
Workflow Recovery �

Johann Eder, Walter Liebhart
Institut für Informatik

Universität Klagenfurt, Austria
email:feder,walterg@ifi.uni-klu.ac.at

Abstract

Workflow management systems (WFMSs) more and more
become the basic technology for organizations to perform
their daily business processes (workflows). A consistent and
reliable execution of such processes is crucial for all orga-
nizations. We claim that this can only be achieved by inte-
grating transactional features - especially “workflow trans-
actions” - into WFMSs. Based on this idea, we discuss in
detail advanced workflow recovery concepts which are nec-
essary for the reliable and consistent execution of business
processes in the presence of failures and exceptions. Ad-
ditionally, we distinguish between different workflow types
and present adequate recovery concepts for each of them.

1. Introduction

Business processes typically consist of multiple activi-
ties which have to be performed in a valid sequence. Activ-
ities themselves, represent any unit of work (e.g., a specific
application program, a phone call) which may be charac-
terized as heterogeneous, autonomous and / or distributed.
Workflow management systems (WFMSs) are expected to
control the execution of such business processes. In this
sense, a WFMS represents a cooperative information sys-
tem which handles the co-ordination and co-operation be-
tween the activities, constituting a business process. Within
the process each activity has a more or less strong influence
on the overall success of the process. Severe problems may
arise, if failures occur (e.g. an activity does not behave in
the expected manner). WFMSs should be able to react flex-
ible on failures and they should ensure a correct and reliable
execution of processes in the presence of concurrency and
failures. But as has been pointed out in [11], almost none
of the current commercial WFMSs support such a function-
ality. Similar problems have been discussed in the database

�This research was supported by the project “Workflow Transactions”
sponsored by CSE-Systems, Computer & Software Engineering GmbH,
Klagenfurt, Austria

area where the idea of transactions has solved many of the
problems. Unfortunately, these concepts are not directly ap-
plicable in the workflow domain but they offer at least valu-
able ideas and concepts which are relevant for WFMSs. To
guarantee reliable and consistent workflow executions the
introduction of some kind of transactions in WFMSs is un-
avoidable. Because of the differences to traditional database
transactions and also to most of the advanced transaction
models we call themworkflow transactions. In contrast to
advanced transaction models, workflow transactions focus
on issues of consistency from the business point of view
rather than from a database point of view. A motivating
example for the introduction of workflow transactions into
WFMSs is illustrated in figure 1.

B

A

DC

E B-

A-
A-

B-

C-
C ab

A-

A-

B-

C-

C- D -

A-

A-

B-

D -

A-

B-A-

Dab Dab

A-

C-

A-

D - undo D

Dab
abort D

or-connection

F

S S F

S

DC

E

F

A

B

S F

S F

...

....

and-connection

s success

f failure

Figure 1. Motivation for Workflow Transac-
tions

katja
published in: First IFCIS Intl. Conf. on Cooperative Information Systems (CoopIS'96), IEEE Computer Society Press, 1996, pp. 124-134

This example stresses, how complex a rather simple
workflow can become by trying to handle possible failures
explicitly in the process description. The workflow on the
right side within the example represents the simple work-
flow on the left side extended with possible failure paths.
Of course, it is neither possible nor intended by most work-
flow designers to modelall failures but the process descrip-
tion will in any case become complex very soon - espe-
cially if the original process is more complex. By introduc-
ing workflow transactions into WFMSs this problem can
be minimized considerably because workflow transactions
support the automation of failure handling during runtime
(this means that the right side in figure 1 is computed auto-
matically during runtime).

Within this paper we present a detailed overview of
workflow recovery concepts which are necessary within a
transaction based workflow execution. The necessity and
advantages of workflow transactions has already been dis-
cussed in [8] by introducing the workflow model WAMO.
Based on this model we point out relevant recovery con-
cepts and we also introduce recovery concepts which go be-
yond the model. In section 2 theWorkflow Activity MOdel
WAMO is briefly discussed and related work is presented.
Section 3 points out specific workflow characteristics which
influence workflow recovery. In section 4 we discuss work-
flow recovery concepts in detail. Section 5 describes possi-
ble realization concepts for workflow recovery and section
6 concludes the paper.

2. Current Approaches

In this section we present a short overview of WAMO
since the model is used to illustrate recovery concepts. Ad-
ditionally, we discuss related work where we mention rele-
vant approaches in the area of transaction based workflows.

2.1. The Workflow Activity Model WAMO

The workflow activity model WAMO [8] enables the
workflow designer to easily model complex business pro-
cesses in a simple and straightforward manner. The ba-
sic idea is to decompose a complex business process into
smaller work units (activities) which themselves consist of
ideally preexisting tasks. Additionally, simple control struc-
tures enriched by transactional features allow the definition
of failure-tolerant processes.

WAMO’s metamodel not only incorporates traditional
workflow modeling features but also transactional features.
A workflow typically consists of multipleactivities, data
objects and agents. Activities represent any abstract de-
scription of work units in the business process. Data objects
(e.g. complex forms) represent the information which is ex-
changed between activities. An agent is either a human or

any computer system which is responsible for the execution
of an activity.

