occurrencer using the schema transformatiérvwnSg(G)
into a dynamic model/, thenM; = M.

PROOF: To prove this theorem it is sufficient to show that
(1) the ranges o/, and M, are equivalent,
(2) M, is a correct dynamic model and

(3) all event occurrences before and after the transformation supply an equiva-
lent contribution to the event specification.

ad (1) The ranges a¥/; and M, are equivalent as states remain unchanged by
the transformatioownSyg.

Schema transformations 30

ad (2) Itis easy to see thaf, is a correct dynamic model according to defini-
tion 11, p. 16.

ad (3) The events remain unchanged by the transform&tanmnn.Sg. There-
fore the uniformity of the name, kind and attributes is automatically given. In ad-
dition we must prove that the contributions of the event occurrences to the event
specifications are equivalent too.

Let ex be an event's event occurrence without any restrictions having the
generalizing superstaté as source state. Léf; ... 7Z; be those states belonging
to the generalizing superstate The contribution otz to the event specification
of the event before the transformation is:

before = (ZANGAR,P)

The event occurrence: is removed by the transformation and replaced by the
event occurrencesr; . ..ex;. The contributions for these event occurrences look
like:

afterwards = exy:(Z; NG A R, P), comp. algorithm

ex; : (Z; NG A\ R, P), comp. algorithm

((Zv+ N\GANR)V ...V (Z; NG A R)),P), comp. def. 18(1)
= (Z1Vv ...VZ)NGAR,P)

(Z NG AR, P), comp def. 2

The transformation produces the event occurrerags. .ex;. Their con-
tributions to the event specification can be combined by the disjunction of their
preconditions as their postconditions are equivalent according to the refation
(compare definition 18, p. 19). We gé&t; VvV ... V Z;) A G A R by transforming
the preconditions. However, this is equivalentia\ G A R because the disjunc-
tion of the states’ ranges belonging to the generalizing superstate is equivalent to
the range of the generalizing superstate (comp. definition 2, p. 11).

The contribution ok to the event specification of the evens equivalent to

the contributions that the event occurrenees. . . ex; supply to the event speci-
fication.

From (1) to (3) follows that the application of the transformatidmsn.Sg to
an event occurrence éf; results into an equivalent dynamic modé}.

Schema transformations 31

The schema transformatiaDownT g(G) shifts an event occurrence having
the generalizing superstafe as target state to all states belonging&@o The
schema transformatioRownT’ g can be regarded as a meta-method of the meta-
model. A corresponding algorithm looks like:

if G.Kind = generalizing superstatken
for all Z; € G.Coversdo
ex .= sel f.shallowcopy()
ex.hasEvent.has :=z.hasEvent.has +x
ex.Postcondition :=x.PostconditionA Z;.Range()
replace irex. TargetStatesr throughZz;
end for
sel f.hasEvent.has :=el f.hasEvent.has sel f
sel f.delete()
end if
Again for each state belonging to the generalizing superstate the shifted event
occurrence must be copied and the target states are changed. Furthermore the
postconditions of the copied event occurrences are adopted by the conjunction of
the original postcondition with the range of their new target states. The original
event occurrence is deleted. If afterwards the postcondition of an event occurrence
results infalse, it can be deleted (compare definition 18, p. 19).

THEOREM: If a correct dynamic model/; is transformed by shifting (27)
an event occurrencer using the schema transformatidvwnT ¢(G)
into a dynamic model, then M, = M.

PROOF: To prove this theorem it is sufficient to illustrate that
(1) the ranges o/, and M, are equivalent,
(2) M, is a correct dynamic model and

(3) all event occurrences before and after the transformation supply an equiva-
lent contribution to the event specification.

ad (1) The ranges aff; and M, are equivalent, as states remain unchanged
by the transformatio®ownTy.

ad (2) The transformation doesn’t change anything on states of the dynamic
model. The conditions of definition 8, p. 12 hold automatically.

By shifting an event occurrence from the generalizing superstate to its cov-
ering states the event occurrence is copied. Target states and postconditions are
changed. The new postcondition of a copied event occurrences either implies the

Schema transformations 32

range of its new target state or resultsfim se (those event occurrences may be
removed without loosing the equivalence according to the definition 20, p. 20).
Therefore the conditions of correct occurrences hold Xr (compare defini-
tion 10, p. 15).M, is a correct dynamic model.

ad (3) The events remain unchanged by the transform@tamn7g. There-
fore the uniformity of the name, kind and attributes is automatically given. In
addition we must prove that the contributions to the event specifications are equiv-
alent too.

Let ex be an event's event occurrence without any restrictions having the
generalizing superstaté as target state. Léf; ... Z; be those states belonging
to the generalizing superstate The contribution okx to the event specification
of the event before the transformation is:

before = (ex.PreC(),P)

Letex; ...ex; be the event occurrences produced by the transformation. The
contributions of these event occurrences to the event specificatier(as the
source states remain unchanged by the transformation the preconditions of the
copied event occurrences are equivalerttdreC()):

afterwards = exy: (ex.PreC(), P A Z;), comp. algorithm

ex; : (ex.PreC(), P A Z;), comp. algorithm

(ex.PreC(),PAN(ZyV ...V Z;)), comp. def. 18(2)
= (ex.PreC(), P A Z), comp. def. 2

(ex.PreC(), P), comp. def. 11

The transformation produces the event occurreregs. .exr;. Their con-
tributions to the event specification can be combined by the disjunction of their
postconditions as their preconditions are equivalent (according to definition 18,
p. 19, of the relatiorE). We getP A (7, V ... V Z;) by transforming, which
IS equivalent toP A Z as the disjunction of the states’ ranges belonging to the
generalizing superstate is equivalent to the range of the generalizing superstate
(compare definition 2, p. 11). As the postconditiBrof the event occurrencer
from M; must imply the range of its target stafe P A Z is equivalent taP.

The contribution okx to the event specification of the evens equivalent to
the contributions that the event occurrenees. . . ex; supply to the event speci-
fication.

Schema transformations 33

From (1) to (3) follows that the application of the transformatioswnTg to
an event occurrence éf; results into an equivalent dynamic modé}.

Combined schema transfor mations

Based on the two transformations the schema transformé&tiomn ST g(G) is
defined. The transformation shifts an event occurrence having the generalizing
superstatér as source state and as target state to the states belonging to the gen-
eralizing superstate. The schema transformafiewnST g can be regarded as
meta-method of the meta-model. A corresponding algorithm looks like:

if G.Kind = generalizing superstatken
EX = self.DownSg()
for all ex € EX do
ex.DownTg(&)
end for
end if

First of all the event occurrence is copied for each state belonging to the gen-
eralizing superstate with the aid of the transformatidasmwSg and the source
states adopted, resulting in a set of new event occurrences stored in A& set
For each event occurrence in this set the transformdlionnTg is performed
whereby the target states are adopted.

For the schema transformatidwwnST g only the transformation®ownSg
and DownT g are used. As both transformations are equivalence transformation
and the equivalence of dynamic model is transitive (compare theorem 23, p. 23)
the usage oDownSTg on an event occurrence 6f; results into an equivalent
dynamic model/;,.

Let’'s consider the example in figure 4. In this example we want to shift the event
occurrence: from the generalizing superstateto the statesq and Z,. First of

all we apply the transformatiobownSg. The event occurrence is copied and the
source states are adopted. We receive the event occurrgraedas (compare

figure 4(b)). Then the transformatidnownTg is performed to each event occur-
rence produced at first and change the target states. We get the event occurrences
a11, a12, as1 andags (compare figure 4(c)).

4.3 Shifting event occurrences within a state aggrega-
tion
In a correct dynamic model event occurrences can be shifted within a state aggre-

gation. Event occurrences can be shifted from a state of the state aggregation to
its corresponding aggregating superstate and vice versa.

Schema transformations 34

a.DownSg(Z) =

- E
yalel] a, [G1] a, [G1]
Z
7 al. DownTg(Z) — 2
1 Z2 a2.DownTg(Z2)
|
(a) starting point # (b) situation after the first step
a.. [G1] a,, [G1]
11 a5 [G1] 21
Z - Z
1 | 2
a5, [G1]

(c) situation after the second step

Figure 4: Shifting of event occurrences

4.3.1 Shifting event occurrences to an aggregating state

With the aid of these schema transformations we shift an event occurrence from
a state of a state aggregation to its corresponding aggregating superstate. The
transformation/pSa shifts an event occurrence with a source stat® the ag-
gregating superstate d&f. The transformatio/pT'a shifts an event occurrence

with a target state to the aggregating superstate/f

The transformatioi/pSa(Z) shifts an event occurrence with a source state
Z to the aggregating superstateof It can be regarded as a meta-method of the
meta-model and looks like:

if Z.Belongsto.Kind = aggregating superstateen
replace insel f.SourceStates” throughZ.Belongsto
end if

The transformation replaces the source staté the event occurrence through
the aggregating superstateof According to the conditions of a correct dynamic

Schema transformations 35

model (compare definition 11, p. 16) the states belonging to an aggregating super-
state must be generalizing superstates with equivalent ranges. Therefore, accord-
ing to the definition 2, p. 11, the range of the aggregating superstate is equivalent
to the ranges of its covering generalizing superstates.

Synchronizing event occurrences automatically are transformed to unsyncroniz-
ing one if afterwards the event occurrences have only one or less source and target
states. Note that the attributeiyc of event occurrences is a computed one.

THEOREM: If a correct dynamic model/; is transformed by shifting (28)
an event occurrence using the schema transformatjgfn () into a
dynamic model, thenM; = M.

PROOF: To prove this theorem it is sufficient to illustrate that

(1) the ranges o/, and M, are equivalent,
(2) M, is a correct dynamic model and

(3) all event occurrences before and after the transformation supply an equiva-
lent contribution to the event specification.

ad (1) The ranges aff; and M, are equivalent, as states remain unchanged
by the transformatiofpSa.

ad (2) Obvious the conditions of definition 11, p. 16 holdsXéytoo.

ad (3) The events remains unchanged when we shift event occurrences, there-
fore the conformity of the name, kind and attributes of events is automatically
given. Furthermore the contributions of the changed event occurrence are equiv-
alent in both dynamic models, as the source state is changed by an equivalent
state.

Note that the state aggregation fulfills the condition of orthogonality. That
means, that all states directly belonging to an aggregating superstate must be gen-
eralizing superstates with equivalent ranges (compare definition 6, p. 12). There-
fore the range of the aggregating superstate is equivalent to the ranges of its cov-
ering generalizing superstates (compare definition 2, p. 11).

From (1) to (3) follows that the application of the schema transformation
UpSa to an event occurrence dff; results into an equivalent dynamic model
M,

The transformatiod/pT'a(Z) shifts an event occurrence with a target stéate
to the aggregating superstate 0f It can be regarded as a meta-method of the
meta-model and looks like:

Schema transformations 36

if Z.Belongsto.Kind = aggregating superstatgen
replace insel f . TargetStates” throughZ.Belongsto
end if

The target statef is replaced by the aggregating superstat& ¢both states
have equivalent ranges).

THEOREM: If a correct dynamic model/; is transformed by shifting (29)
an event occurrence using the schema transforméatjdhu () into a
dynamic model\/; then M, = Ms.

PROOF: To prove this theorem it is sufficient to show that
(1) the ranges ol/; and M, are equivalent,
(2) M, is a correct dynamic model and

(3) all event occurrences before and after the transformation supply an equiva-
lent contribution to the event specification.

ad (1) The ranges aff; and M, are equivalent, as states remain unchanged
by the transformatiotVpTa.

ad (2) It is easy to the that/; is a correct dynamic model according to the
conditions of definition 11, p. 16.

ad (3) Events remain unchanged by the transformation therefore the confor-
mity of the name, kind and attributes of events is automatically given. Further-
more the contributions of the changed event occurrence are equivalent in both
dynamic models, as source states or postconditions of the event occurrences are
not changed.

From (1) to (3) follows that the application of the transformatigwi/’a to an
event occurrence af/; results into an equivalent dynamic modeé}

Combined schema transformations
Based on the two transformatiob®Sa andUpTa we can determine a schema

transformatiorUpSTa(Z) shifting event occurrences havitigas source and tar-
get state to the aggregating superstat& of corresponding algorithm:

if Z.Belongsto.Kind = aggregating superstatgen

sel f.UpSag)

sel f.UpTa)
end if

Schema transformations 37

By applyingUpSTa to an event occurrence dff; an equivalent dynamic
model M, is produced, as the equivalence transformatiopSa andUpTa are
used only and the equivalence of dynamic models is transitive (compare theo-
rem 23, p. 23).

4.3.2 Shifting event occurrences from an aggregating state

With the aid of these schema transformation we shift event occurrences of an ag-
gregating superstate to a state belonging directly to the aggregating superstate.
Again we distinguish betweeWownSa and DownTa. Furthermore we have

two more schema transformatiod®swnSas and DownTas to change an un-
synchronizing event occurrence to a synchronizing one when shifting it from the
aggregating superstate.

The schema transformatidnownSa(Z) shifts an event occurrence from the
aggregating superstate gfto 7, if the aggregating superstate @fis a source
state of the event occurrence. It can be regarded as a meta-method of the meta-
model and looks like:

if Z.Belongsto = aggregating superstaad
7 .Belongsto € sel f.SourceStateshen
replaceZ.Belongsto in sel f.SourceStates by
end if

The transformation replaces in the source states of the event occurrence the
aggregating superstate af by 7. Both states have, due to the orthogonality
constraint, equivalent ranges.

THEOREM: If a correct dynamic model/; is transformed by shifting (30)
an event occurrence using the schema transformatiom:Sa(Z7) into
a dynamic model/, thenM; = M.

PROOF: To prove this theorem it is sufficient to show that
(1) the ranges ol/; and M, are equivalent,
(2) M, is a correct dynamic model and

(3) all event occurrences before and after the transformation supply an equiva-
lent contribution to the event specification.

ad (1) None of the states are changed, the rangéf aihd/, are equivalent.

ad (2) M5 is a correct dynamic model, in the source state of the shifted event
occurrence a state is replaced by an other equivalent state.

