
- 1-

Acceleration of Distributed, Object-Oriented Simulations Using a Graph-
Optimizing Approach

Andreas STOPPER, Laszlo BÖSZÖRMENYI,
Institut für Informatik, Universität Klagenfurt,

Universitätsstraße 65-67, A-9020 Klagenfurt, Austria,
email: {andreas, laszlo}@ifi.uni-klu.ac.at

http://www.ifi.uni-klu.ac.at/cgi-bin/staff_home?andreas/
http://www.ifi.uni-klu.ac.at/cgi-bin/staff_home?laszlo/

Keywords
Distributed, Object-Oriented Simulation

Abstract
An approach to accelerate distributed, object-oriented
simulations is presented in this paper. It is based on the
assumption that a higher acceleration can be achieved in
an easier way, if the problem is alread tackled early at the
modeling stage [STOP 95]. The user adds hints about the
communication behavior and frequencies of object classes
to the simulation model. Based on this information, an
object graph is generated and distributed to a selected
number of partitions. The distribution phase is fully
automatic. As a result a distribution of the problem nearby
the communication optimum is generated. In the next
phase the distributed simulation program (code) is
generated. In a final step the user only has to code the
methods of the object classes and run the simulation. The
major advantage of this approach is that the user is freed
from the diff icult task of finding a good distribution for
the problem to be simulated, which is an important factor
for the overall performance of the simulation. Another
advantage is the possibilit y to vary model information
(hints) about the communication, and get a new (quasi
optimal) version of the simulation automatically
generated.

1. Introduction

In distributed simulation the event-oriented view is
predominant. There are the two main approaches - the
conservative strategy [CHAN 81, MISR 86] and the
optimistic strategy [JEFF 82, JEFF 83, JEFF 85]. A lot of
effort has been spent in research to generate variants of
these basic approaches to be faster under certain
circumstances or to find a problem class for which the
variant is most suitable.
Object-oriented concepts are well established in
sequential simulation from the modeling to the execution
stage. In distributed simulation these concepts are mainly
used at the programming stage of the simulation cycle.
There exist only a few really object-oriented distributed
simulation languages [BARG 94, BAEZ 90]. The
approaches which are chosen most frequently are the
ones which extend object-oriented general purpose
languages with language constructs suited for simulation
or offer libraries of building blocks which enable the user
to build simulation programs by composing them.

At the programming stage the user is still confronted with
the problem of how to distribute the objects to be
processed in a way that minimizes the interprocess
communication, the most critical factor for performance.
The larger the problem and the more meshed the
communication between objects gets, the less are the
chances to find good partitionings.

The key idea of our approach is to tackle the problem
early at the modeling stage. The basic model consists of
object classes and relations between them (Figure 1). It is
extended with information about communication
behavior between objects (instances of classes). In our
models we distinguish between static objects (these are
the components of the simulated system) and (streaming)
dynamic objects (these are objects from outside which
interact with static objects). The user adds the following
information to each class:

1. the number of instances of a class and the basic
workload of an instance

2. the communication behavior and pattern among the
objects of one class (only for static objects)

3. the starting point streams of dynamic objects in terms
of instances of static classes of objects through the
system (only for dynamic objects)

Further the user has to add the following information
about associations between different classes:

1. the communication of objects of different static
classes, the cost of this communication and its
frequency (these are static relations, Section 2)

2. the relation of dynamic objects to static objects is
expressed by two numbers telli ng how many static
objects of a class are contacted during the simulation,
but not exactly which ones, the second number
denotes the increase in workload for a static object,
which is caused by a contact (dynamic relations,
Section 2)

After the modelli ng stage the user can determine the
number of partitions (processes) which should be
generated or the maximum workload per partition. In the
latter case the minimum number of partitions is
generated, so that the maximum of the workload of all

- 2-

partitions is less or equal to the maximum workload
specified by the user.

The user model defines the basis from which the object
graph is generated, in which the vertices are the static
objects and the edges express the communication
between objects. Vertices and edges have weights, this is
the only way how workload and communication load and
frequency can be specified (Section 3). The object graph
is automatically partitioned by a graph partitioning
software. The result of the partitioning is a number of
subgraphs which form the input of the program (process)

generation phase. In order to be able to link the objects
together, the interfaces must fulfil some requirements. At
last the user has to supply the implementations for those
interfaces (the logic of the simulation) followed by a
compilation step to get executable processes.