WAMO supports hierarchical structuring of workflows
by usingcomplex activities which consist of other (sub-)
activities, representingsubprocesses. Furthermore, a cer-
tain activity may take part in several other activities, es-
pecially several times in an other activity which enhances
re-usability. New workflows can easily be composed by
re-using activities. Additionally, complex activities support
the modeling of control structures (behavior) over activities.
Up to now, WAMO offers the following simple but power-
ful control structures:sequence, parallel, nesting, ranked
choice and free choice. The choice constructs enable the
modeling of alternative (contingency) activities. An alter-
native activity is executed only if the immediate previous
activity fails. In contrast to a ranked choice, the execution
order in a free choice list is computed dynamically (at run
time). Elementary activities - calledtasks - are activities
which are not further decomposable. From the workflow
designers point of view, they are black boxes which finally
perform the real work within a workflow. For the rest of our
discussion we do only distinguish between tasks and activ-
ities if it is really necessary. If we use the term activity, it
should be clear from the context whether a complex activity
is meant or an elementary task or both.

At run time activities are associated with unique iden-
tifiers and the previous described control structures define
the execution order of the activities. Activities and tasks
have different execution states during execution (e.g. failed,
compensated) and, additionally, they are able to react on
specific events (e.g start, compensate). The correct exe-
cution order of activities is fully under the control of an
advanced transaction manager. The underlying advanced
transactional features are very easy to handle by the work-
flow designer during process specification, as for example:

� by control structures: Control structures are simple but
expressive mechanisms to handle activity coordination
requirements (intra-workflow dependencies).

� by transaction specific features: Tasks can be specified
more detailed by thestorno type and force parame-
ter. Additionally, activities which are not essential for
a successful termination of the corresponding parent
activity can be defined asnon vital.

WAMO’s transactional features focus primarily on the
consistency of business processes in contrast to simi-
lar features within advanced transaction models, as for
example in [23, 5], which focus on the consistency of
(multi-) database systems.

Thestorno type andforce parameters of a task are nec-
essary for workflow recovery (i.e., for compensation). With

thestorno type the workflow designer specifies how a spe-
cific task behaves in case of a compensation. There are four
possibilities: Typenone (1) means, that the committed task
does not need to be compensated because it is not neces-
sary from an application point of view. Typeundoable
(2) means that a committed task can be undone by a cor-
responding compensation task without any side-effects, in
the sense of an inverse operation. Typecompensatable (3)
means that the compensation of a task leads to some side-
effects (e.g. money transfer and back transfer with transfer
fees). Typecritical (4) means that a task which has already
terminated cannot be undone or compensated afterwards be-
cause its effects are irreversible within the current context
(e.g., drilling a hole, mailing a sensitive information).

Some tasks in real world situations are always expected
to terminate successfully (e.g., open an account, print a doc-
ument) - although it may take several attempts. Therefore
WAMO offers the task specific parameterforce. Forcable
tasks simplify recovery actions in case of a failure because
they can be repeated and re-executed several times (speci-
fied by the workflow designer) until a positive acknowledg-
ment is achieved - otherwise, process execution stops for
manual intervention.

Another important transaction relevant feature is the con-
cept ofvital andnon vital activities in order to specify the
importance of a specific subactivity for its parent activity.
If a non vital activity fails, the workflow can continue and
make forward progress without any compensation actions.
Normally, all activities within a workflow are essential and
therefore vital for the parent activity. In any case, if a vital
activity fails then the compensation mechanism is activated
(this concept is explained in detail in section 4).

Most of the previous mentioned concepts are currently
integrated into our prototype WFMSPanta Rhei [7].

2.2. Related Work

The integration of transactions into workflows was mo-
tivated by research efforts concerning database transaction
models for advanced applications, as for example summa-
rized in [10]. As stated in [2] most of these models are
developed from a database point of view, where preserving
the consistency of the shared database by using transactions
is the main objective. A basic fact behind these models is
the attempt to use traditional transactions as building blocks
and the focus on specific applications with sometimes rather
restrictive transactional features (e.g. rigid compensation
policies in [26] which restrict the applicability in the work-
flow domain. Therefore the concepts of advanced transac-
tion concepts cannot be applied directly.

Major work in expanding advanced transaction models
for workflow requirements was done in the area of transac-
tional workflows [24, 13, 4]. Nevertheless, this work still is

mainly influenced by a database point of view which leads
to rather restrictive models.

Modern WFMSs have to support complex, long-running
business processes in a heterogeneous and/or distributed en-
vironment. As has been pointed out in [11] most of these
systems lack the ability to ensure correctness and reliability
of the workflow execution in the presence of failures. How-
ever, currently there are several approaches to overcome
this shortcoming. In the METEOR project [18] a computa-
tional model for workflows is presented which captures the
behavior of both, transactional and non-transactional tasks
of different type. Additionally, two languages have been
designed to address the important issues of inter-task de-
pendencies, data formatting, data exchange, error handling,
and recovery. Another example is IBM’s Exotica project
[22, 3] which aims at exploring several research areas from
advanced transaction management concepts to client/server
architectures and mobile computing within the context of
workflow management. The goal is to incorporate at least
some of the results into the commercial WFMS IBM Flow-
mark1.

Concerningworkflow recovery there are only a few re-
search activities to name. A first discussion was presented
in [15]. Additionally, the necessity of workflow recovery
concepts is slightly addressed in [11] and [16]. More spe-
cific work in this area is presented in [19, 3]. Especially,
the concept of business transactions, introduced in [19], de-
scribes some basic workflow recovery ideas in detail (above
all partial backward recovery). Nevertheless, there exists
no broad discussion about workflow recovery and this pa-
per may be seen as a first deeper step into this important
workflow area.