Schema transformations 38

ad (3) Events and event occurrences remain unchanged by the transformation.
In event occurrences a source state is replaced by an equivalent state, which does
not influence the preconditions of these event occurrences. Therefore the events
of M, and M, are equivalent.

From (1) to (3) follows that the application of the transformatiomunSa(7)
to an event occurrence 6f; results into an equivalent dynamic modé}.

The schema transformatidnownT'a(Z) shifts an event occurrence from the
aggregating superstate gfto 7, if the aggregating superstate gfis a target
states of the event occurrence. It can be regarded as a meta-method of the meta-
model and looks like:

if Z.Belongsto = aggregating superstaiad
Z.Belongsto € sel f.TargetStateghen
replaceZ.Belongsto in sel f.TargetStates by”
end if

The transformation replaces in the target states of the event occurrence the
aggregating superstate af by Z. Both states have, due to the orthogonality
constraint, equivalent ranges.

THEOREM: If a correct dynamic model/; is transformed by shifting (31)
an event occurrence using the schema transformatiomTa(Z) into
a dynamic model/, thenM; = M,.

PROOF: To prove this theorem it is sufficient to show that
(1) the ranges ol/; and M, are equivalent,
(2) M, is a correct dynamic model and

(3) all event occurrences before and after the transformation supply an equiva-
lent contribution to the event specification.

ad (1) None of the states are changed, the rangéf ahd//, are equivalent.

ad (2) In the event occurrence a target state is replaced by an other equivalent
state. The postcondition of the event occurrences implies the range of the new
state t00.M; is a correct dynamic model.

ad (3) Events and event occurrences remain unchanged by the transformation.
In the event occurrence a target state is replaced by an equivalent state. Therefore
the events of\/; and M, are equivalent.

Schema transformations 39

From (1) to (3) follows that the application of the transformationonTa(7)
to an event occurrence 6f; results into an equivalent dynamic modé}.

The schema transformatidbownSas(Z) adds the stat& as further source
state to an event occurrencé must belong to an aggregating superstatevhich
already is a source state of the event occurreig@vonSas(Z) can be regarded
as a meta-method of the meta-model and looks like:

if Z.Belongsto = aggregating superstaiad
Z.Belongsto € sel f.SourceStateshen
sel f.SourceStates :=sel f.SourceStates +7
end if

Note that afterwards the event occurrence is a synchronizing one as it has
several source states and the attribtliie.c of event occurrences is a computed
one.

THEOREM: If a correct dynamic model/; is transformed by adding (32)
a new source state to the source states of an event occurrence using the
schema transformatioPownSas(Z) into a dynamic model/, then

Ml = Mg.

PROOF: To prove this theorem it is sufficient to show that
(1) the ranges o/, and M, are equivalent,
(2) M, is a correct dynamic model and

(3) all event occurrences before and after the transformation supply an equiva-
lent contribution to the event specification.

ad (1) None of the states are changed, the rangéf aihd/, are equivalent.
ad (2) Itis easy to see, thaf; is a correct dynamic model.

ad (3) A new source state is added to the source states of the event occurrence.
However, the aggregating superstateZas already a source state of the event oc-
currence. Due to the orthogonality constraint the rangés afid the aggregating
superstate o are equivalent. Therefore the contributions of the shifted event
occurrence to its event specification are equivalent in both dynamic models.

From (1) to (3) follows that the application of the transformatiomonSas(7)
to an event occurrence of; results into an equivalent dynamic modéj}.

Schema transformations 40

The schema transformatidbownTas(Z) adds the state as further target
state to an event occurrencé must belong to an aggregating superstatevhich
already is a target state of the event occurrefizevnT as(Z) can be regarded as
a meta-method of the meta-model and looks like:

if Z.Belongsto = aggregating superstaiad
7 .Belongsto € sel f.TargetStateghen
sel f. TargetStates :=sel f.TargetStates +7
end if
Note that afterwards the event occurrence is a synchronizing one as it has
several target states and the attribGte.c of event occurrences is a computed
one.

THEOREM: If a correct dynamic model/; is transformed by adding (33)
a new target state to the target states of an event occurrence using the
schema transformatioPownTas(Z) into a dynamic model/, then

Ml = Mg.

PROOF: To prove this theorem it is sufficient to show that

(1) the ranges ol/; and M, are equivalent,
(2) M, is a correct dynamic model and

(3) all event occurrences before and after the transformation supply an equiva-
lent contribution to the event specification.

ad (1) None of the states are changed, the rangéf ahd/, are equivalent.

ad (2) A new target state is added to the target states of the event occurrence.
The event occurrence is changed to a synchronizing one. However, as the aggre-
gating superstate of must already be a target state of the event occurrence and
the states are equivalemtl, is a correct dynamic model.

ad (3) Events, pre- and the postconditions of event occurrences remain un-
changed by the transformation. Therefore the evenig,adnd\/; are equivalent.

From (1) to (3) follows that the application of the transformatiomonT as(Z)
to an event occurrence 6f; results into an equivalent dynamic modé}.

Let's consider the example in figure 5 where a (incomplete) state aggregation is
shown. Note, that the aggregating supersfatend the state&; andG, (which

are generalizing superstates) have equivalent ranges. In a first step the event oc-
currences: andb are shifted down from the aggregating superstate. Furthermore
the event occurrendeis transformed to a synchronizing one. In a second &isp
againg shifted froniZ, to G;.

Schema transformations 41

a.DownSa(G1)

b.DownTas(G2)
- b [G]
—
[1
a[G]
e G Gy
—
b.DownTa(Gl)
o —
o —
(a) starting point - (b) shifting the event occurrences a and b

'

b [G]
(c) shifting the event occurrence b again

Figure 5: Shifting event occurrences within a state aggregation

4.4 The combination of event occurrences

In a correct dynamic modéell two event occurrences of the same event can be
combined, if they have equivalent pre- or postconditions.

The schema transformati@ivmSe(e;, e5, €) combines the event occurrences
e1 ande, of the same event tq if the preconditions of; ande, are equivalent and
both have the same source states and target states. The result of the transformation
is the event occurreneewhich is defined as:

e.Guard = e;.PreC()
e.Postcondition = e;.Postcondition V ey.Postcondition
e: =< e.Source_States = ej.Source_States (34)
e.Target_States := e . Target_States
e.has_FEvent := ej.has_Event

In e.has_Event.has e; ande, are replaced by. Afterwardse; ande, are
deleted.

Schema transformations 42

THEOREM: If a correct dynamic modél/; is transformed by the com- (35)
bination of two event occurrences ande, to an event occurrence
with the transformatiolomSe(ey, s, €) thenM; = M.

PROOF: To prove this theorem it is sufficient to show that
(1) the ranges o/, and M, are equivalent,
(2) M, is a correct dynamic model and

(3) all event occurrences before and after the transformation supply an equiva-
lent contribution to the event specification.

ad (1) The ranges af/; and M, are equivalent as states remain unchanged.
ad (2) ObviouslyM, is a correct dynamic model dg; was a correct one.

ad (3) We refer to the relatiaa (definition 18(2)), which states that event oc-
currences with equivalent preconditions can be combinded through the disjunction
of their postconditions without losing the equivalence.

From (1) to (3) follows that the application of the transformatidmnSe to
event occurrences dff; results into an equivalent dynamic modé}.

The schema transformati@rvmTe(eq, e3,) combines the event occurrences
e; ande, of the same event tg, if the postconditions of; ande, are equivalent
and both have the same source states and target states. The result of the transfor-
mation is the event occurreneavhich is defined as:

e.Guard = e;.PreC()V ey.PreC()
e.Postcondition = e;.Postcondition
e : =« e.Source_States := ej.Source_States (36)
e.Target_States := e . Target_States
e.has_FEvent := ej.has_Event

In e.has_FEvent.has e; ande, are replaced by. Afterwardse; ande, are
deleted.

THEOREM: If a correct dynamic modél/; is transformed by the com- (37)
bination of two event occurrences ande, to an event occurrence
with the transformatiolomTe(eq, e, €) thenM; = M,.

PROOF: To prove this theorem it is sufficient to show that

(1) the ranges o/, and M, are equivalent,

Schema transformations 43

(2) M, is a correct dynamic model and

(3) all event occurrences before and after the transformation supply an equiva-
lent contribution to the event specification.

ad (1) The ranges af/; and M, are equivalent as states remain unchanged.
ad (2) ObviouslyM, is a correct dynamic model dg; was a correct one.

ad (3) We refer to the relatioR (definition 18(1)), which states that event
occurrences with equivalent postconditions can be combinded through the dis-
junction of their preconditions without losing the equivalence.

From (1) to (3) follows that the application of the schema transformation
ComTe to event occurrences af/; results into an equivalent dynamic model
M.

4.5 The splitting of event occurrences

In a correct dynamic modé&l/ an event occurrence can be splitted into two event
occurrences.

The schema transformatiosplitSe(e, P, P, e1, e5) Splits the event occur-
rencee into the event occurrences ande,. The parameter®, and P, are pre-
conditions, their disjunction must be equivalent to the preconditioa. ol he
result of the transformation are the event occurrercesnde, which are defined
as:

e1.Guard = P,
e1.Postcondition :— e.Postcondition
e; =< e;.Source_States := e.Source_States (38)
e1.Target_States = e Target_States
\ e has_FEvent := e.has_Fvent
es.Guard = P,
ey.Postcondition := e.Postcondition
€z := 1 eg.Source_States := e.Source_States (39)
e Target_States := e Target_States
es.has_Event :— e.has_FEuvent

In e.has_FEvent.has e is replaced by, ande,. Afterwardse is deleted.

THEOREM: If a correct dynamic model/; is transformed by splitting (40)
an event occurrence into two event occurrences ande, with the
transformationSplitSe(e, Py, Py, e1, e5) thenM; = M.

Schema transformations 44

PROOF: To prove this theorem it is sufficient to show that
(1) the ranges o/, and M, are equivalent,
(2) M, is a correct dynamic model and

(3) all event occurrences before and after the transformation supply an equiva-
lent contribution to the event specification.

ad (1) The ranges af/; and M, are equivalent as states remain unchanged.
ad (2) ObviouslyM, is a correct dynamic model dg; was a correct one.

ad (3) We refer to the relatiof (definition 18(1)), which states that an event
occurrence can be splitted into two event occurrences without losing the equiva-
lence.

From (1) to (3) follows that the application of the transformatiiitSe to
event occurrences dfl; results into an equivalent dynamic modéd}

The schema transformatidsplitTe(e, P, P», e1, e5) splits the event occur-
rencee into the event occurrences ande,. The parameter®, and P, are post-
conditions, their disjunction must be equivalent to the postcondition ofhe
result of the transformation are the event occurrercesnde, which are defined
as:

e;.Guard e.Guard
e1.Postcondition P
e : e1.Source_States e.Source_States (41)
e1.T'arget_States e.Target_States
\ e1.has_Fvent e.has_FEvent
es.Guard e.Guard
eo. Postcondition P,
ey : eo.Source_States e.Source_States (42)
es. T'arget_States e.Target_States
\ ey.has_Fvent e.has_FEvent

In e.has_FEvent.has e is replaced by, ande,. Afterwardse is deleted.

THEOREM: If a correct dynamic modéel/; is transformed by splitting (43)
an event occurrence into two event occurrences ande, with the
transformationSplitTe(e, Py, Py, €1, e2) thenM; = M.

Schema transformations 45

PROOF: To prove this theorem it is sufficient to show that
(1) the ranges o/, and M, are equivalent,
(2) M, is a correct dynamic model and

(3) all event occurrences before and after the transformation supply an equiva-
lent contribution to the event specification.

ad (1) The ranges af/; and M, are equivalent as states remain unchanged.
ad (2) ObviouslyM, is a correct dynamic model dg; was a correct one.

ad (3) We refer to the relatiof (definition 18(2)), which states that an event
occurrence can be splitted into two event occurrences without losing the equiva-
lence.

From (1) to (3) follows that the application of the transformatiiitTe to
event occurrences dfl; results into an equivalent dynamic modéd}

4.6 The combination of states

In a correct dynamic modéll two atomic states (compare page 9) can be com-
bined to one state. Both states must be eithementary states (compare def-
inition 1, p. 10) or belonging to the same structured state. The transformation
Combine(Zy, Z», Z) of two statesZ; andZ, results in a stat& being defined as

(Z.Name := Z;.Name -+ Zy.Name
Z.Kind = atomic
o Z1S = ZyISNZyIS
7= Z.FS = Z,.FSAZ,FS (44)
Z.Belongs_to = Z.Belongs_to
| Z.Condition := Z;.Range()V Zy.Range()

We need a name for the new staéfe Trying to be as simple as possible we
choose the concatenation of the names/pfind 7,. We combine two atomic
states, sd is an atomic state too. If both combined states are initial staiesn
initial state (1S); it is a final state (FS) if both states are final states. The condition
of the new states derives from thig and 7, ranges’ disjunction. I7; and 7,
belongs to a structured statg, Z; andZ, must be replaced b¥ in Zs.Covers.

In all event occurrences aiff havingZ; or Z, as source or target states,
andZ, must be replaced b¥. As Z; andZ, must be either elementary states or
belonging to the same structured state (which must be a generalizing superstate)

Schema transformations 46

¢ [Guard] ¢

|
Combine (24, Z5, 2)

Q_,j b, [Z,.Range()]
Sz -
b

L ¢ ¢ [Guard AND
Z,.Range()]

Figure 6: Combination of states

the states are disjoint. Therefore, it is not possible that both states are source or
target states of an event occurrence.