2. The Model Language

Figure 1 shows a graphical example of a possible
simulation model which is extended with information
about the communication structure [STOP 95]. We have
not defined and implemented a graphic-based language.
Our proposed language can be considered as a simple,
typeless description-language which enables us to add the
necessary topological information to any given model.

The main function of the language is to describe the
communication behavior of all classes belonging to the
model and their relations to each other. Classes are
specified on an abstract level as a reference to an existing
external definition which has to be supplied by the user.
It is not the primary task of the language to specify
internal and inheritance information of classes, only the
communication structure is of interest. Figure 2 shows

the langauge representation of the graphical model of
Figure 1. The communication structure and behavior of a
system for the entrance management to a soccer stadion is
modelled.

There are static classes gates with 4 instances (to control
visitors), ticket windows with 20 instances where paying
visitors get their tickets and control points, where
seasonticket visitors are controlled and bought tickets are
rendered invalid (line 3-5 figure 2). Objects of class
ticket window share no communication (they are
independent), the members of class gate communicate

partially and the instances of class control point are fully
connected. For dynamic classes we only specify the
number of instances and the starting point (which has to
be a static class, in our case the gate objects, line 7-8
figure 2) where they enter the system. In the example
there exists only one static relation between gates and
ticket windows with no increase in workload (expressed
by 0 in the range pattern, line 10-12 figure 2) and
different edge costs between groups of nodes (expressed
as ranges). Dynamic relations express the number of
static objects to which a dynamic object has contact (line
14-18 figure 2). The first number in the relation expresses
the workload for one static object which is contacted by
the corresponding dynamic objects. As a consequence we
increase the workload of each static object by the
following formula ({ number of all dynamic objects of
one class} * { number of static objects of a class,
contacted in this relation} / { number of all members of
the static class} * { factor of workload} . Eg. for the
relation in line 13 we get the following result

workload =
3 4

4
1 60000

* *
*

pvisitors
=

visitor dynamic

static
weak

indep
static

ticket-window

gate visitor

control point

season-ticket vis. paying visitor

full
static

sel

visitor

enter

pay
pass

assigned

20 4

4

80000

5

Figure 1: An omt-like simulation model extended with communication information

- 3-

This means that the overall workload caused by all
members of the dynamic class is distributed evenly to all
members of the static class (regular distributed workload
maximizes the overall performance).

Based on the model the object graph for the problem is
generated. The object graph O(V,E) consists of a set of
vertices and a set of edges and is defined by the following
rules:

(1) ∀ ∈v V W vv: () is the weight of vertex v

(2) ∀ ∈e E W ee: () is the weight of edge e

(3) edges are bidirectional, self edges are not allowed
(same starting and end vertex)

(4) multiple edges between two nodes are not allowed
(multiple edges can be expressed by one edge and by
the sum of the single edge weights)

The weight of a vertex (workload) is interpreted as the
cost of its work. Edge weights are the way to express
frequency and the amount of data exchanged between
vertices.

In Figure 3 the resulting object graph of the example
modelled in Figure 2 is shown. The power index in a
vertex means the workload (for reasons of clearness we
have it specified for only one instance per class because
in this example all i nstances of a certain class have the
same workload).

3. The Optimization Phase

In section 2 the basic structure of object graphs has been
defined. The criteria of the optimization strategy in our
approach are to maximize local communication,
minimize external communication, and load balance the

work among processors of a distributed environment. An
equivalent problem in graph theory is known as
PARTITION and is defined for a Graph G(V,E) as
follows:

• G G G Gn= ∪ ∪ ∪1 2

• ∀ ≠ ∩ ≡G G i j G Gi j i j, , : Φ
• W v W wv

v G

v

w Gi j∈ ∈
∑ ∑≈() () ,

• Ex E⊂ =: Ex minimal , Ex contains edges with

vertices ending in different partitions

It was proved that this problem is NP-complete
[GARE 76] and so heuristic approaches with polynomial
runtime with solutions nearby the optimum are used to
solve this problem.

In our approach a spectral bisection partitioner with a
local refinement policy based on the Kernighan/Lin
algorithm for the optimization phase is used [KERN 70,
HEND 93, HEND 95].