3. Workflow Characteristics influencing Work-
flow Recovery

In order to discuss workflow recovery concepts in detail
it is first necessary to analyze the areas which influence the
recovery process. First, we believe that it is not possible
to present a general solution for workflow recovery because
there exist different workflow types which demand different
recovery approaches. Therefore, we present very briefly a
workflow classification architecture which helps us to iden-
tify possible workflow types. Second, recovery actions are
only necessary because of the existence of failures and ex-
ceptions. Therefore, it is absolutely necessary to analyze
at least the most important failure types which may occur
within workflow execution.

1Flowmark is a trademark of International Business Machines Corp.

3.1. Workflow Classification

Up to now there exists no general accepted classifica-
tion framework for workflows (processes) and workflow
systems. Since every classifications focuses on some spe-
cific aspects, it will always be difficult and probably im-
possible to give a commonly accepted classification. In
[11] workflows are characterized along a continuum from
human-oriented to system-oriented workflows. In the first
case, a workflow is mainly performed by human agents.
The WFMS is expected to support the coordination and
collaboration of humans who are responsible for consistent
workflow results. In the second case, workflows are charac-
terized as highly automated and computation-intensive pro-
cesses which involve the integration of heterogeneous, au-
tonomous and / or distributed information systems. Since
human influence is very limited, system-oriented workflows
must include software for various concurrency control and
recovery techniques to ensure consistency and reliability.

Another classification distinguishes between ad hoc, ad-
ministrative, and production workflow [21]. The main dif-
ferences between these types comprise (1) repetitiveness
and predictability of workflows and tasks, (2) how the work-
flow is controlled (e.g., human controlled or automated) and
(3) requirements for WFMS functionality. According to
the previous classificationad-hoc andadministrative work-
flows are closer to the human-oriented end of the spectrum
whereasproduction workflows (e.g. trip reservation, loan
requests, insurance claims or telecommunication processes)
represent more complex business processes which commu-
nicate with different information systems and are hence
closer to the system-oriented end of the continuum.

As we will see at the end of this subsection, our classifi-
cation approach [9] leads to similar results but it points out
some specific features which are later relevant within the re-
covery concepts. The classification is based on two pillars:
the static and the dynamic aspects of a workflow.

3.1.1 Static Aspects of a Workflow

The static aspects of a workflow comprise all components
which can be extracted from a workflow metamodel. Ac-
cording to WAMO’s metamodel[8] a workflow essentially
consists ofactivities, data objects andagents (refer to sec-
tion 2.1.). We will now look more detailed at these compo-
nents:

� Activities: Activities - especially tasks - describe the
real work items in a process. In a first step, we have
to distinguish between manual and automatic (either
interactive or non interactive) tasks.Manual tasks are
performed mainly by human agents. This includes in
particular the manual start and manual termination of

tasks. The work which is performed within a man-
ual task is more or less fully under the control of the
human agent (e.g. making a phone call, writing a let-
ter). Hence, the WFMSs support in performing this
work is rather limited and in general reduced to pro-
vide the agent with appropriate standard tools (like a
text processor). On the other side,automatic tasks can
be much better supported by a WFMS in the sense
that the system can start automatically a task, com-
pute the next step in the process and so on.Interac-
tive automatic tasks are associated withspecific pro-
grams (software applications) which are executed after
a responsible human agent has selected the task from
his worklist. During task execution the agent commu-
nicates interactively with the associated program. As
soon as the program terminates also the task reaches its
termination state.Non interactive automatic tasks are
specific batch programs which are fully executed un-
der the control of the WFMS - the program is started
automatically by the WFMS and executed completely
without human interaction.

� Data objects: Within a workflow different kinds of
data - primarily depending on how much the WFMS
knows about the semantics of the data - are relevant.
We have to distinguish between data which is manipu-
lated within tasks and data which is needed for process
execution (scheduling, etc). Of course, these different
kinds of data are not necessarily disjunctive (e.g., the
amount of a loan in a loan request workflow is used
within tasks but also for workflow scheduling in order
to find the correct path in the process). More precisely,
in a workflow application we find the following data
types:

– Application (case) data: The application data is
consumed and produced by the various tasks (ap-
plications) in a workflow. It is further reasonable
to classify application data intostructured, un-
structured or semi-structured data in order to in-
vestigate how easy this type of data can be used
for process specification. Based on this classifi-
cation it is easy to conclude that structured data
(e.g. formatted data in a form) is not only suitable
for application specific usage but also for process
definitions.

– Process data: Process data are necessary to de-
fine and control the execution of workflows. Typ-
ical examples are the state of tasks, the start time
of a task and so on.

� Agents: An important function of a WFMS is to assign
tasks to agents who are eligible to carry them out. The

modeling and definition of agents composes very sim-
ple but also very sophisticated approaches [6]. Within
our classification we distinguish only between human
and machine agents.

3.1.2 Dynamic Aspects of a Workflow

The execution of a workflow mainly comprises the answer
to the following question:What (activity) has to be exe-
cuted when, by whom and with which data? In [14] these
W-questions are termed as functional (what), behavioral
(when), organizational (whom) and informational (which
data) perspectives. We want to emphasize that the temporal
execution order of the various activities within a workflow
is a central topic. Based on this perception, we informally
define a workflow asthe definition and/or execution of cor-
rect activity-sequences. Such sequences can be defined as
follows:

� Ad hoc and without a corresponding formalism:
Within this approach correct activity sequences are de-
termined by human agents ad hoc during workflow
execution (at run time). Additionally, we distinguish
whether the correct sequences are defined withprede-
fined activities or not. In the first case, a workflow is
composed of already defined parts at run time while in
the other case the agents have the possibility to define
new activities (and hence workflows) during run-time.