However, the guard of an event occurrence must be replaced by its precon-
dition if Z, or Z, is the source state of the event occurrence. The combination
of states generates a new state with a “wider” range, nevertheless we want that
event occurrences could only be applied to objects that comply with the original
precondition of the event occurrences. A corresponding algorithm look like:

for all ex € M.EventOccurrencesvith 7, € ex.TargetStates or
Zy € ex.TargetStateslo
replaceZ; or Z, in ex.TargetStates with?
end for
for all ex € M.EventOccurrencesvith Z; € ex.SourceStates or
Z, € ex.SourceStatesdo
ex.Guard :=ex.PreC()
replaceZ; or Z, in ex.SourceStates with?
end for
7 .delete()
Zy.delete()

In figure 6 an example is illustratedZ, and Z; are combined taZ. In event
occurrences having; or Z, as source state we replace their guards by their pre-
condition. The event occurrenege. g. gets the guard PreC|() that is, according

Schema transformations 47

to the definition, the conjunction of the source state’s rangeamid the guard of.
The source state efwasZ;.

THEOREM: If a correct dynamic model/; is transformed by the com- (45)
bination of two states/; and 7, to a stateZ with the transformation
Combine(Zy, Zy, Z) thenM; = M.

PROOF: To prove this theorem it is sufficient to show that
(1) the ranges o/, and M, are equivalent,
(2) M, is a correct dynamic model and

(3) all event occurrences before and after the transformation supply an equiva-
lent contribution to the event specification.

ad (1) The range of a dynamic model derives from the disjunction of the ranges
of the model’'s elementary states (compare definition 12, p. 17).

If both states ar@atomic andelementary states then the range 6f;, = B' v
Z1.Range() V Zs.Range() wherebyB' is the disjunction of all elementary states
of M exceptZ; and Z,. The dynamic model/; results from the combination
of 7, and 7, to Z. All states ofM; (particularly the elementary states) are also
states ofM,, only Z; and 7, are replaced by,. Therefore the range a¥l, =
B’V Z.Range(). The range ofZ is equivalent to the disjunction of the ranges of
Z, and Z, (compare definition 44, p. 45) and therefore the range®,0dnd M,
are equivalent.

If the states are nadlementary they must belong to the same structured state
Z s which must be a generalizing superstate. It is easy to see that the rariges of
in M, and M, are equivalent as we replace two stateg/@fwith one equivalent
state. The ranges dfs in both dynamic models are equivalent and therefore, the
ranges of}\/; and M, are equivalent.

ad (2) The conditions of the definition 8, p. 12 are valid idy if 7, and Z,
are elementary states because they are valid fgy. It is easy to see, that/; is
a correct dynamic model if; and 7, belong to the same state generalization. If
both states belong indirectly to a state aggregation, the orthogonality condition
holds for the combined state, as its range is equivalent to the disjunction of the
original states.

The postconditions of the event occurrences must imply the ranges of their
target states (according to definition 11, p. 16). It is easy to see, that each event
occurrence implying the range & or Z, implies the range of too, as, accord-
ing to definition 44, p. 45, the range gfresults from the disjunction of the ranges
of Z, and Zs.

Schema transformations 48

ad (3) Events stay unchanged by the combination of two states. Therefore
the uniformity of their names, attributes and kind is valid. In addition to that we
have to show that all event occurrences before and after the transformation sup-
ply equivalent contributions to the event specifications. This is trivially true for
event occurrences having neith@r nor Z, as source or target states. They are
not touched by the transformation. In event occurrences which Aaee 7, as
target state, the target state is replacedZbyHowever, the pre- and postcondi-
tion of those event occurrences remain unchanged. Therefore such event occur-
rences supply equivalent contributions to the event specification before and after
the transformation. The guard of event occurrences ha¥ingr Z, as source
state is changed. Those event occurrences must be analyzed, as the guard of an
event occurrence influences its precondition.

Letex be an event's event occurrence of the dynamic modé| having 7;
as source state. The contributioneafto the event specification efis:

before = (Z1ANGAR,P)
afterwards = (Z A (Z1 ANG) A R, P), comp. algorithm
= ((Z1V Zy) N (Z1 ANG) A R, P), comp. def. 44
(Z1 N\GAR,P)

The contributions of the event occurreneeto the event specification of the event

e before and after the schema transformation are equivalent. Therefore the event
specifications ot in M; ande in M, are equivalent. The same holds/zif is the
source state ofz.

From (1) to (3) follows, that the application of the transformatiosmmbine
on states of\/; results into an equivalent dynamic modé}.

Let's take the event occurreneeof the dynamic model represented in figure 6,
p. 46 and consider the third point of this proof. We check whether the contribu-
tion of the event occurrence before and after the combinatiof ahd 7, are
equivalent. The postcondition (in the proof the abbreviatibis used) can be ig-
nored, it isn't changed by the schema transformation. Therefore we concentrate on
the precondition of: without consideringR (that is the conjunction of all source
states ofe exceptZ;) becauseR remains constant. The precondition oéquals
Z1.Range() A c.Guard before the schema transformation and after the combina-
tion of Z; andZ, to Z the precondition ot equalsZ.Range() A Z;.Range() A
c.Guard. The Preconditions of before and after the schema transformation are
equivalent because the rangesfesults from the disjunction of the ranges®f
and Z, (which must be disjoint according to definition 11, p. 16 as both states are
elementary states).

Schema transformations 49

4.7 The splitting of a state

In a correct dynamic model we can split atomic state into two states. The
schema transformatia¥ylit(Z, B, By, Z1, Z,) needs twoT QL + + conditions

as parameters, nameBy andBs, their disjunction must be equivalent to the range
of Z. Additionally B; and B, must be disjoint. 1f7 belongs to a state aggregation
the splitting must not injure the orthogonality condition (compare definition 6,
p. 12) . Otherwise the transformation is rejected. Furthermoté i not an
elementary state,”Z must be a source or target state of event occurrences. The
result of Split(Z, By, B, Z1, Z») are two stateg; andZ, defined as:

(Zi.Name := Z Name+1
Z1.Kind := atomic
o Zv1S = Z.IS
2= 7\.FS = Z.FS (46)
Zy.Belongs_to := Z.Belongs_to
| Zi.Condition := B
(Zs.Name = Z.Name -+ 2
Zy. Kind := atomic
o Zy IS = Z.IS
22 = 7,.FS = Z.FS (47)
Zy.Belongs_to = Z.Belongs_to

Zy.Condition = By

\

If Z belongs to a structured sta#g, Z must be replaced by, and Z; in
Zg.Covers.

All event occurrences having as source or target states must be duplicated.
As Z may only be source or target state of event occurrencgsisfan atomic
and elementary stat& in those event occurrences is the only source respec-
tively target state. In the original event occurrencess replaced byz;, in
the duplicated event occurrencgsis replaced by7,. The postcondition of an
event occurrence having, as target state is replaced by. Postcondition =
ex.Postcondition A Zy.Range(). Analogousex.Postcondition := ex.Post-
condition N\ Zy.Range() is the postcondition of event occurrences havifiyas
target state. Afterward8 can be deleted. A corresponding algorithm looks like:

for all ex € M.EventOccurrencesvith ex.TargetStates {7} do
ex; = ex.shallowcopy()
ex.hasEvent.has :=z.hasEvent.has +z,
ex.TargetStates :={ 7, }
ex;. TargetStates : 5 75}

Schema transformations 50

ey
Sz
by C1

al a2
O=2, | O 2
R
by b

RN

Figure 7: Splitting a state

ex.Postcondition :=x.PostconditionA Z;.Range()
ex.Postcondition :=x;.PostconditionA Z;.Range()

end for

for all ex € M.EventOccurrencesvith ex.SourceStates ={ 7} do
ex; = ex.shallowcopy()
ex.hasEvent.has :=xz.hasEvent.has +x;
ex.SourceStates :={ 7 }
exi.SourceStates :={ 7, }

end for

7 .delete()

If afterwards event occurrences have pre- or postconditions resultifig 4a
the are deleted (compare definition 18, p. 19).

An example is illustrated in figure 7. The stdfas splitted in the stateg andZ,
and deleted afterwards. Note thats an atomic and elementary state and therefore
may be source or target state of event occurrences.

THEOREM: If a correct dynamic model/; is transformed by split- (48)
ting a stateZ into two statesZ; and Z, using the transformation
Split(Z, By, By, Z1, Z5) to a dynamic moded/, thenM; = M.

PROOF: To prove this theorem it is sufficient to show that

(1) the ranges o/, and M, are equivalent,

Schema transformations 51

(2) M, is a correct dynamic model and

(3) all event occurrences before and after the transformation supply an equiva-
lent contribution to the event specification.

ad (1) The ranges af/; and M, are equivalent, if the range af is equivalent
to the disjunction of the ranges 4f andZ,. This is obvious, as the ranges.of
and Z, equal toB, and B, and their disjunction must be equivalent to the range
of Z.

ad (2) The conditions of the definition 8, p. 12, are valid Ay as they where
valid for M, too if Z does not belong to a state aggregation. Otherwise it must
be guaranteed, that the splitting does not violate the orthogonality condition of
the state aggregation. We prove this and reject the transformation in the case of a
contradiction.

Event occurrences havirig as target state are copied and the target states are

adapted. The postcondition of a copied event occurrence results in the conjunc-
tion of the original postcondition and the new target state’s range. Obvious the
postcondition of an event occurrence resultgdanise (according to definition 18,
p. 19, they can be removed without loosing the equivalence) or implies the range
of the new target state. Therefore, the condition of definition 10, p. 15, that the
postcondition of an event occurrence must imply the range of its target states,
holds too.

ad (3) Events remains unchanged by splitting up a state. Therefore the unifor-
mity of their names, attributes and kind obvious is valid. Furthermore we must
prove, that the event specifications are equivalent too.

This is obvious ifZ is not an elementary state. In this case the transforma-
tion demands tha¥ is not a source or target state of any event occurrence and,
therefore, event occurrences remain unchanged by the transformation.

If Z is an atomic and elementary state event occurrences havasysource
or target state are duplicated. Note tilais the only source or target state of
such event occurrences. We have to prove that the contributions of the copied
event occurrences to the event specification is equivalent to the contribution of the
origin event occurrence.

Let ex be an event's event occurrence of the dynamic model havin@gs
source or target state without any restrictions. In the most general case, having
7 as source and target state, is replaced by the event occurrenees. . . ex;.

The contribution ok to the event specification efbefore the schema transfor-
mation:

before = (ZANGAR,P)

Schema transformations 52

The contributions of the event occurreneas . . . ex, to the event specifica-
tion of e after the schema transformation:

afterwards = exy : (Zy NGANR,Zy \P)

ery @ (ZyNGANR,Zy \P)

exs : (ZeNGAR,ZyN\P)

exy : (Z1 NGANR,Zy \P)

((Z1V Zy) NG AR, Zy A P), comp. def. 18(1)
((Z1V Z3) NG AN R, Zy A P), comp. def. 18(1)

= ((Z1VZy) N\GANR,(Z1V Zy) N P), comp. def. 18(2)
((Z1V Zy) NG A R, P), comp. def. 11
(ZANGANR,P)

The contributions to the event specificationedbefore and after the schema
transformation are equivalent. All other cases follow immediately from this most
general case.

From (1) to (3) follows that the application of the schema transformatjgit
on a state of\/; results into an equivalent dynamic modé}.

The restriction, that in the case of a non elementary stateust not be a
source or target state of event occurrences is not very extensive. In the previous
sections we presented schema transformations to shift event occurrences within a
state generalization or state aggregation. If we would like to split a non elementary
stateZ we are able to shift its event occurrences to the structured stagtongs
to and splitZ afterwards.

4.8 The generalization of states

In a correct dynamic model we can generalize states. The schema transformation
Geng(Z, ... Z;,G) produces a state generalization with the generalizing super-
stateGG. The states’; ... Z; must be elementary states or belonging to the same
generalizing superstat&eng(7; ... 7Z;, G) is defined as:

(G.Name := Zi.Name+ ...+ Z; Name
G.Kind := generalizing superstate
G.IS := FALSE
G = G.FS = FALSE (49)
G.Belongs_to := Z;.Belongs_to
\ G.Covers = {Zy,...,7;}

Schema transformations 53

Furthermore the generalizing superstétehas to be stored in the attribute
Belongs_to of each stateZ, ... Z;. The statesZ, ... ~Z; have to be removed in
Z1.Belongs_to.Covers. A corresponding algorithm looks like:

if {Z,...Z;} belongs to the same generalizing superstate
are elementary statélsen
forall Z, € {Z,...Z;} do
Z.Belongsto :=G
end for
7,.Belongsto.Covers :=7;.Belongsto.Covers {7, ... Z;} + {G}
end if

THEOREM: If a correct dynamic modéel/; is transformed by general- (50)
izing states using the schema transformatiemg(7; ... 7Z;, G) into a
dynamic model, thenM; = Ms.

PROOF: To prove this theorem it is sufficient to show that
(1) the ranges o/, and M, are equivalent,
(2) M, is a correct dynamic model and

(3) all event occurrences before and after the transformation supply an equiva-
lent contribution to the event specification.

ad (1) Let7; ... Z; be states without any restrictions which should be general-
ized with the aid of the transformati@reng. Let G be the generalizing superstate
of the resulting state generalization. The rangé/a$ defined as the disjunction
of the ranges of all states belongingiothatis”Z;. Range() V ... V Z;.Range()
(compare definition 2, p. 11). Obvious the ranged/ffand)/, are equivalent.

ad (2) It is easy to see thail, complies with the conditions of the defini-
tions 11, p. 16 ad/; was a correct dynamic model.

ad (3) Events and event occurrences remain unchanged by the transformation
Geng. Therefore the events @ff; and M, are equivalent.

From (1) to (3) follows that the application of the schema transformatiory
to states of\/; results into an equivalent dynamic modé}.

Let's consider the example in figure 8 where we put the stgtes, andZ; into a

state generalization. We introduce the generalizing superGtatad link all states

to G. All event occurrences of the states remain unchanged, they can be shifted to
the new generalizing superstate with the aid of the corresponding schema transfor-
mations.