If the user has developed the model there are two
possibilities to control the optimization process:

1. Specification of the number of partitions to be created
(this should correspond to the number of processors
in the users distributed environment)

2. Specification of the upper bound of workload for
partitions; based on this information the number of
partitions matching this constraint is automatically
generated

To be able to estimate the quality of a distribution we
have defined the following measures:

(* 1 *) MODEL EntranceManagement
(* 2 *) SCONST ticketwindows = 20; controlpoints = 4;
(* 3 *) SCLASS gate [4] 2 ([1..1] <4> [2..4] [2..2] <3> [3..4] [3..3] <3> [4..4]) END;
(* 4 *) SCLASS ticketwindow [ticketwindows] INDEPENDENT 1 END;
(* 5 *) SCLASS controlpoint [controlpoints] FULL 4 <4> END;
(* 6 *) SCONST pvisitors = 20000;
(* 7 *) DCLASS seasonticketvisitor [3 * pvisitors] PATHBEGIN gate END;
(* 8 *) DCLASS payingvisitor [pvisitors] PATHBEGIN gate END;
(* 9 *) SCONST gatecomm = 3;
(* 10 *) SRELATION gate ticketwindow
(* 11 *) 0 ([1..1] <gatecomm> [1..5] [2..2] <gatecomm> [6..10] [3..3] <gatecomm> [11..15]
(* 12 *) [4..4] <gatecomm> [16..20]) END;
(* 13 *) SCONST gateservice = 1; payservice = 7 * gateservice; controlservice = payservice;
(* 14 *) DRELATION seasonticketvisitor gateservice <4> gate END;
(* 15 *) DRELATION payingvisitor gateservice <4> gate END;
(* 16 *) DRELATION payingvisitor payservice <5> ticketwindow END;
(* 17 *) DRELATION seasonticketvisitor controlservice <4> controlpoint END;
(* 18 *) DRELATION payingvisitor controlservice <4> controlpoint END;
(* 19 *)
(* 20 *) END.

Figure 2: A model for the entrance management to a soccer stadion

- 4-

For a partition we define the following functions:

• Sv P N W i
i

P
P Vv: ()

| |
,→ ≅

=
∑ ⊆ ,

1
the workload of a partition

• S P N W j P V EP Ei e

j EP

: (), , ,→ ≅ ⊆ ⊆
∈
∑

{ : [,] , } ,j j x y x y P x y= ∧ ∈ ∧ ≠ the amount of

internal communication

• S P N W k P V Q V P Qe e: (), , , ,→ ≅ ⊆ ⊆ ∩ ≡∑ Φ
{ : [,] } ,k k x y x P y Q= ∧ ∈ ∧ ∈ the amount of external
communication

• S P N S SP v i e: → ≅ + + S , the full weight of a
partition

• S N R
Se

Si
Si or SiQ: , ,→ ≅ > =0 0 0 if , the

communication ratio of external and internal
communication

For the whole model we define:

• V P P P i j i j ni

i

n

i j= ∀ ≠ ≤ ≤
=1

1U , , , , , :

S P S Pv i v j() ()≈

2 3135002 4 5

7 86 9 10

12 1311 14 15

17 1816 19 20

gates

ticket
 windows

control
points

1560005 2 3 4

4

4
4

44

4

33333

180003 2 3 44

4
4

3 3
3

3

3 3 3 3 3
33333

3 3 3 3 3

Figure 3: Object graph for the entrance management model

2 31 4 5

7 86 9 10

12 1311 14 15

17 1816 19 20

gates

ticket
 windows

control
points

1 2 3 4

4

4
4

44

4

33333

1 2 3 44

4
4

3 3
3

3

3 3 3 3 3
33333

3 3 3 3 3

P4

P1P2P3

Figure 4: object graph decomposed into 4 partitions

- 5-

• MS V N S P
i

n
P P i: ()→ ≅

=
∑

1
, the whole weight of the

model should be a minimum

• MS R R
n

S P
i

n
n P P S PQ Q i i i i i: (), : ()#→ ≅

=
∑ =

1

1
0,

the average partition communication ratio, the
theoretical optimum for this measure is 0 (fully
independent processes)

The results of partitioning the example object graph with
the instruction to generate 4 partitions are shown in
Figure 4, the numerical computations for this distribution
are presented in Table 1.