This concept is also valid for WFMSs which are not
based on activities but on agents (e.g. email based
WFMSs). In this terminology each agent has to de-
cide who should be triggered next in order to perform
some work (which corresponds to an activity).

� With a corresponding formalism: Valid activity se-
quences are defined during workflow modeling time
(at build-time) by the workflow designer. There-
fore most WFMSs offer corresponding modeling tools
which allow the definition of business processes based
on a special formalism. Different formalisms are dis-
cussed in [9]. Main differences between the various
formalisms depend (1) on the available process infor-
mation and (2) on the access to (structured) application
data.

3.1.3 Workflow Types

By investigating several workflow systems (and the pro-
cesses they support) according to our classification, we
identified at least two main types of workflows which we
call document-oriented and process-oriented workflows.

� Document-oriented workflows are primarily com-
posed of manual tasks andunstructured or semi-
structured data elements (especially documents). Task

ordering and coordination is either predefined roughly
at build-time or on the fly during process execution.
Hence, the execution of document-oriented processes
is mainly controlled by the workflow participants.
They decidewhen a specific task is performed,which
task should be executed next (in case there is a set of
potential successor tasks) andwho should execute the
next task. The requirements for WFMSs in this area
are to support the coordination and collaboration of
humans who are responsible for consistent execution
results.

� Process-oriented workflows are much more populated
by automatic tasks which manipulate above allstruc-
tured or semi-structured data objects. As the processes
tend to be very complex, adequate formalisms are nec-
essary to define them. WFMSs which handle such pro-
cesses are expected to control and coordinate the exe-
cution of the tasks with little or no human interven-
tion. Therefore, various features concerning robust-
ness, concurrency and recovery are necessary to guar-
antee a reliable and consistent execution. Of course,
these requirements also restrict the user flexibility in
executing workflows.

3.2. Failure and Exceptions

Many practical experiences have proven that the han-
dling of failures and exceptions requires a lot of time and
costs. Because of this reason, the adequate treatment of this
problematic is a key success factor for cooperative infor-
mation systems, especially for WFMSs. Since there are so
many different types of failures we first identify potential
failure sources and after that we give a summarizing classi-
fication of various failure classes.

Potential failure sources in a workflow comprise (1)
workflow engine failures, (2) activity failures and (3) com-
munication failures (see figure 2).

EA

C

B

D

WF-Controller
(1)

(2)

(3)

Figure 2. Basic failure sources

1. Workflow engine (controller) failures, like a system
breakdown, lead to an abnormal termination of work-
flow execution. The goal of recovery now is to re-
store the “latest consistent” state of the system in or-
der to resume process execution. This may be exactly

the state at the time the failure occurred or the latest
consistent state immediately before the failure but also
a new consistent state after the failure. The first two
cases can be handled by some kind ofcrash recovery.
This means for example, that all worklists are brought
into the same state as they had been at the time the
failure occurred or into a previous consistent state (see
also [20]). The third case means that activities which
had beenactive somewhere on a client at the time the
failure occurred, may have terminated in the mean-
time. Such activities should not be aborted in case of a
workflow engine failure. Instead crash recovery must
be extended by some kind offorward recovery which
brings the system into the new state. After updating
the worklists, process execution can be continued. To
reduce the amount of work in case of recovery after
a workflow engine failure it is advisable to keep pro-
cess relevant information within a database manage-
ment system in order to use the recovery facility of the
database. The prototype workflow system Panta Rhei
[7] is build on top of a DBMS which simplifies crash
recovery treatment. The problem of distributed activi-
ties which are executed autonomously during a work-
flow engine failure is more precisely discussed in [1].

2. Activity failures comprise failures within an activity.
Activity failures are the primary subject of this paper
and are therefore discussed more precisely in the rest
of this paper.

3. Communication failures between the scheduler and ac-
tivities are the source of another type of failure within
workflow execution. The coordinated execution of
distributed activities demands a stable communica-
tion between scheduler and activities. If, for exam-
ple, the scheduler starts an activity, then the scheduler
wants to be informed about the result of this opera-
tion. Middleware-components, like TP-monitors [12]
support the handling of such requirements.

As stated before, within this paper we concentrate our
discussion primarily on activity failures and to some extend
on communication failures. For that purpose, we will now
present very briefly the results of a failure classification we
discussed in [8]. There, two main classes of failures con-
cerning activities have been identified: System failures and
semantic failures.

� System failures comprise information technology and
application failures which lead to an abnormal termi-
nation of an activity (e.g. system breakdown, division
by zero, deadlocks) -the activity aborts.

� Semantic failures comprise exceptionswithin the busi-
ness process (i.e. they are not caused by informa-

tion technology) which lead to a negative (but not ab-
normal) termination of the activity (e.g., the activity
hotel reservation fails, because the hotel is already
over-booked, the hotel reservation is interrupted by the
user). If an activity is involved in a semantic failure
thenthe activity fails.

4. Concepts for Workflow Recovery

A business process typically consists of multiple activi-
ties and each of these activities has a more or less strong in-
fluence on the overall success of the process. Severe prob-
lems may occur, if an activity does not behave in the ex-
pected manner. Since workflows may be very complex and
activities are in general highly distributed, heterogeneous
and autonomous,advanced recovery concepts are neces-
sary for adequate failure- and exception handling. WFMSs
are expected to support the reliable and consistent execu-
tion of workflows, but as has been pointed out in [11], up to
now, most WFMSs lack such a functionality. There are only
a few notable exceptions, such as IBM FlowMark [22, 3]
which offers at least some primitive recovery concepts.