Schema transformations 54

Gen (Z1, 72, Z3, G)

— —

e G1]
0
W
Q_l, Z, ¢, | | |

1
N 64 [G3] 2 3
C}2> z3 |7 e, [G1] alg c azg e3[G3]

(a) starting point (b) state generalization

Figure 8: Building a state generalization

4.9 The decomposition of a state generalization

In a correct dynamic model we can decompose a state generalization with a gener-
alizing superstate not belonging to an aggregating superstate and not being sorce
or target state of event occurrencésecg(G) can be regarded as a meta-method

of the meta-model. Applied to a generalizing superstate the state generalization is
decomposed. The generalizing superstate is removed. A corresponding algorithm
looks like:

if G notin source or target states of an event occurrance
(G.Belongsto # aggregating superstatieen
for all Z € G.Coversdo
Z .Belongsto := G.Belongsto
(G.Belongsto.Covers :=;.Belongsto.Covers +7
end for
(G.Belongsto.Covers : = .Belongsto.Covers G
G.delete()
end if

THEOREM: If a correct dynamic model/; is transformed by de- (51)
composing an generalizing superstate using the schema transformation
Decg(G) into a dynamic moded/, thenM; = M.

PROOF: To prove this theorem it is sufficient to show that

(1) the ranges o/, and M, are equivalent,

Schema transformations 55

Decg(G) ~
G a2 1
| | | 5 C
c b
a b — 7 3
(a) starting point (b) situation after the decomposition

Figure 9: Decomposing a generalizing superstate

(2) M, is a correct dynamic model and

(3) all event occurrences before and after the transformation supply an equiva-
lent contribution to the event specification.

ad (1) Let without any restrictions be a generalizing superstate df cov-
ering the stateg; ... Z;. GG is deleted, afterwardg;, ... Z; either be elementary
states or belongs to the same structured state. Obvious the rantjgsaofl M,
are equivalent.

ad (2) It is easy to see thail, complies with the conditions of the defini-
tions 11, p. 16, ad/; was a correct dynamic model.

ad (3) Events and event occurrences remain unchanged by the transformation
Decg. Therefore the events éf/; and M, are equivalent.

From (1) to (3) follows that the application of the transformatioacg to a
generalizing superstate o8f; results into an equivalent dynamic modéj.

Let’s consider the example in figure 9 where we decompose the generalizing super-
stateG. Nothing happens with the events and on the event occurrences.

Combined schema transfor mations

At first the restriction of the transformatidbecg that the generalizing superstate
must not occur in any source or target states of event occurrences seems to be

Schema transformations 56

very extensive. However, we have illustrated in section 4.2 that event occurrences
within a state generalization can be shifted without losing the equivalence. Before
decomposing a state generalization all event occurrences of the generalizing su-
perstate can be shifted to the states covered by the generalizing superstate without
losing the equivalence as the equivalence of dynamic models is transitive (com-
pare theorem 23, p. 23). A corresponding algorithm looks like:

for all ex € M.EventOccurrencesvith G' € ex.SourceStates and
G € ex.TargetStateslo

ex.DownSTg(7)

end for

for all ex € M.EventOccurrencesvith G € ex.SourceStatesdo
ex.DownSg(7)

end for

for all ex € M.EventOccurrencesvith G € ex.TargetStatesdo
ex.DownTg@G)

end for

Decg()

4.10 The aggregation of states

In a dynamic model we can build a state aggregation based upatorait state.
The transformatiorizena(Z, n, A) produces a state aggregation with the aggre-
gating superstatd andn generalizing superstatég belonging toA, which itself
covers one atomic stated belongs to that structured statebelongs to. The
schema transformation is defined as:

(A.Name := Z.Name
A.Kind := aggregating superstate
AIS = ZIS
A= AFS = ZFS (52)
ACovers = {Gy,...,Gp}
| A.Belongs_to := Z.Belongs_to
(G;.Name = Z Name-+ G,
G;.Kind := generalizing superstate
G;. IS = Z.IS
Gi = G.FS = ZFS (3)
G;.Covers = {Z;}
| Gi.Belongs_to = A

Schema transformations 57

(Z;.Name := Z.Name+1
Z;. Kind := atomic state
Z; 1S = Z.IS
2= 7Z;.,FS = Z.FS (54)
Z;.Belongs_to = G,
| Z;.Condition = Z.Range()

In all event occurrences havirifyas source or target statemust be replaced
by A, afterwards”Z is deleted. A corresponding algorithm looks like:

for all ex € M.EventOccurrencesvith Z € ex.SourceStatesdo
replaceZ in ex.SourceStates withA

end for

for all ex € M.EventOccurrencesvith 7 € ex.TargetStateslo
replaceZ in ex.TargetStates withA

end for

Z .Belongsto.Covers :=7.Belongsto.Covers 2 + A

7 .delete()

THEOREM: If a correct dynamic moded/; is transformed by con- (55)
structing a state aggregation based on an atomic state with the aid of the
schema transformatiofiena(Z, n, A) into a dynamic model/, then

Ml = Mg.

PROOF: To prove this theorem it is sufficient to show that
(1) the ranges o/, and M, are equivalent,
(2) M, is a correct dynamic model and

(3) all event occurrences before and after the transformation supply an equiva-
lent contribution to the event specification.

ad (1) Obvious the ranges af; and M, are equivalent? is replaced by a
state aggregation with an equivalent range.

ad (2) The constructed state aggregation fulfills the orthogonal condition, as
all states are equivalent (compare definition 6, p. 12). In event occurrences with
Z astarget statg is replaced by an equivalent state. Therefore the postconditions
of these event occurrences imply the range of their new target stateomplies
with the conditions of the definition 11, p. 16, of correct dynamic models.

Schema transformations 58

Gena(Z,3,ZA)
- A

b . a[Gl]

(a) starting point (b) state aggregation

Figure 10: Building a state aggregation

ad (3) Events remain unchanged by the transformatiena. In event oc-
currences having as source or target stateis replaced by an equivalent state.
Therefore the events df/; and M/, are equivalent.

From (1) to (3) follows that the application of the schema transformatiorn:
to an atomic state af/; results into an equivalent dynamic modé}.

Let’'s consider the example in figure 10 where we build a state aggregation on the
base of the atomic staté. We introduce the aggregating superstédevith three
generalizing superstatés . .. G3, which belongs tdZ,. Each generalizing super-
state consists of one further atomic state (the stgtes 7s).

4.11 The decomposition of a state aggregation

In a dynamic model we can decompose a state aggregation consistirggoér-

alizing superstate where each of these states covers only one further atomic state.
Furthermore none of the states belonging to the state aggregation (except the ag-
gregation superstate) must be source or target state of an event occurrence. The
schema transformatioPeca(A, Z7) decomposes a state aggregation with aggre-
gating superstatd resulting in the atomic statg which is defined as:

Z.Name := A.Name
Z.Kind := atomic state
ZI1S = AlIS
7= ZFS = AFS (50)
Z.Condition := A.Range()
| Z.Belongs_to := A.Belongs_to

Schema transformations 59

In all event occurrences, having as source or target stateis replaced by
7. Afterwards all states of the state aggregation are deleted. A corresponding
algorithm looks like:

for all ex € M.EventOccurrencesvith A € ex.SourceStatesdo
replaceA in ex.SourceStates with?

end for

for all ex € M.EventOccurrencesvith A € ex.TargetStatesdo
replaceZ in ex.TargetStates with”

end for

A.Belongsto.Covers :=4.Belongsto.Covers -A + Z

deleteA and all states belonging to the state aggregation

THEOREM: If a correct dynamic model/; is transformed by decom- (57)
posing a state aggregation using the schema transformatiar{ A, 7)
into a dynamic model/, thenM; = M.

PROOF: To prove this theorem it is sufficient to show that
(1) the ranges o/, and M, are equivalent,
(2) M, is a correct dynamic model and

(3) all event occurrences before and after the transformation supply an equiva-
lent contribution to the event specification.

ad (1) Obvious the ranges of, and M, are equivalent, the aggregating su-
perstated and all other states belonging to the state aggregation are replaced by
an equivalent atomic staté.

ad (2) It is easy to see that, is a correct dynamic model, an aggregating
superstate is replaced by another atomic equivalent state (compare definitions 11,
p. 16).

ad (3) Events remain unchanged by the transformafien:. In event oc-
currences havingl as source or target stateis replaced by an equivalent state.
Therefore the events df/; and M/, are equivalent.

From (1) to (3) follows that the application of the transformatioera to an
aggregating superstate of; results into an equivalent dynamic modé}.

Schema transformations 60

G

a.UpSg(z1) 1

a.UpTg(22) a [G AND Z1.Range()]
—_——

e
a[G] 7
a.UpSTa(G1)
Combine(Z1,22,23)
(a) starting point 7 (b) shifting a to G1

»

Z) j
a [G AND Z1.Range()]

| | El=

Gy a [G AND Z1.Range()]
Deca(ZA,Z)
% —_——
Z3
(c) shifting a to ZA and combining states (d) decomposing the state aggregation

Figure 11: Combined schema transformations

Combined schema transformations

Decomposing a state aggregation is allowed only if the state aggragation consits of
generalizing superstates each covers only one atomic state. Furthermore none of
the states of the aggregation except the aggregating superstate is a source or target
state of an event occurrence. However, these not extensive restrictions, as we
are able to shift event occurrences up to generalizing and aggregating superstates,
decompose state aggregations and generalisations as well as combine states.

Let’s consider the example in figure 11 where we would like to decompose the state
aggregation. However, there are states within the aggregation which are source and
target states of an event occurrence. Furthermore the generalizing sup@rstate

Schema transformations 61

covers more than one state.

First we shift the event occurrence to the generalizing superstate arfid 7,

using the schema transformatidris.S¢g andUpT g (note that the guard of the event
occurrence changes when applying the transformations). Second we shift the event
occurrence to the aggregating superstate using the schema transforthafi®ia

and combineZ; and 7 to Z3. Afterwards we decompose the state aggregation
using the transformatio®eca (we suppose that the other components of the state
aggregation fulfills the necessary conditions).

The dynamic models shown in figure 11 are equivalent as we use equivalence trans-
formations only, and, according to theorem 23, p. 23, the equivalence of dynamic
models is transitive.

4.12 Deleting and combining event occurrences

In a correct dynamic model we would like to be able to delete and to combine
event occurrences for instance when we decompose a states generalization or shift
event occurrences within state hierarchies.

The deletion of event occurrences

With the aid of the schema transformatidre/ Ex we delete event occurrences
whose preconditions or postconditions resulfuise. However, we don’t want
to remove incorrect event occurrences by this transformation but we want to delete
“deceased” event occurrences after applying a schema transformation.

The transformationDel Ex can be regarded as meta-method of the meta-
model and deletes event occurrences whose pre- or postconditions rgsuldan
A corresponding algorithm looks like:

for all ex € sel f.EventOccurrencesvith ex.PreC() =false or
ex.Postcondition =false do
ex.hasEvent.has :=z.hasEvent.has ex
ex.delete()
end for

THEOREM: If a correct dynamic modél/; is transformed with the aid (58)
of the schema transformatidbe/ Ez into a dynamic model/, then
Ml = Mg.

PROOF: We refer to the definition 18, p. 19, which states that event occurrences
can be deleted without loosing the equivalence if their pre- and/or postconditions
result infalse. States remain unchanged by the transformation.

Schema transformations 62

The combination of event occurrences

With the aid of the schema transformati©nm Ex we combine event occurrences

of the same event having equal source states and equivalent postconditions respec-
tively having equivalent preconditions and equal target states (compare transfor-
mationsComSe andComTe, page 41ff). A corresponding algorithm looks like:

repeat
EX = sel f.EventOccurrences
for all ex;, € self.EventOccurrencesz;, € sel f.EventOccurrencesvith
exr; # exy andex;.hasEvent =exy.hasEvent and
ex;.TargetStates =z,.TargetStates and
ex,.SourceStates =x,.SourceStates and
ex,.PreC()= ex,.PreC()do
ComSe(ey, e, €)
end for
for all ex; € self.EventOccurrencesz, € sel f.EventOccurrencesvith
exr; # ex, andex;.hasEvent =ex,.hasEvent and
ex,.SourceStates =x,.SourceStates and
ex,.SourceStates =x,.SourceStates and
ex;.Postconditior= ex,.Postconditiordo
ComTe(ey, ey, €)
end for
until £X = sel f.EventOccurrences

The transformatior'om Fx combines event occurrences as long as possible
according to the relatio® (compare definition 18, p. 19) with the aid of the
transformationg”omSe and ComTe. As both transformations are equivalence
transformationg€’om Ex is an equivalence transformation too.

Based on the schema transformatiéhs Fx andCom Ex we define the trans-
formationC'lean which deletes and combines event occurrences. The transforma-
tion can be regarded as meta-method of the meta-model. A corresponding algo-
rithm looks like:

sel f.DelEx
sel f.ComEX

C'lean preserves the equivalence of the dynamic model as we only use the
equivalence transformatiorige! Fx andCom Ex and the equivalence of dynamic
models is transitive (compare theorem 23, p. 23). For exafjpten can be
applied after states were generalized and event occurrences were shifted to the
generalizing superstate if these event occurrences should be combined.

Inverse schema transformations 63

Geng(Z1,22, Z)
dl d1.UpSg (Z1)— dl

7 — d2.UpSg (22)
-1 B I R4
£ d
2

(a) starting point Y (b) situation after generalizing
dy
Rl
AN

(c) situation after the usage of Clean

Figure 12: Usage of Clean

Such a situation is illustrated in figure 12. After generalizégnd 7, we shift

the event occurrencet andd, with the schema transformatidipSg to the gen-
eralizing superstat&. Supposing that the postconditions of the event occurrences
are equivalent we can combine them with the transformafitsun to one event
occurrence.