P1 P2 P3 P4
Sv 560005 1120010 560005 1020052
Si 0 4 0 81
Se 12 16 12 0
SP 560017 1120030 560017 1020133
SQ 0 4 0 0

Table 1: Results of the optimization process

For the whole model we get:

 MSP: 3260197 (horizontal sum of line 4 in Table 1)
 MSQ: 4 (average of line 5 in Table 1)

The results for this small model are somewhat distorted
regarding the balance of workload between partitions but
this distortion stems from the small size of the model. We
have only 28 vertices and 32 edges. The global minimum
MSP is truly a minimal value. We did also computations
on larger models eg. 330 vertices and 7535 edges
distributed over 8 partitions and we got an imbalance
between the maximum and minimum workload which is
less then 5 percent which conforms to the assumption of
an even distributed workload.

4. Conclusions

In this paper an approach for the acceleration of
distributed simulations has been presented. The approach
uses graph-optimizing methods as optimization strategy.
The mapping of a model onto an object graph with an
optimization step has been shown. The key advantages of
the presented approach are the reduction of development
time, and a quasi optimal distribution of large models to
distributed systems. We have developed a Compiler for
the language which checks the syntax and semantics of
models, computes the formulas of section 3 and generates
an import and export table for objects in a certain
partition. Exported objects are true instances in a given
partition and imported objects are handles to objects
which are created and exported by other partitions and
activated by RPC. We have defined the structure and
naming conventions for interfaces which are linked to the
distributed program.

Currently we are dealing with the generation of the
distributed program code. As the target language for our

compiler we have chosen Modula-3 [NELS 91]. The
communication between partitions (running on different
hosts) is done by Network Objects [BIRR 94] - a
powerful communication package which is also written in
Modula-3. Our approach is independent from the
underlying simulation environment, currently we are
using a simulation package which implements the
conservative strategy [MISR 86]. This package is part of
a M.S. thesis. It is process-oriented and also written in
Modula-3.

References

[BAEZ 90] D. Baezner, G. Lomow, B.W. Unger: „Sim++: The
transition to distributed simulation“, Proc. of SCS
Multiconference on distr. Simulation, San Diego, CA,
1990

[BARG 94] R.L.Bargodia, W.T.Liao:“Maisie: A language for
design of efficient discrete-event simulations“, IEEE
Transactions on SW-Engineering, April, 1994.

[BIRR 94] A. Birrell, G. Nelson et al: „Network Objects“,
Digital Systems Research Center, Palo Alto, CA,
1994

[CHAN 81] K.M. Chandy, J. Misra: „Distributed simulation via a
sequence of parallel computations“, Comm. of the
ACM, Vol 24, No. 4, 1981

[GARE 76] M. Gare, D. Johnson, L. Stockmeyer: „Some
simplified NP-complete graph problems“, Theoretical
Computer Science, 1 (1976)

[HEND 93] B. Hendrickson, R. Leland: „Multi- dimensional
spectral load balancing“, Proc. 6th SIAM Conf.
Parallel Processing for scientific Computing, 1993

[HEND 95] B. Hendrickson, R. Leland: „An improved spectral
graph partitioning algorithm for mapping parallel
computations“, SIAM J. Sci. Computing, Vol 16, No.
2, 1995

[JEFF 82] D.R. Jefferson, H. Sowizral: „Fast concurrent
simulation using the time warp mechanism, part I,
local control“ , Rand Corporation, Santa Monica
1982

[JEFF 82] D.R. Jefferson, H. Sowizral: „Fast concurrent
simulation using the time warp mechanism, part II,
global control“ , Rand Corporation, Santa Monica
1983

[JEFF 85] D.R. Jefferson, H. Sowizral: „Fast concurrent
simulation using the time warp mechanism“, Proc. of
the SCS Distributed Simulation conference, San
Diego, 1985

[KERN 70] B. Kernighan, S. Lin: „An efficient heuristic
procedure for partitioning graphs“, Bell System
Technical Journal 29, 1970

[MISR 86] J. Misra: „Distributed discrete-event simulation“,
Computing Surveys, Vol. 18, No.1, 1986

[NELS 91] G. Nelson: „Systems Programming with Modula-3“,
Prentice Hall Inc, Englewood Cliffs, NJ, 1991

[STOP 95] A. Stopper, L. Böszörmenyi: „A Distributed, Object-
Oriented Simulation System Based on Hints“, Proc.
of the EUROSIM Congress 95, Vienna, 1995