Summing up, the main goal of workflow recovery is, to
restore - automatically if possible - the most recent consis-
tent process state after a system or semantic failure so that
as few as possible work performed over long-durations is
lost and process execution can be continued.

4.1. Recovery after System Failures

A system failure causes a non regular, abnormal termi-
nation (abort) of one or moreactive activities, more pre-
ciselyactive tasks. If such a situation happens, the WFMS
cannot proceed with its regular process execution. Instead,
the workflow recovery manager (WRM) has to applyfor-
ward recovery which comprises crash recovery and forward
execution.Crash recovery means that all inconsistent exe-
cution results of the interrupted and probably half-way ex-
ecuted tasks are removed. Therefore, in most cases some
kind of rollback is necessary. In general the WRM is not
responsible for a task’s internal rollback process because
tasks are treated as black boxes and hence it is expected
that they are responsible themselves for a correct recovery
(they should have their own local recovery system). Since
we cannot always presume such an ideal behavior (tasks are
not necessarily failure atomic) the WRM should be be able
to handle such situations.Forward execution means that
process execution is resumed from the “closest consistent”
point where the failure occurred. This implicitly means that
forward execution is applied after crash recovery.

Based on the previous concepts we now investigate spe-
cific recovery techniques within workflow execution. This
investigation distinguishes between different task types:

� Automatic tasks: Forward recovery concerning
aborted automatic tasks comprises:

– Restart of the same task. This is possible if the
interrupted task is failure atomic (e.g. a DB-
transaction) which means that the task is rolled
back automatically or if such a rollback is not
necessary because the task is idempotent (e.g. a
task which formally checks a loan request form).
An idempotent tasks can be executed one or more
times without changing the result which is a very
comfortable feature within workflow execution.

– Start of an alternative task. If the same task can-
not be restarted after a system failure it may be
necessary to start another task instead which re-
moves inconsistent side effects of the interrupted
task and which tries to perform the original goal
in an alternative way.

– Manual intervention: If a task is not failure
atomic and there exists no alternative task then a
manual intervention is necessary. This means for
example, that the WRM informs a human agent
(for example the process owner) who repairs the
failure.

� Manual tasks: Forward recovery for manual tasks pri-
marily must be performed by the workflow participant
who is responsible for the task (e.g. if a phone call
is interrupted then it is the agent who is responsible
to take appropriate recovery measures (e.g. to make a
new phone call, to restart the word processor and load
the file manually)). There are only limited possibilities
to automate forward recovery for manual tasks.

To increase the success rate of a correct and automatic
task recovery after a system failure the WRM should be able
to restart and retry the same (or an alternative) task several
times. The number of possible restarts must be defined by
the workflow administrator. If a recovery of an interrupted
task is not feasible within the specified retry or time limits
then the recovery procedure for semantic failures is invoked
(i.e. the task fails andthe system failure migrates to a se-
mantic failure).

4.2. Recovery after Semantic Failures

A semantic or logical failure occurs, if (a) anactivity
fails (commits unsuccessfully) or (b) an authorized agent
wants toundo (at least parts of) an active process. For the
first case, the WRM has to decide whether an inconsistent
state is reached or not. Depending on this decision either a
complex recovery procedure has to be started or process ex-
ecution can be continued. The decision whether the failed

activity has produced an inconsistent state for the overall
process or not depends on the “importance” of the activity
in the process. For this purpose, the workflow designer has
to define during process definition whether an activity isvi-
tal or not. If a vital activity fails then an inconsistent state is
reached. This fact, as well as the agent triggeredundo, ini-
tiates a complex recovery procedure. The main challenge
thereby is, to semantically rollback already completed ac-
tivities - normally in inverse order - until a consistent pro-
cess state is reached from where the workflow can be con-
tinued (by executing an alternative path) or terminated.

4.3. Recovery Concepts for Document-oriented
Workflows

For a document-oriented workflow, the reason for re-
covery is not only a failure within an activity but also a
changed situation in the world outside the system (an un-
expected exception). Such an exception may for exam-
ple cause an already approved business-trip to be cancelled
later on. The following transaction based exception and
failure mechanisms should be available within a document-
oriented WFMS (see also [25]):

� Undo: Theundo operation allows the agent to undo
all work which has been done so far within the (still
active) task. There are two problems: first, it is not
always possible to undo a task and second, there are
only primitive recovery concepts available if the tasks
are of manual type (e.g. to restore an old document
version).

� Back: Theback operation first executes an undo oper-
ation if the task is active and then the process is trans-
ferred back into the preceding process step (e.g., a doc-
ument is returned to the agent in charge of the preced-
ing task) with some additional information explaining
the reason for the back operation. Now, the new “old”
agent has the possibility to update some parts within
the task in order to continue process execution after-
wards or to use the back operation again.

� Backward recover: Authorized agents should have the
possibility to interrupt anactive process and to dele-
gate the process back into any previous passed state
(which is the same semantics than several single back-
operations). The backward process comprises the fol-
lowing steps:

– Visual display of the backward-recover-mode:
When a process enters the backward-recover-
mode then this should be made explicit visible
for at least all involved agents.

– Backward recovery of the process in inverse or-
der: The process is executed in inverse order by
semantically undoing previous executed activi-
ties. Activities which do not need to be compen-
sated are skipped.

– Decision of the further route: After all required
activities have been compensated the agent who
initiated thebackward recover mode can reac-
tivate the activity in order to add or change some
parts. After all work is completed, the agent has
to determine the next step in the process, which
may be the execution of an alternative path or
again aback operation.