5 Inverse schema transformations

In this section we will prove that each basic schema transformation has an inverse
transformation, which however may be a complex transformation. The application
of a transformation and its inverse on a dynamic madelresults intoA/;. To

prove this we have to show that

(1) the ranges are equivalent before and after the transformation,

(2) each state has a corresponding state with an equivalent range and the same
structure after the transformations,

Inverse schema transformations 64

(3) each event has a corresponding event with an equivalent event specification
after the transformations and that

(4) each eventoccurrence has a corresponding event occurrence with equivalent
pre- and postconditions after the transformations.

For the following explanations we assume thdi consists only of states
whose ranges are ngtulse and that non of the event occurrences has pre- or
postconditions resulting tpalse.

5.1 The inverse transformation of UpSg

The transformatiort/pSg(Z) shifts an event occurrence having the statas
source state to the generalizing superstatg (gee page 25). The inverse trans-
formation isDownSg(Z.Belongs_to) (see page 29).

THEOREM: The inverse transformation ofex.UpSg(Z) is (59)
ex.DownSg(Z.Belongs_to).

PROOF: To prove thatDownSg(Z.Belongs_to) is the inverse transformation of
UpSg(Z) itis sufficient to show that

(1) the ranges are equivalent before and after the transformation,

(2) each state has a corresponding state with an equivalent range and the same
structure after the transformations,

(3) each event has a corresponding event with an equivalent event specification
after the transformations and that

(4) each eventoccurrence has a corresponding event occurrence with equivalent
pre- and postconditions after the transformations.

ad (1) The ranges are equivalent as only equivalence transformations are used.

ad (2) States remain unchanged by the transformation and its inverse.

ad (3) Events remain unchanged by the transformation and its inverse.

ad (4) The transformation replac&sby the generalizing superstate sfin
the source states of the event occurrence. Furthermore the guard of the event oc-
currence is replaced by its precondition. L#&t... 7, be the states covered by
the generalizing superstate gt The inverse transformation producesvent
occurrences (for each state covered by the generalizing superstate one event oc-
currenc) and changes the source states of the copied event occurrences. The event
occurrencesr is deleted.

Inverse schema transformations 65

The precondition of one copied event occurrences looks ik&ange A
Z.Range() A ex.Guard N R whereZ; € Z,...Z,. R is the conjunction of the
ranges of all other source states of the event occurrence rif there is only one
source state. However, in a correct dynamic model the rang&s.of Z,, must
be disjoint. The preconditions of the copied event occurrences resuftg ¢a
exceptZ; = Z. In other wordsn — 1 of then copied event occurrences have
preconditions resulting ifialse and are deleted by the transformatiGtean.

From (1) to (4) follows that the transformatidnownSg(Z.Belongs_to) is
the inverse transformation éfpSg(Z7).

5.2 The inverse transformation of UpTyg

The transformatiorUpT g(Z) shifts an event occurrence having the statas
target state to the generalizing superstate’ ¢gee page 26). The inverse trans-
formation isDownT ¢g(Z.Belongs_to) (see page 30).

THEOREM: The inverse transformation ofex.UpTg(Z) is (60)
ex.DownT g(Z.Belongs_to).

PROOF: To prove thatDownT g(Z.Belongs_to) is the inverse transformation of
UpTg(Z) itis sufficient to show that

(1) the ranges are equivalent before and after the transformation,

(2) each state has a corresponding state with an equivalent range and the same
structure after the transformations,

(3) each event has a corresponding event with an equivalent event specification
after the transformations and that

(4) each eventoccurrence has a corresponding event occurrence with equivalent
pre- and postconditions after the transformations.

ad (1) The ranges are equivalent as ony equivalence transformations are used.

ad (2) States remain unchanged by the transformation and its inverse.

ad (3) Events remain unchanged by the transformation and its inverse.

ad (4) The transformation replacgdy the generalizing superstatein the
target states of the event occurrence. Zgt. . Z,, the states covered by the gener-
alizing superstate of . The inverse transformation producesvent occurrences
(for each state covered by the generalizing superstate one event occurrenc) and
changes the target states of the copied event occurrences. Furthermore the post-
condition of the copied event occurrences are replaced by the conjunction of the
original postcondition and the range of its new target state. The event occurrence
ex Is deleted.

Inverse schema transformations 66

The postcondition of the copied event occurrences looks Zik&ange A
ex.Postcondition whereZ; € 7, ... 7,. However, in a correct dynamic model
the ranges ot7, ... Z, must be disjoint. Furthermore the postconditioneof
must imply the range of. Therefore, the postconditions of the copied event oc-
currences results ifialse exceptZ; = Z. In other words: — 1 of then copied
event occurrences have postconditions resultindailye and are deleted by the
transformatiorC'lean.

From (1) to (4) follows that the transformatidnownT g(Z.Belongs_to) is
the inverse transformation éfpT'g(7).

5.3 The inverse transformation of DownSg

The transformatiodownSg(~7) shifts an event occurrence having the generaliz-
ing superstate as source state to the states belonging (eee page 29). For each
state covered by the event occurrence is copied, the source states are adopted.
Some of the copied event occurrences may have preconditions resulfingyén

These event occurrences are deleted by the transform@tiom. If Ex is the

set of the copied event occurrences which remain than the inverse transformation
(lets call itDownSg~' (7)) is defined as:

for all e; € Ex with Z; € ¢;.Source_States and Z; € Z.C'overs do

e;-UpSg¥;)
end for
THEOREM: The inverse transformation otx.DownSg(Z) is (61)

DownSg (7).

PROOF: To prove thatDownSg~"(7) is the inverse transformation &fownSg(7)
it is sufficient to show that

(1) the ranges are equivalent before and after the transformation,

(2) each state has a corresponding state with an equivalent range and the same
structure after the transformations,

(3) each event has a corresponding event with an equivalent event specification
after the transformations and that

(4) each eventoccurrence has a corresponding event occurrence with equivalent
pre- and postconditions after the transformations.

ad (1) The ranges are equivalent as ony equivalence transformations are used.
ad (2) States remain unchanged by the transformation and its inverse.

Inverse schema transformations 67

ad (3) Events remain unchanged by the transformation and its inverse.

ad (4) The transformation copies the event occurrence for each statg that
covers and adopts the source states. The original event occurrence is deleted af-
terwards. Some of the copied event occurrences may have preconditions resulting
in false and are deleted by the transformat@tan. The remaining event occur-
rences are collected in a sBt:. As the original precondition of the shifted event
occurrence was natalse and the range of the generalizing superstate is defined
as the disjunction of ranges of its covering stateis not empty.

Each copied event occurrence fralix is shifted back to the generalizing
superstate using the transformatiopSg. By that the guards of these event oc-
currences are replaced by its precondition. Afterwards these event occurrences are
combined to one event occurrence using the transformatiean, as they have
the same event, the same source- and target states and equivalent postconditions by
the disjunction of their precondions. However, as all involved transformations are
equivalence transformations the precondition of the combined event occurrence
must be equivalent to the precondition of the original event occurrence.

From (1) to (4) follows that the transformatidmownSg="(Z) is the inverse
transformation ofDownSg(Z).

5.4 The inverse transformation of DownTg

The transformatiodownT ¢(Z) shifts an event occurrence having the generaliz-

ing superstate as target state to the states belonging {cee page 30). For each
state covered by the event occurrence is copied, the target states and postcondi-
tions are adopted. Some of the copied event occurrences may have postconditions
resulting in false. These event occurrences are deleted by the transformation
Clean. If Ex is the set of the copied event occurrences which remain than the
inverse transformation (lets callRownT g (7)) is defined as:

for all e; € Ex with Z; € ¢;.Target_States and Z; € Z.Covers do
e;.UpTg(Z))
end for

THEOREM: The inverse transformation otx.DownTg(Z) is (62)
DownTg™ (7).

PROOF: To prove thaDownT g~'(Z) is the inverse transformation &fownT g(Z)
it is sufficient to show that

(1) the ranges are equivalent before and after the transformation,

(2) each state has a corresponding state with an equivalent range and the same
structure after the transformations,

Inverse schema transformations 68

(3) each event has a corresponding event with an equivalent event specification
after the transformations and that

(4) each eventoccurrence has a corresponding event occurrence with equivalent
pre- and postconditions after the transformations.

ad (1) The ranges are equivalent as only equivalence transformation are used.

ad (2) States remain unchanged by the transformation and its inverse.

ad (3) Events remain unchanged by the transformation and its inverse.

ad (4) The transformation copies the event occurrence for each statg that
covers and adopts the source states and postcondition. The original event oc-
currence is deleted afterwards. Some of the copied event occurrences may have
postconditions resulting irfalse and are deleted by the transformatiOean.

The remaining event occurrences are collected in &setAs the original post-
condition of the shifted event occurrence was figtse but implies the range of

and the range of the generalizing superstate is defined of the disjunction of ranges
of its covering state&'z is not empty.

Each copied event occurrence fralix: is shifted back to the generalizing
superstate using the transformationSg. Afterwards these event occurrences are
combined to one event occurrence using the transforméatiean, as they have
the same event, the same soure- and target states and equivalent preconditions by
the disjunction of their postcondions. However, as all involved transformations are
equivalence transformations the postcondition of the combined event occurrence
must be equivalent to the postcondition of the original event occurrence.

From (1) to (4) follows that the transformatidmownT g 1(Z) is the inverse
transformation oDownTg(Z).

5.5 Theinverse transformation of UpSa

The transformatio/pSa(Z) shifts an event occurrence with as source state

to the aggregating superstate 6f(see page 37). If the aggregating superstate
of Z already is a source state of the event occurrence the inverse transforma-
tion is DownSas(Z) (see page 39). Otherwise the inverse transformation is
DownSa(Z) (see page 37).

THEOREM: The inverse transformation ofex.UpSa(Z) is (63)
ex.DownSas(Z) if the aggregating superstate &f already is a
source state of the event occurrenee. Otherwise the inverse
transformation igx. DownSa(Z).

PROOF: To prove thatDownSas(Z) and DownSa(Z) are the inverse transfor-
mations ofUpSa(Z) it is sufficient to show that

Inverse schema transformations 69

(1) the ranges are equivalent before and after the transformation,

(2) each state has a corresponding state with an equivalent range and the same
structure after the transformations,

(3) each event has a corresponding event with an equivalent event specification
after the transformations and that

(4) each eventoccurrence has a corresponding event occurrence with equivalent
pre- and postconditions after the transformations.

ad (1) The ranges are equivalent as onle equivalence transformations are used.

ad (2) States remain unchanged by the transformation and its inverse.

ad (3) Events remain unchanged by the transformation and its inverse.

ad (4)

(@) The inverse transformation és. DownSas(Z) if the aggregating super-
state ofZ already is a source state of the event occurrencelhe aggregating
superstate and have equivalent ranges. The transformation replétés the
source states by the aggregating superstaté. dHowever, as the source states
of an event occurrence is a set and the aggregating superstdtalcfady is a
member of this set, the transformation “removesfrom the source states. The
inverse adds’ as further source state of the event occurrence.

The transformation may change the event occurrence to a non-synchronizing
one, if afterwardsxz has only one or less source and target states (note that the
attribute Sync is a computed one). The inverse adds a further source state, the
event occurrence is a synchronizing one again.

(b) The inverse transformationds. DownSa(Z) if the aggregating superstate
of Z is not a source state of the event occurrenceThe aggregating superstate
andZ have equivalent ranges. The transformation replacbky the aggregating
superstate of in the source states of the event occurrence. The inverse changes
the aggregating superstate.ofin the source states of the event occurrence back
to Z.

From (1) to (4) follows that the transformatioR®wnSas(Z) andDownSa(Z)
are the inverse transformationsiépSa (7).

5.6 Theinverse transformation of UpTa

The transformatio/pT'a(Z) shifts an event occurrence with as target state

to the aggregating superstate 6f(see page 38). If the aggregating superstate
of 7 already is a target state of the event occurrence the inverse transforma-
tion is DownTas(Z) (see page 39). Otherwise the inverse transformation is
DownTa(Z) (see page 38).

Inverse schema transformations 70

THEOREM: The inverse transformation ofex.UpTa(Z) is (64)
ex.DownTas(Z) if the aggregating superstate ¢f already is a

target state of the event occurrenee. Otherwise the inverse
transformation igxz. DownTa(Z).

PROOF: To prove thatDownTas(Z) and DownTa(Z) are the inverse transfor-
mations ofUpTa(Z) itis sufficient to show that

(1) the ranges are equivalent before and after the transformation,

(2) each state has a corresponding state with an equivalent range and the same
structure after the transformations,

(3) each event has a corresponding event with an equivalent event specification
after the transformations and that

(4) each eventoccurrence has a corresponding event occurrence with equivalent
pre- and postconditions after the transformations.

ad (1) The ranges are equivalent as only equivalence transformations are used.

ad (2) States remain unchanged by the transformation and its inverse.

ad (3) Events remain unchanged by the transformation and its inverse.

ad (4)

(a) The inverse transformation és. DownTas(Z) if the aggregating super-
state ofZ already is a target state of the event occurrenceThe aggregating
superstate and have equivalent ranges. The transformation repldtes the
target states by the aggregating superstatg.ofowever, as the target states of
an event occurrence is a set and the aggregating supersta@eady is a mem-
ber of this set, the transformation “removegfrom the target states. The inverse
addsZ as further target state of the event occurrence.

The transformation may change the event occurrence to a non-synchronizing
one, if afterwardsxz has only one or less source and target states (note that the
attribute Sync is a computed one). The inverse adds a further target state, the
event occurrence is a synchronizing one again.

(b) The inverse transformationds. DownTa(Z) if the aggregating superstate
of Z is not a target state of the event occurreace The aggregating superstate
andZ have equivalent ranges. The transformation replacbky the aggregating
superstate o in the target states of the event occurrence. The inverse changes
the aggregating superstatein the target states of the event occurrence back to
Z.

From (1) to (4) follows that the transformatioM®wnT as(Z) andDownTa(Z)
are the inverse transformationsiép7 a(7).