– Forward execution: After a back or a backward
recover the agent can decide to continue with
process execution in a forward direction (nor-
mally on an alternative path).

Within the project“Workflow Transactions” we cur-
rently discuss the integration of at least some of the
above presented concepts into the commercial WFMS
CSE/Workflow2.

4.4. Recovery Concepts for Process-oriented Work-
flows

In general, workflows are structured hierarchically in or-
der to facilitate workflow modeling and to support reuse.
Workflows, or in our terminology complex activities, may
consist of several logical dependent sub-activities. This
means that a complex activity comprises several sub-
activities which together determine the success or non suc-
cess of its parent-activity. A parent-activity succeeds if all,
or at least itsvital sub-activities succeed.

If during process execution an activity fails (commits un-
successfully) then the WRM has to decide whether the pro-
cess has reached an inconsistent state or not. This decision
is very easy since an inconsistent state can only be reached
if an activity fails whose relationship to its parent is vital (in
other words: if a vital activity fails). Summing up, after a
semantic failure, the WRM has the following possibilities
to support a failure tolerant process execution:

� Forward execution: If the failed activity has no vital
relationship then a positive and consistent termination
of the corresponding parent activity can be achieved
very easily by making forward progress (ignoring the
failed activity) and executing the remaining child ac-
tivities. The fail of the non vital activity can be toler-
ated without further consistency preserving measures.

2Workflow is a trademark of CSE Systems, Computer & Software En-
gineering GmbH

� Backward recovery: If the failed activity has a vital re-
lationship then a complex recovery procedure is nec-
essary in order to reach a consistent state again. A
fail of a vital sub-activity makes a further execution
of the remaining child activities obsolete. Instead, a
controlled rollback has to be initiated. This means
that all previous child-activities which have terminated
successfully have do be undone in a correct way. Of
course, this is not always possible and sometimes this
will require at least human intervention. In [8] the
problem of irreversible side effects has been discussed
and some solutions forsafe process schemas have been
introduced. After the recovery process at the current
level has terminated (and hence all successful commit-
ted brother activities of the failed activity have been
rolled back semantically), the parent activity will itself
terminate unsuccessfully. This, of course, may initiate
another backward recovery process at the next higher
level.

Similar concepts concerning backward recovery are
discussed in [19]. Within this approach any collec-
tion of activities can be defined as asphere of joint
compensations, which means that all activities must ei-
ther run syntactically successful or all activities must
be compensated. Since the activities which belong to
one sphere may be spread over the whole process and,
additionally, spheres may overlap, the compensation
process on the one hand seems to be more flexible but
on the other hand it seems to be much more complex
and hence more difficult to use.

� Forward recovery In most cases a combination of
backward recovery and forward execution will be ap-
plied. Since this steps are very similar to the forward
recovery concept for system failures it seems to be rea-
sonable to use the same terminology - forward recov-
ery - within the current context. As soon as a consistent
state is reached - a non vital parent activity fails - the
WRM will enforce regular process execution, probably
along another execution path, in order to make forward
progress. WAMO offers choice activities which are an
ideal point to change from backward to forward exe-
cution. The possibility to undo onlyparts of a work-
flow is in contrast to many advanced transaction mod-
els which always undo complete workflows.

5. Realization Requirements

An integration of transaction-specific features into a
WFMS requires a certain functionality from the WFMS.
Within this section, we present an overview of the most
relevant WFMS requirements which are necessary for the
integration of workflow transactions. Of course, not all con-

cepts are required if only a partial integration of workflow
transactions is intended.

� Nested workflow: For modeling reasons and re-
usability aspects a hierarchical representation of com-
plex workflows is an important feature. Thereby,
a complex workflow is decomposed into smaller
sub-workflows (activities) until elementary workflows
(called tasks in WAMO) are remaining. Workflows
containing other workflows are often called compos-
ite workflows. In WAMO such composite workflows
are called complex activities. The execution of a hi-
erarchical structured workflow starts at the top-level
(most abstract) workflow in the hierarchy by execut-
ing the first underlying layer of sub-workflows. Com-
plex activities are logical units of work that determine
the co-ordination and data flow requirements between
sub-activities. For the realization of transactional con-
cepts, WAMO explicitly demands nested workflows.

� State of activities: As mentioned before, within nested
workflows it must be distinguished between inner
nodes (activities) and leaf nodes (tasks). The main dif-
ference between these types is that activities arefully
controllable by the WFMS (by the transaction man-
ager and/or scheduler) whereas tasks are onlypartially
controllable (similar ideas are discussed in [18]). This
means, that for example the state of an activity can be
set tocommit successfully by the workflow transac-
tion manager as soon as all sub-activities have termi-
nated regularly, whereas the state of an already started
task can only be determined by the corresponding pro-
cessing entity. In order to enable transaction based
workflow execution, the existence of different states
of activities and tasks is necessary. The event state di-
agram of activities and tasks in WAMO are illustrated
in figure 3 and 4.