Inverse schema transformations 71

5.7 The inverse transformation of DownSa

The transformatiodownSa(Z) shifts an event occurrence from the aggregating
superstate of to 7, if the aggregating superstatefs a source state of the event
occurrence (see page 37). The inverse transformatiop.$(Z) (see page 34).

THEOREM: The inverse transformation otxz.DownSa(Z) is (65)
ex.UpSa(7).

PROOF: To prove thal/pSa(Z) is the inverse transformation BbwnSa(7) it
is sufficient to show that

(1) the ranges are equivalent before and after the transformation,

(2) each state has a corresponding state with an equivalent range and the same
structure after the transformations,

(3) each event has a corresponding event with an equivalent event specification
after the transformations and that

(4) each eventoccurrence has a corresponding event occurrence with equivalent
pre- and postconditions after the transformations.

ad (1) The ranges are equivalent as only equivalence transformations are used.
ad (2) States remain unchanged by the transformation and its inverse
ad (3) Events remain unchanged by the transformation and its inverse.
ad (4) The stateg and the aggregating superstatédiave equivalent ranges.
The transformation replaces the aggregating superstdfarothe source state of
the event occurrencer by Z. The inverse replaces in the source state of the
event occurrencer by the aggregating superstateof
From (1) to (4) follows that the transformatiéfpSa(Z) is the inverse trans-
formation of DownSa(Z).

5.8 The inverse transformation of DownTa

The transformatio®ownTa(Z) shifts an event occurrence from the aggregating
superstate of to Z, if the aggregating superstate6fs a target state of the event
occurrence (see page 38). The inverse transformatiop13:(7) (see page 35).

THEOREM: The inverse transformation otx.DownTa(Z) is (66)
ex.UpTa(Z).

PROOF: To prove thal/pTa(Z) is the inverse transformation élownTa(7) it
is sufficient to show that

Inverse schema transformations 72

(1) the ranges are equivalent before and after the transformation,

(2) each state has a corresponding state with an equivalent range and the same
structure after the transformations,

(3) each event has a corresponding event with an equivalent event specification
after the transformations and that

(4) each eventoccurrence has a corresponding event occurrence with equivalent
pre- and postconditions after the transformations.

ad (1) The ranges are equivalent as only equivalence transformations are used.
ad (2) States remain unchanged by the transformation and its inverse
ad (3) Events remain unchanged by the transformation and its inverse.
ad (4) The stateg and the aggregating superstatédiave equivalent ranges.
The transformation replaces the aggregating superstafarmthe target state of
the event occurrencer by Z. The inverse replaces in the target state of the
event occurrencer by the aggregating superstate/f
From (1) to (4) follows that the transformatiéip7'a(7) is the inverse trans-
formation of DownTa(Z).

5.9 The inverse transformation of DownSas

The transformatioDownSas(Z) addsZ as a new source state to an event oc-
currence, if the aggregating superstateZadlready is a source state of the event
occurrence. (see page 39). The inverse transformatiop$s(~) (see page 34).

THEOREM: The inverse transformation ofx.DownSas(Z) is (67)
ex.UpSa(Z).

PROOF: To prove that/pSa(Z) is the inverse transformation @fownSas(Z)
it is sufficient to show that

(1) the ranges are equivalent before and after the transformation,

(2) each state has a corresponding state with an equivalent range and the same
structure after the transformations,

(3) each event has a corresponding event with an equivalent event specification
after the transformations and that

(4) each eventoccurrence has a corresponding event occurrence with equivalent
pre- and postconditions after the transformations.

Inverse schema transformations 73

ad (1) The ranges are equivalent only equivalence transformations are used.

ad (2) States remain unchanged by the transformation and its inverse

ad (3) Events remain unchanged by the transformation and its inverse.

ad (4) The aggregating superstateofind Z have equivalent ranges? is
added as further source state of the event occurrencé&he inverse replaces
in the source states of the event occurrencby the aggregating superstatef
However, the aggregating superstate already is a source state of the event occur-
rence and and the source states of an event occurrence is a set this replacement
removesZ from the source states ef.

If ex is a non-synchronizing event occurrence the transformation changes it
to a synchronizing one (note that the attribStgnc of an event occurrence is a
computed one) as afterwards has more than one source states. By applying
the inverseex is transformed back to a non-synchronizing event occurrence as
afterwardsez has only one source state.

From (1) to (4) follows that the transformatiéfpSa(Z) is the inverse trans-
formation of DownSas(Z).

5.10 The inverse transformation of DownTas

The transformatiomdownTas(Z) addsZ as a new target state to an event oc-
currence, if the aggregating superstateZodlready is a target state of the event
occurrence. (see page 39). The inverse transformatiopds:(Z) (see page 35).

THEOREM: The inverse transformation ofx.DownTas(Z) is (68)
ex.UpTa(Z).

PROOF: To prove thatUpTa(Z) is the inverse transformation @ownTas(Z)
it is sufficient to show that

(1) the ranges are equivalent before and after the transformation,

(2) each state has a corresponding state with an equivalent range and the same
structure after the transformations,

(3) each event has a corresponding event with an equivalent event specification
after the transformations and that

(4) each eventoccurrence has a corresponding event occurrence with equivalent
pre- and postconditions after the transformations.

ad (1) The ranges are equivalent as only equivalence transformations are used.
ad (2) States remain unchanged by the transformation and its inverse
ad (3) Events remain unchanged by the transformation and its inverse.

Inverse schema transformations 74

ad (4) The aggregating superstatezbfind 7 have equivalent rangesZ is
added as further target state of the event occurremceThe inverse replaces
Z in the target states of the event occurreaceby the aggregating superstate
of Z. However, the aggregating superstate already is a target state of the event
occurrence and as the target states of an event occurrence is a set this replacement
removesZ from the target states of:.

If ex is @ non-synchronizing event occurrence the transformation changes it
to a synchronizing one (note that the attribStgnc of an event occurrence is a
computed one) as afterwards has more than one target states. By applying
the inverseex is transformed back to a non-synchronizing event occurrence as
afterwardsez has only one target state.

From (1) to (4) follows that the transformatiéipT'a(7) is the inverse trans-
formation of DownTas(Z).

5.11 The inverse transformation of ComSe

The transformatiorComSe(eq, e, €) combines the event occurrencgsandes

with equivalent preconditions and the same source- and target states (see page 41).
The inverse transformation plitTe(e, Py, Ps, €1, e5) Where Py = e;.Postcon-

dition and P, = ey.Postcondition (See page 44).

THEOREM: The inverse transformation ofomSe(e;,es,e) Is (69)
SplitTe(e, Py, Py, e1,e3) With Py = ey.Postcondition and P, =
eo. Postcondition

PROOF: To prove thatSplitTe(e, Py, Py, e1,e5) With Py = e;.Postcondition
and P, = ey.Postcondition is the inverse transformation 6fomSe(ey, s, €) it
is sufficient to show that

(1) the ranges are equivalent before and after the transformation.

(2) each state has a corresponding state with an equivalent range and the same
structure after the transformations,

(3) each event has a corresponding event with an equivalent event specification
after the transformations,

(4) each eventoccurrence has a corresponding event occurrence with equivalent
pre- and postconditions after the transformations and that

ad (1) The ranges are equivalent as only equivalence transformations are used.
ad (2) States remain unchanged by the transformation and its inverse
ad (3) Events remain unchanged by the transformation and its inverse.

Inverse schema transformations 75

ad (4) The transformation combines the event occurrenicaésde, to e. The
disjunction of the postconditions ef ande; is equivalent to the postcondition of
e. The preconditions of, e¢; ande, are equivalent. The inverse splitagain into
e andes with its original postconditions.

From (1) to (4) follows that the transformatidiplitTe(e, Py, Py, €1, €5) is the
inverse transformation @f'omSe(e, es, €).

5.12 The inverse transformation of ComTe

The transformatiorComTe (e, e2, e) combines the event occurrencgsande,

with equivalent Postconditions and the same source- and target states (see page 42).
The inverse transformation iSplitSe(e, P, Py, e, e3) Where P, = e;.PreC()

andP, = ey.PreC/() (see page 43).

THEOREM: The inverse transformation ofomTe(e;,eq,€) IS (70)
SplitSe(e, Py, Py, eq,e5) With Py = e;.PreC() andP, = ey.PreC()

PROOF: To prove thatSplitSe(e, P, Py, e, e5) With P, = e1.PreC() andP; =
es.PreC() is the inverse transformation @fomTe(ey, ey, €) it is sufficient to
show that

(1) the ranges are equivalent before and after the transformation,

(2) each state has a corresponding state with an equivalent range and the same
structure after the transformations,

(3) each event has a corresponding event with an equivalent event specification
after the transformations and that

(4) each eventoccurrence has a corresponding event occurrence with equivalent
pre- and postconditions after the transformations.

ad (1) The ranges are equivalent as only equivalence transformations are used.
ad (2) States remain unchanged by the transformation and its inverse
ad (3) Events remain unchanged by the transformation and its inverse.
ad (4) The transformation combines the event occurrenicaésde, to e. The
disjunction of the preconditions ef ande, is equivalent to the precondition ef
The postconditions of, e; ande, are equivalent. The inverse splitsagain into
e1 ande, with its original preconditions.
From (1) to (4) follows that the transformatioiplitSe(e, Py, Py, 1, €) is the
inverse transformation @f'omTe(ey, ey, €).

Inverse schema transformations 76

5.13 The inverse transformation of SplitSe

The transformatio®plitSe(e, Py, Ps, e1, e5) splits the event occurreneénto two
event occurrences ande,. The parameter®, and P, are preconditions. Their
disjuction must be equivalent to the preconditioredfee page 43). The inverse
transformation i€0omTe(ey, es, €) (Se€ page 42).

THEOREM: The inverse transformation &fplitSe(e, Py, Ps, €1, €3) IS (71)
ComTe(ey, ey, €).

PROOF: To prove thatComTe(ey, s, €) is the inverse schema transformation of
SplitSe(e, Py, Py, eq, e5) it is sufficient to show that

(1) the ranges are equivalent before and after the transformation,

(2) each state has a corresponding state with an equivalent range and the same
structure after the transformations,

(3) each event has a corresponding event with an equivalent event specification
after the transformations and that

(4) each eventoccurrence has a corresponding event occurrence with equivalent
pre- and postconditions after the transformations.

ad (1) The ranges are equivalent as only equivalence transformations are used.

ad (2) States remain unchanged by the transformation and its inverse

ad (3) Events remain unchanged by the transformation and its inverse.

ad (4) The transformation splits the event occurrenicgo e; ande,. Obvious
e; ande, have the same source- and target states. The postcondtiens @ind
eo are equivalent. The precondition efis equivalent to the disjunction of the
preconditions oé; ande,. The inverse combines ande, as they have equivalent
postconditions te.

From (1) to (4) follows that the transformatictomTe(e;, es, €) is the inverse
transformation ofSplitSe(e, Py, Ps, €1, €3).

5.14 The inverse transformation of SplitTe

The transformatiorbplitTe(e, Py, Ps, 1, e5) splits the event occurrenceinto
two event occurrences ande,. The parameter® and P, are postconditions.
Their disjuction must be equivalent to the postconditior ¢§ee page 44). The
inverse transformation iSomSe(eq, es, €) (See page 41).

THEOREM: The inverse transformation 6fplitTe(e, Py, Ps, ey, €5) IS (72)
ComSe(ey, es,¢€).

Inverse schema transformations 77

PROOF: To prove thatC'omSe(ey, €9, €) is the inverse schema transformation of
SplitTe(e, P, Py, €1, €5) itis sufficient to show that

(1) the ranges are equivalent before and after the transformation,

(2) each state has a corresponding state with an equivalent range and the same
structure after the transformations,

(3) each event has a corresponding event with an equivalent event specification
after the transformations and that

(4) each eventoccurrence has a corresponding event occurrence with equivalent
pre- and postconditions after the transformations.

ad (1) The ranges are equivalent as only equivalence transformations are used.

ad (2) States remain unchanged by the transformation and its inverse

ad (3) Events remain unchanged by the transformation and its inverse.

ad (4) The transformation splits the event occurrenicgo e; ande,. Obvious
e; ande, have the same source- and target states. The preconditianseof
ande, are equivalent. The postcondition @is equivalent to the disjunction of
the postconditions of; ande,. The inverse combines, ande, as they have
equivalent preconditions ta

From (1) to (4) follows that the transformati6fvmSe(ey, es, €) is the inverse
transformation ofSplitTe(e, Py, Py, €1, €2).

5.15 The inverse transformation of Combine

The transformatioombine(Z,, Z,, Z) combines two atomic statés and 7
to the stateZ (see page 45)7, andZ, must be elementary states or belonging to
the same structured state.

For the inverse transformation we have to distinguish between two cases:

(1) if Z, andZ, are elementary states, than the inverse schema transformation
is Split(Z, Z1.Range(), Zs.Range(), Z1, Z,) (See page 49).

(2) if Z; and Z, are not elementary states, we need a more complex inverse
transformation. The combined state will be a non elementary state. How-
ever,Split demands that in the case of a non elementary state the state must
not be source or target state of event occurrenceszAand Z, must be
atomic states they must belong to a generalizing superstate if the states are
not elementary states. After the transformatibhelongs to that generaliz-
ing superstate. For the inverse first we shift the event occurrences up to the
generalizing superstate gf. Second we spliZ back intoZ; andZ,. Last

Inverse schema transformations 78

we shift the event occurrences back from the generalizing superstate. The
inverse transformatio@'ombine™" (7) is defined as:

for all e; € M.Event_Occurrences and Z € e;.Source_States do
e;.UpSgE)
FErg =Fxg+e;
end for
for all ¢; € M.Event_Occurrences and Z € e;. Target_States do
e;.UpTg(?)
Err = FExr+¢e;
end for
Split(Z, Z,.Range(), Zy.Range(), Z1, Zs)
for all e; € Fxg do
Ex :=¢;.DownSgy,.Belongs_to)
if e; € Exp then
replacee; in Exp by Ex
end if
end for
for all e; € Exr do
e;.DownTg(Z,.Belongs_to)
end for

Note that an event occurrence if shifted down from a generalizing superstate
using DownSg is replaced by several other event occurrences. The set of
these event occurrences are returned by the transformation. If a shifted event
occurrence is member @z too it must be replaced by the sét.