Intermediate Activity State

Start State

Final State

start

active

compensated

compensating

error

aborted

aborting

committed unsuccessfully

committed successfully

compensate

succeed

fail

fail

succeed

abort

succeed

fail

Figure 3. Event-state diagram for activities

An activity can be started if it is in the initial state
startable. The start event changes the state of the

activity to active. Now the corresponding child-
activities are executed. After the child-activities have
finished the activity terminates. In the regular case
the activity will eithercommit successfully (succeed)
or commit unsuccessfully (fail). These termination
states are fully controlled by the workflow controller.
The result, of course, depend on the termination states
of the child-activities. Besides the regular case it is
also possible that an activity is aborted by an exter-
nal event (e.g., by the user) or by the system. Then
the state of the activity is changed toaborting which
means that all active child-activities are aborted and
all successfully committed child-activities are seman-
tically rolled back (compensated). Since a seman-
tic roll back must be supported within transaction-
based workflows, activities are equipped with the cor-
responding compensation concepts (for further details
see [8]).

active

abort

fail

succeed

start

Start State

Final State

Intermediate Task State

succeeded

failed

aborted

Figure 4. Event-state diagram for tasks

Tasks are elementary activities which are directly ex-
ecuted by an processing entity. Hence, the workflow
controller can only start a task but not determine the
execution result of the task. In general, a task will ei-
ther succeed in the sense ofcommit successfully or
fail in the sense ofcommit unsuccessfully. Addition-
ally, a task can terminate abnormally (abort). Since the
WRM has to react according to these different termi-
nation states a corresponding distinction is necessary.

� Restart information for tasks: After a system failure,
a task may be in an inconsistent or undefined state,
which means that uncommitted side effects could ex-
ist somewhere in the system. The WRM should be
able to remove all inconsistencies and to resume pro-
cess execution from the nearest consistent point where
the failure occurred. Therefore, the WRM needs the
following information which has to be specified by the
workflow designer during process modeling time:

– Which task has to be started after an abnormal
task termination (e.g., the same, an alternative
one or the next in the sequence)?

– How often should a task be restarted after a sys-
tem failure?

– Is a manual intervention necessary?

� Compensation tasks: In case of backward recovery it
may be necessary to compensate (semantically undo)
already committed tasks. For that reason, WAMO in-
troduces the task specificstorno-type parameter. The
idea is, to associate tasks with corresponding“com-
pensation (inverse) tasks” [17] which are executed in
case the original task has to be undone semantically.
But there are also other kinds of compensation which
have been explained in subsection 2.1. As with the
original tasks, also compensation tasks should be writ-
ten in such a way, that they can easily be reused in
other workflows. Additionally, it must be emphasized,
that it is much easier to define compensation tasks
(respectively to generate them automatically) if struc-
tured data (see subsection 3.1 is manipulated within
the workflow.

Within WAMO, up to now only tasks are associated
with the corresponding compensation tasks. Complex
activities are only responsible for a correct compen-
sation of their child activities but the model can be
extended easily in that way, that also complex activi-
ties have their own (complex) compensation activities.
This concepts are similar to the idea of discrete and
integral compensation in [20].

In order to guarantee a consistent recovery process,
it is necessary that compensation tasks terminate suc-
cessfully otherwise manual intervention is required.

� Initiation of the recovery process: A recovery process
is either initiated manually by a human agent or au-
tomatically because of a system or logical failure. A
manual initiation is in general triggered by activating
the back or backward recover function. Since these
functions have a major impact on the future workflow
execution, appropriate authorization rules are neces-
sary. This means, for example, that only specific
agents are authorized to use the backward recover
function and / or that the authorization profile changes
dynamically during process execution. Anautomatic
initiation of the recovery process is triggered after a
system failure, a logical failure or a user cancel com-
mand.

� Controlling of the recovery process: The controlling
of the recovery process is a central topic within a
transaction-based workflow execution. The inverse ex-
ecution of a process during backward recovery is as
important as the forward execution of a business pro-
cess. A backward recovery process comprises the fol-
lowing features:

– Initiation of the backward recovery process as ex-
plained before.

– The backward execution path is based on the al-
ready executed path. In general, the backward
path is the inverse of the forward path. Therefore
a process history is absolutely necessary. This
means, for example, that the execution states of
all activities in the workflow have to be stored
persistently. Tasks with the storno type “none”
can be skipped during backward execution.

– The compensation tasks have to be provided with
the proper application and process data.

– The backward process terminates as soon as the
closest consistent point is reached.

� Logging: As already mentioned before, a transaction-
based workflow execution demands extensive logging
activities. Of course, every WFMS does some logging
and some of this information can be reused within a
transaction-based execution. The data which is logged
should be kept in the workflow database. Logging
comprises two main areas:

– Logging of process data: For the complex recov-
ery procedure the WRM needs the information
of the state of all activities (and tasks), the execu-
tion history and the agents who have performed
the various activities. Normally, most of this in-
formation is already gathered by the system for
process monitoring and tracking.

– Logging of application data: Besides the control
flow aspects also the data flow within a work-
flow is of major interest for the recovery pro-
cess. Compensation activities have to be pro-
vided with the proper data in case of an activa-
tion. We can distinguish between the following
data extensions which are necessary for a com-
pensation activity: (1) data, which is explicitly
added by the user for the purpose of the com-
pensation process (especially within document-
oriented workflows), (2) input-data of the orig-
inal activity and/or of several other activities,
and (3) output-data of the original activity and/or
other activities.

6. Conclusions

Workflow management systems more and more become
the basic technology for organizations to perform their daily
business processes (workflows). These processes tend to be
of long duration, involve many users and tools over hetero-
geneous and distributed environments. We claim that a con-
sistent and reliable execution of such workflows can only be

achieved by integrating transactions -workflow transactions
- into WFMSs. The main difference between traditional
database transactions and workflow transactions is the fact,
that the goal of database transactions is to transformdata
from one consistent state into another consistent state in the
presence of failures and concurrent access, while workflow
transactions aim to transformbusiness processes from one
consistent state into another consistent state.