To prove that both transformations are inverse schema transformations we dis-
tinguish between this two cases.

THEOREM: The inverse transformation af'ombine(Z,, Zy, Z) is (73)
Split(Z, Z,.Range(), Zo.Range(), 71, Z3), if Z; and Z, are elemen-
tary states.

PROOF: To prove thatSplit(Z, Z,.Range(), Zy. Range(), Z1, Z») is the inverse
schema transformation 6fombine(Z;, Z,, Z) it is sufficient to show that

(1) the ranges are equivalent before and after the transformation,

(2) each state has a corresponding state with an equivalent range and the same
structure after the transformations,

Inverse schema transformations 79

(3) each event has a corresponding event with an equivalent event specification
after the transformations and that

(4) each eventoccurrence has a corresponding event occurrence with equivalent
pre- and postconditions after the transformations.

ad (1) The ranges are equivalent as only equivalence transformations are used.

ad (2) The transformation combines the statesand Z, which are atomic
and elementary states to an atomic and elementary/stae disjunction of the
ranges of7; andZ; is equivalent to the range &f. The inverse split back to
7, andZ,.

ad (3) Events remain unchanged by the transformation and its inverse.

ad (4) The transformation combines two states which are elementary and
atomic states. Event occurrences, haviigor Z, as source (target) state don't
have further source (target) states. In such event occurrehoes’, are replaced
by Z in their source and target states. The guard of event occurrences aving
or Z, as source state is replaced by its precondition.

The inverse splitsZ back intoZ; and 7, (which are disjoint). Event occur-
rences having’ as source and target state are duplicated, their source and target
states are adopted. M is a target state of an event occurrence its postcondition is
replaced by the conjunction of the original postcondition and its new target state
(7, or 7).

Let ex be an event occurrence haviagas source or target state. In the most
general caseef hasZ as source and target state)is replaced by the event oc-
currencesu; . ..exy. For eacher; follows that its pre- and postconditions result
in false or not. If the conditions do not result ifulse (otherwise it is deleted
by the transformation’lean) and as”Z; andZ, are disjoint states then there must
be an event occurreneg before applying the transformation and its inverse with
equivalent pre- and postconditions as we use only equivalence transformations.
Otherwise the specification of the events would not be equivalent.

From (1) to (4) follows that the transformaticiplit(Z, By, Bo, Z1, Z,) is the
inverse schema transformation@bmbine(7,, Z,, 7) if Z; andZ, are elemen-
tary states.

THEOREM: The inverse transformation af'ombine(Z;, Z3, Z) is (74)
Combine ' (Z), if Z; andZ, are not elementary states.

PROOF: To prove thatCombine '(Z) is the inverse schema transformation of
Combine(Zy, Zy, Z) it is sufficient to show that

(1) the ranges are equivalent before and after the transformation.

Inverse schema transformations 80

(2) each state has a corresponding state with an equivalent range and the same
structure after the transformations,

(3) each event has a corresponding event with an equivalent event specification
after the transformations,

(4) each eventoccurrence has a corresponding event occurrence with equivalent
pre- and postconditions after the transformations and that

ad (1) The ranges are equivalent as only equivalence transformations are used.

ad (2) The transformation combines the atomic staiesnd 7, belonging to
a stateZs to an atomic stat& belonging toZs too. The disjunction of the ranges
of Z, andZ; is equivalent to the range &f. The inverse split® back toZ; and
75, belonging taZ s again.

ad (3) Events remain unchanged by the transformation and its inverse.

ad (4) The transformation combines two atomic states. As both states are
atomic states belonging to the same structured states not both states can be source
(target) states of an event occurrenggand 2, are replaced by in the source-
and target states of event occurrences. The guard of event occurrencesAaving
or Z, as source state is replaced by its precondition.

In the first steps the inverse transformation shifts the event occurrences of the
combined state to its structured state (which must be a generalizing superstate) us-
ing the transformation§pSg andUpTg. The guard of event occurrences having
Z as source state is replaced by the precondition. The shifted event occurrences
are collected in the séizg andExr.

After that 7 is splitted intoZ; andZ,. Then each event occurrence of the sets
Ezxgs and Ex is shifted back from the generalizing superstate using the transfor-
mationsDownSg and DownTg.

The application of the transformatiofi®Sg or UpT'g to an event occurrence
results into an event occurrence with equivalent pre- and postconditions. Using
UpSg replaces the guard of an event occurrence by its precondition.

Shifting down an event occurrence using the transformafiomn.Sg results
in n New event occurrences . ..e,, Wheren is the number of states covered
by the generalizing superstate. The guards of the event occurrgnces,, are
equivalent to the guard of the shifted event occurrence. The generalizing super-
state is replaced by a statg covered by the generalizing superstate in the source
states of ar;. However, as the states covered by a generalizing superstate must
be disjoint it is easy to see that— 1 of the event occurrences. . . e, have pre-
conditions resulting irfalse and therefore are deleted bByean.

Analogous happens by shifting an event occurrence down using the trans-
formation DownSg. N event occurrences are produced, the target states are

Inverse schema transformations 81

changed. The postcondition of an shifted event occurrence is replaced by the con-
junction of its original postcondition and the range of its new target state. Again
n—1 of the event occurrences. . . e, must have postconditions resultingfin/ se
as the states covered by a generalizing superstate must be disjoint. These event
occurrences are removed by the transformatidsun.

From (1) to (4) follows that the transformatiétombine="(Z) is the inverse
transformation ofCombine(7Z,, Z, Z) if Z; andZ, are not elementary states.

5.16 The inverse transformation of Split

The transformationSplit(Z, By, By, Z1, Z5) splits an atomic state/ into two
states”Z; and 7, (see page 49). The parametdss and B, are conditions of
the statesZ; andZ,. B; and B, have to be disjoint and their disjunction must be
equivalent to the range df. If 7 is not an elementary state it must not be a source
or target of an event occurrence. The inverse transformat@mishine(Z,, Z,, 7)
(see page 45).

THEOREM: The inverse transformation &fplit(Z, B, By, Z1, Z5) IS (75)
Combine(Zy, Zy, 7))

PROOF: To prove thaCombine(Zy, Z,, 7Z) is the inverse schema transformation
of Split(Z, By, By, Z1, Z) it is sufficient to show that

(1) the ranges are equivalent before and after the transformation,

(2) each state has a corresponding state with an equivalent range and the same
structure after the transformations,

(3) each event has a corresponding event with an equivalent event specification
after the transformations and that

(4) each eventoccurrence has a corresponding event occurrence with equivalent
pre- and postconditions after the transformations.

ad (1) The ranges are equivalent as only equivalence transformations are used.

ad (2) The transformation splits a stateinto two states”Z; and 7,. The
disjunction of the ranges df; andZ; is equivalent to the range &f. The inverse
combines?Z; andZ; to Z.

ad (3) Events remain unchanged by the transformation and its inverse.

ad (4)

(a) If Z are not an elementary state, it must not be source or target state of event
occurrences when applying the transformation. In that case event occurrences
remain unchanged by the transformation and its inverse.

Inverse schema transformations 82

(b) If Z is an elementary state event occurrences ha¥iag source or target
state are copied. Letr be an event occurrence havitifyas source or target
state. In the most general casgé i6 source- and target statey is replaced by
the event occurrences; ...ex,. The guards of these event occurrences remain
unchanged. However the postcondition of the event occurrences are replaced by
the conjunction of their original postcondition and the range of their new target
state. If an event occurrence afterwards has pre- or postconditions resulting in
false it is removed by the transformatiaiilean. However, it is easy to see that
at least one event occurrence remains.

The inverse transformation combines the stéateand 7, to Z. In event oc-
currences having/; or Z, as source state the guard of these event occurrences
are replaced by its precondition. However, as the rangé isfequivalent to the
disjunction of the ranges df; andZ,, which are disjoint, such preconditions are
equivalent to their original preconditions. The source and target states are adopted
resulting in the following set of event occurrences with their pre- and postcondi-
tion

exr; = (Z1.Range() A ex.Guard, Z;.Range() A ex.Postcondition)
exs = (Z1.Range() A ex.Guard, Zy.Range() A ex.Postcondition)
exs = (Zy.Range() A ex.Guard, Z,.Range() A ex.Postcondition)
exy = (Zy.Range() A ex.Guard, Zy.Range() A ex.Postcondition)

Note, that some of these event occurrences might have pre- or postconditions
resulting infalse and therefore, are deleted byean. In this case some of the
following explanations can be dropped.

After applying the inverse transformatidrican is used. In a first ste@'lean
combines the event occurreneas andex; to one occurrence by the disjunction
of their preconditions as they have the same event and equivalent postconditions.
Furthermorecz, andex, are combined. Afterwards the combined event occur-
rences can be combined once again as they have now equivalent preconditions,
resulting in one event occurrence. As only equivalence transformations are used
the combined event occurrence andhave equivalent pre- and postconditions.

All other cases follow immediately from this most general case.

From (1) to (4) follows that the transformatiatiombine(7,, Z,, 7Z) is the
inverse transformation diplit(Z, By, By, Z1, Z5).

5.17 The inverse transformation of Geng

The transformatiortzeng(Z; . .. Z;, G) produces a state generalization with the
generalizing superstate covering the states, . .. Z; (see page 52). The inverse

Inverse schema transformations 83

transformation iDecq(G) (see page 54)) .

THEOREM: The inverse transformation offeng(Z7;...7Z;,G) is (76)
Decg(G)

PROOF: To prove thatDecg(G) is the inverse transformation 6feng(7; . .. Z;, G)
it is sufficient to show that

(1) the ranges are equivalent before and after the transformation,

(2) each state has a corresponding state with an equivalent range and the same
structure after the transformations,

(3) each event has a corresponding event with an equivalent event specification
after the transformations and that

(4) each eventoccurrence has a corresponding event occurrence with equivalent
pre- and postconditions after the transformations.

ad (1) The ranges are equivalent as only equivalence transformations are used.

ad (2) The transformation indroduces a generalizing supelstateering the
statesZ; ... Z;. The inverse deleteS, the states7; ... 7; either belongs to its
original structured state or are elementary states.

ad (3) Events remain unchanged by the transformation and its inverse.

ad (4) Event occurrences remain unchanged by the transformation and its in-
verse.

From (1) to (4) follows that the transformatidiecg(G) is the inverse trans-
formation ofGeng(Z, ... Z;, G).

5.18 The inverse transformation of Decg

The transformatioecg(G) decomposes the a state generalization with the gen-
eralizing superstaté’/, which is not source or target state of event occurrences
(see page 54). The stat&s. .. Z; covered byG either became elementary states
or belongs to the structured statebelongs to. The inverse transformation is
Geng(Z ... 7Z;, G) (see page 52).

THEOREM: The inverse transformation of Decg(G) is (77)
Geng(Z, ... Z;,G) where each stats; € G.Covers.

PROOF: To prove thaDecg(G) is the inverse transformation 6feng(Z; . .. Z;, G)
it is sufficient to show that

(1) the ranges are equivalent before and after the transformation,

Inverse schema transformations 84

(2) each state has a corresponding state with an equivalent range and the same
structure after the transformations,

(3) each event has a corresponding event with an equivalent event specification
after the transformations and that

(4) each eventoccurrence has a corresponding event occurrence with equivalent
pre- and postconditions after the transformations.

ad (1) The ranges are equivalent as only equivalence transformations are.

ad (2) The transformation deletes the generalizing superStat€he states
7 ... 7Z; coverd byG became elementary states or belongs to the generalizing
superstate ofs. The transformation demands th@tdoes not belong to an ag-
gregating superstate. The inverse transformation introddas®veringz; . .. Z;
again.G belongs is an elementary state or belongs to its original structured state.

ad (3) Events remain unchanged by the transformation and its inverse.

ad (4) Event occurrences remain unchanged by the transformation and its in-
verse.

From (1) to (4) follows that the transformati@reng(Z; ... Z;, G) is the in-
verse transformation @¥. Decg.

5.19 Theinverse transformation of Gena

The transformatio’ena(Z, n, A) builds a state aggregation based upon the atomic
stateZ resulting in the aggregating superstdteThe aggregating superstate cov-
ersn generalizing superstates. Each of them covers one atomic state (see page 56).
The inverse transformation iBeca(A, Z) (see page 58).

THEOREM: The inverse transformation ofGena(Z,n,A) is (78)
Deca(A, Z).

PROOF: To prove thaDeca(A, Z) is the inverse transformation 6fena(Z, n, A)
it is sufficient to show that

(1) the ranges are equivalent before and after the transformation,

(2) each state has a corresponding state with an equivalent range and the same
structure after the transformations,

(3) each event has a corresponding event with an equivalent event specification
after the transformations and that

(4) each eventoccurrence has a corresponding event occurrence with equivalent
pre- and postconditions after the transformations.

Inverse schema transformations 85

ad (1) The ranges are equivalent as only equivalence transformations are.

ad (2) The transformation introduces a state aggregation based upon an atomic
stateZ. The inverse transformation deletes this state aggregation resulting in the
atomic state”.

ad (3) Events remain unchanged by the transformation and its inverse.

ad (4) The transformation replac&sby A in the source and target states of
event occurrences. The inverse transformation repladeg 7 in the source and
target states of event occurrences. Both states have equivalent ranges.

From (1) to (4) follows that the transformatiabeca(A, Z) is the inverse
transformation of7ena(Z, n, A).

5.20 The inverse transformation of Deca

The transformatioDeca(A, 7Z) decomposes a state aggregation with the aggre-
gating superstatd resulting into the atomic staté. The aggregating superstate

must covern generalizing superstates. Each of these generalizing superstates must
cover only one atomic state. Furthermore none of the states (extepthe state
aggregation must be a source or target state of an event occurrence (see page 58).
The inverse transformation Gena(Z, n, A) wheren is the number of states in
A.Covers (see page 56).

THEOREM: The inverse transformation ofDeca(A,Z) is (79)
Gena(Z,n, A), wheren is the number of generalizing superstates of
A.Covers .

PROOF: To prove thatGena(Z, n, A) is the inverse transformation dfeca (A, Z)
it is sufficient to show that

(1) the ranges are equivalent before and after the transformation,

(2) each state has a corresponding state with an equivalent range and the same
structure after the transformations,

(3) each event has a corresponding event with an equivalent event specification
after the transformations and that

(4) each eventoccurrence has a corresponding event occurrence with equivalent
pre- and postconditions after the transformations.

ad (1) The ranges are equivalent as only equivalence transformations are used.

ad (2) The transformation decomposes the complete state aggregation result-
ing into the atomic stat&. The aggregating superstate must covgeneralizing
superstates. Each of these states must cover exactly one atomic state. The inverse
transformation based updhintroduces exactly the same state aggregation.

Properties of the schema transformations 86

ad (3) Events remain unchanged by the transformation and its inverse.

ad (4) The transformation replacésby 7 in the source and target states of
event occurrences. The inverse transformation repladag A in the source and
target states of event occurrences. Both states have equivalent ranges. Other states
of the state aggregation must not be source or target states of event occurrences.

From (1) to (4) follows that the transformati@rena(Z, n, A) is the inverse
transformation ofDeca(A, 7).

6 Properties of the schema transformations

The main property of the presented schema transformation is that they are equiv-
alence transformation. The application of a schema transformation on a dynamic
model results into a diffent but equivalent dynamic model.

For each discussed schema transformation there exists an inverse schema trans-
formation, which, however, may be a complex transformations.

At last the presented set of schema transformations is complete. By that if
two dynamic models are equivalent according to our definition they can be trans-
formed into each other without changing the semantics of the dynamic models.

THEOREM: If the dynamic models\/; and M, are equivalent than (80)
there exists a sequence of schema transformations to trangfointo
M5 and vice versa.

PROOF: To prove that\/; can be transformed td/, (and vice versa) if\/; and
M, are equivalent it is sufficient to show that

(1) M, can be transformed to one elementary and atomic &iag using only
schema transformations,

(2) M, can be transformed to one elementary and atomic &tabg using only
schema transformations,

(3) Z, can be transformed such that for each event occurrenggetbére exists
an event occurrence df, with equivalent pre- and postconditions and vice
versa and that

(4) each basic schema transformation has an inverse transformation

ad (1) and (2) A dynamic model/ can be transformed to only one atomic
state using the following schema transformations:

shift all event occurrences éff down to atomic states using the corresponding
schema transformations

Properties of the schema transformations 87

repeat
for all generalizing superstatésof M covering only atomic statefo
combine the states covered Gyto one atomic state using the transforma-
tion Combine
end for
for all generalizing superstatésof M covering only one atomic stasnd
(G.Belongsto # aggregating superstati®
Decg(“)
end for
for all aggregating superstatdsf M covering only generalizing superstates
where each of them covers only one atomic stiate
shifts the event occurrences from the atomic state$ tsing the corre-
sponding schema transformations
Deca(A,2)
end for
until all states of\/ are atomic states
combine all atomic states @ff using the transformatiofiombine

First we shift all event occurrences down to atomic states using the corre-
sponding transformation®ownSg, DownT g, DownSa and DownTa. After-
wards we loop untill/ consists of atomic states only. These states can be com-
bined by a sequence Gfombine transformations to one atomic state.

Within the loop we search for generalizing superstates covering only atomic
states. These atomic states are combined to one atomic states by a sequence of
C'ombine transformations. Note, that due to the orthogonality and the fact, that at
least one state must belong to a structured state in each state hierarchy there must
be such a construct.

In the next step we search for generalizing superstates not belonging to an
aggregating superstate which covers only one atomic state. Such generalizing
superstates are decomposed/bytg resulting in one atomic state. Note that the
generalizing superstate is not a source or target state of event occurrences as we
have shifted down event occurrences to the atomic states.

At last we search for state aggregations having the structure demanded by the
transformationDeca, that is that the aggregating superstate only covers generaliz-
ing superstates which itself covers only one atomic state. In this situations we shift
the event occurrences of these state aggregations to the aggregating superstate and
decompose the state aggregating applying the transform@ties, resulting in a
new atomic state.

ad (3) Itis easy to see thaj can be transformed such that for each event oc-
currence of7; there exist an event occurrenceffwith equivalent pre- and post-
conditions as we have a schema transformation for each definition of the relation

Properties of the schema transformations 88

-
/\ 0
Combine/Z4,Z5,Z8)

) EmEesT
Decg(G3)

PaN aN 2N

(o] [=][=] [+ o [=
- -z

AN
Combine (Z1, 72, Z10)
Deca(A2,Z11) -
0
Combine(z3, Z11, Z12) [Gl ‘ [G2 ‘
AN AN AN

Deca(Al1,Z213)

Z13

Figure 13: Transforming a state hierarchie into ony atomic state

=. These transformations atéomSe, ComTe, SplitSe and SplitTe covering
the definitions (1) to (4) of the relatiah (compare definition 18, p. 19). For the
definition (5) and (6) oE no transformations are necessary.

ad (4) We refer to section 5 where we proved that each basic schema transfor-
mation has an inverse schema transformation.

From (1) to (4) follows that if\/; = M, than there exists a sequence of schema
transformation to transformy/; into A, and vice versa.

Consider figure 13 where we show a state hierarchie which is transformed to
one atomic state. Please note that we do not consider event occurrences in this
example.

In the first step we combine the states of the generalizing superé&tatesd
(5. Furthermore the generalizing superstatecan be decomposed as it consits
of only one atomic state.

In the second step we decompose the aggregating supesstate it fulfill

Conclusion and Future Work 89

the conditions demanded by the transformatiosra. The states”; and 7, are
combined to the statg,,.

In the next iteration we combine the statésand Z;; to one atomic state.
At last we decompose the aggregating superstatas afterwards it fulfill the
conditions demandet by the transformatibaca, resulting in one atomic state
Z13.

7 Conclusion and Future Work

We presented a formalization of a model for representing the dynamic behavior
of objects. We present a meta-model and define the (abstract) semantics of state
charts as partial specification of methods. This allows the definition of the equiva-
lence of dynamic models. The main contribution of this work is the development
of a complete set of basic schema transformation which maintain the semantics.
The presented set of transformations suffices to derive any equivalent dynamic
model from a given one.

There are several applications for the presented methodology. It serves as
sound basis for design tools. It enables analysts and designers to start from an
initial model and improve the quality of the model step by step. We can pro-
vide automatic support to achieve certain presentation characteristics of model. A
model can be transformed to inspect it from different points of view. In particular
a model suitable for conceptual comprehension can be transformed to a model
better suited for implementation similar to the transformation of static conceptual
models to logical models.

Our main application and motivation for the development of the model was to
support automatic integration of partial models. This is the extension of the view
integration approach in conceptual modeling to also incorporate dynamic models
([Fra9e6]).

References

[BCN92] C. Batini, S. Ceri, and S. B. Navath€onceptual Database Design:
An Entity-Relationship Approach. The Benjamin/Cummings Publish-
ing Company, Inc, 1992.

[Boo91] G. Booch. Object-Oriented Design with Applications. Benjamin
Cummings, 1991.

[CAB*94] D. Coleman, P. Arnold, S. Bodoff, C.Dollin, H. Gilchrist, F. Hayes,
and P. Jeremae&bject-Oriented Development: The Fusion Method.
Prentice Hall Object-Oriented Series. Prentice-Hall, Inc, 1994.

REFERENCES 90

[Fir96]

[FM94a]

[FM94b]

[Fra96]

[Harss]

[KS94]

[KS96]

[Mos95]
[OMT93]
[RBPT91]

[RumMO3]

D. G. Firesmith. The Inheritance of State ModdReport on Object
Analysis and Design (ROAD), 2(6):13 — 15, March 1996.

A. Formica and M. Missikoff. Constraint Satisfiability in Object-
Oriented Databases. In J. Eder and L.A. Kalinichenko, editors,
East/West Database Workshop, Workshops in Computing. Springer,
1994. Klagenfurt.

A. Formica and M. Missikoff. Correctness of Inheritance Hierarchies
in Recursive Object-Oriented Database Schemas. Technical report,
Consiglio Nazionale Delle Ricerche - Instituto Di Analisi Dei Sistemi
Ed Informatica (CNR-1ASI), 1994.

H. Frank.View Integration fur objektorientierte Datenbanken. PhD
thesis, Institutd@ir Informatik, Universiéit Klagenfurt, 1996.

D. Harel. On Visual Formalisms.Communications of the ACM,
31(5):514 — 530, May 1988.

G. Kappel and M. Schrefl. Inheritance of Object Behaviour -
Consistent Extension of Object Life Cycles. In J. Eder and
L. A. Kalinichenko, editorsProceedings of the Second International
East/West Database Workshop, pages 289 — 300. Springer, September
1994,

G. Kappel and M. Schrefl.Objektorientierte Informationssysteme.
Springer Verlag, 1996.

MOSAICO 3.5 User Manual, March 1995.
OMTool: User Guide 2.0, September 1993.

J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, and W. Lorensen.
Object-Oriented Modeling and Design. Prentice Hall International,
Inc, 1991.

J. Rumbaugh. Controlling Code: How to Implement Dynamic Mod-
els. Journal of Object-Oriented Programming, May 1993.

Appendix

8 Appendix

In this appendix we present the defined schema transformations in alphabetical

order with a short textual description.

Name

short textual description

Clean

Deletes event occurrences whose pre- and/or post-

conditions results irfalse and combines event o¢

currences with equivalent pre- or postconditions

by

the disjunction of their post- respectively precondi-

tions (page 62).

Combine(Zy, Zy, 7)

Combines two atomic staté§ andZ, to the state
Z (page 45).

ComSe(ey, es,¢€)

Combines the event occurrencesand e, with
equivalent preconditions and the same source-
target states te (page 41).

ComTe(ey, e, e)

Combines the event occurrencesand e, with

and

equivalent postconditions and the same souyfce-

and target states to(page 42).

ComEx

Combines event occurrences with equivalent pre-
resp. postconditions by disjunction of their post-

respectively preconditions (page 62).

Deca(A, Z)

Decomposes a state aggregation with the aggre-

gating superstatd resulting in an atomic statg.

Each state covered by must cover itself only one

atomic state. None of the states of the state ag

gation (exceptd) must occur in source or target

states of event occurrences (page 58).

Decg(G)

Decomposes a generalizing superstateot be-
longing to an aggregating superstaté.must not

be a source- or target state of event occurrences

(page 54).

DelEx

Deletes event occurrences whose pre- and/or post-

conditions results irfalse (page 61).

DownSa(Z)

Shifts an event occurrence from the aggregating

superstate ofZ to 7, if the aggregating super

state of7 is a source state of the event occurre
(page 37).

ce

Appendix

Name

short textual description

DownSas(Z)

Adds Z as a new source state to an event oc
rence, if the aggregating superstateZdg a source
state of the event occurrence (page 39).

cur-

DownSg(7)

Shifts an event occurrence having the generali:
superstate’ as source state to the states belong
to Z (page 29).

’ing
ing

DownSTg(Z)

Shifts an event occurrence having the generali:
superstate’ as source and target state to the stz
belonging toZ (page 33).

’ing
ates

DownTa(Z)

Shifts an event occurrence from the aggrega

superstate ofZ to 7, if the aggregating super

state ofZ is a target state of the event occurrel
(page 38).

ting

nce

DownTas(Z)

Adds Z as a new source state to an event oc
rence, if the aggregating superstateZof a target
state of the event occurrence (page 39).

cur-

DownTg(Z)

Shifts an event occurrence having the generali:
superstateZ as target state to the states belong
to Z (page 30).

’ing
ing

Gena(Z,n, A)

Build a state aggregation based upon the atq
state Z resulting in the aggregating superstate
which coversn generalizing superstates. To eg
generalizing superstate belongs one atomic S
(page 56).

mic

iIch
tate

Geng(Zy ... 7Z;, Q)

Produces a state generalization with a generali
superstat&y and the stateg; ... 7;, which must
be elementary states or belonging to the same
eralizing superstate (page 52).

zing

gen-

Spth(Z7 B17 B27 Zla ZQ)

Splits an atomic stat& into two statesZ; and 7,
(page 49). The parametefs and B, are condi-
tions of the stateg; andZ,. B, and B, have to be
disjoint and their disjunction must be equivalent
the range of”.

SplitSe(e, Py, Py, €1, €)

Splits an event occurrenesinto two event occur
rences; ande,. The parameter®, andP; are the
preconditions ot; ande,. Their disjunction mus
be equivalent to the precondition af (page 43).

[

SplitTe(e, Py, Py, e1,e3)

Splits an event occurreneento two event occur
rences; ande;. The parameter®, andP, are the
postconditions o; ande,. Their disjunction mus
be equivalent to the postconditionaf(page 44).

[

92

Appendix

—h L

Name short textual description

UpSa(Z) Shifts an event occurrence with as source stat
to the aggregating superstate/of (page 34).

UpSq(Z) Shifts an event occurrence having the stétas
source state to the generalizing superstateZg
(page 25).

UpSTa(Z) Shifts an event occurrence with as source an
target state to the aggregating superstateZo
(page 36).

UpSTy(Z) Shifts an event occurrence having the stdtas
source and target state to the generalizing su
state ofZ (page 28).

UpTa(Z) Shifts an event occurrence withas target state t
the aggregating superstateofpage 35).

UpTg(Z) Shifts an event occurrence having the statas

target state to the generalizing superstateZof

(page 26).

—

per-

93