Based on the idea of workflow transactions, we have
discussed in detail advanced workflow recovery concepts
which are necessary for a reliable and consistent execu-
tion of workflows in the presence of failures and excep-
tions. Therefore, we have analyzed different failure sources
and failure classes which influence and determine the re-
covery concepts. Additionally, we distinguish between
two main classes of workflows, document-oriented and
process-oriented, because they have different requirements
for workflow recovery.

References

[1] G. Alonso, R. Günthör, D. Agrawal, A. E. Abbadi, and
C. Mohan. Exotica/fmdc: Handling disconnected clients in a
workflow management system. InProc. of the 3rd Int. Con-
ference on Cooperative Information Systems, Vienna, Aus-
tria, May 1995.

[2] G. Alonso, M. Kamath, D. Agrawal, A. E. Abbadi,
R. Günthör, and C. Mohan. Advanced transaction models
in workflow contexts. Technical report, IBM Almaden Re-
search Center, 1995.

[3] G. Alonso, M. Kamath, D. Agrawal, A. E. Abbadi,
R. Günthör, and C. Mohan. Failure handling in large scale
workflow management systems. Technical report, IBM Al-
maden Research Center, 1995.

[4] Y. Breitbart, A. Deacon, H.-J. Schek, A. Shet, and
G. Weikum. Merging application-centric and data-centric
approaches to support transaction-oriented multi-system
workflows. SIGMOD RECORD, 22(3):23–30, Sep. 1993.

[5] A. Buchmann, T. Oezsu, M. Hornick, D. Georgakopoulos,
and F. Manola. A transaction model for active distributed ob-
ject systems. In A. Elmagarmid, editor,Database Transac-
tion Models for Advanced Applications. Morgan Kaufmann,
1992.

[6] C. Bussler. Policy resolution in workflow management sys-
tems.Digital Technical Journal, 6(4):26–49, 1994.

[7] J. Eder, H. Groiss, and H. Nekvasil. A workflow system
based on active databases. In G. Chroust and A. Benczur,
editors, CON 94: Workflow Management: Challenges,
Paradigms and Products, pages 249–265. Oldenbourg, Linz,
Austria, 1994.

[8] J. Eder and W. Liebhart. The workflow activity model
wamo. InProc. of the 3rd Int. Conference on Cooperative
Information Systems, Vienna, Austria, May 1995.

[9] J. Eder and W. Liebhart. A workflow classification frame-
work. Technical report, University of Klagenfurt, Depart-
ment of Informatics, Jan. 1996.

[10] A. Elmagarmid. Database Transaction Models for Ad-
vanced Applications. Morgan Kaufmann Publishers, 1992.

[11] D. Georgakopoulos, M. Hornick, and A. Shet. An overview
of workflow management: From process modeling to work-
flow automation. In A. Elmagarmid, editor,Distributed
and Parallel Databases, volume 3. Kluwer Academic Pub.,
Boston, 1995.

[12] J. Gray and A. Reuter.Transaction Processing: Concepts
and Techniques. Morgan Kaufmann, 1993.

[13] M. Hsu. Special issue on workflow and extended transac-
tion systems.Bulletin of the Technical Committee on Data
Engineering, 16(2), June 1993.

[14] S. Jablonski. Functional and behavioral aspects of pro-
cess modelling in workflow systems. In G. Chroust and
A. Benczur, editors,CON 94 Workflow Management: Chal-
lenges, Paradigms and Products. R. Oldenburg, 1994.

[15] W. Jin, M. Rusinkiewcz, L. Ness, and A. Sheth. Concur-
rency control and recovery of multidatabase work flows in
telecommunication applications. InSIGMOD, May 1993.

[16] M. Kamath and K. Ramamritham. Modeling, correctness
& system issues in supporting advanced database applica-
tions using workflow management systems. Technical re-
port, University of Massachusetts, 1995.

[17] H. Korth, E. Levy, and A. Silberschatz. A formal approach
to recovery by compensating transations. In D. M. et al.,
editor,Proc. of the 16th Int. Conference on Very Large Data
Bases, Brisbane, Australia, 1990.

[18] N. Krishnakumar and A. Shet. Managing heterogeneous
multi-system tasks to support enterprise-wide operations. In
A. Elmagarmid, editor,Distributed and Parallel Databases,
volume 3, 1995.

[19] F. Leymann. Supporting business transactions via par-
tial backward recovery in workflow management systems.
In G. Lausen, editor,GI-Fachtagung: Datenbanksysteme
in Buero, Technik und Wissenschaft, Dresden, Mar. 1995.
Springer Verlag.

[20] F. Leymann. Transaktionskonzepte f¨ur workflow manage-
ment systeme. In G. V. J. Becker, editor,Geschaeftsprozess-
modellierung und Workflow-Management. Thomson, Ger-
many, 1995.

[21] S. McCready. There is more than one kind of workflow soft-
ware.Computerworld, 2, Nov. 1992.

[22] C. Mohan, D. Agrawal, G. Alonso, A. E. Abbadi,
R. Günthör, and M. Kamath. Exotica: A project on
advanced transaction management and workflow systems.
ACM SIGOIS Bulletin, 16(1), 1995.

[23] M. Rusinkiewicz, A. Elmagarmid, Y. Leu, and W. Litin.
Extending the transaction model to capture more meaning.
ACM SIGMOD Record, 19(1), Mar. 1990.

[24] M. Rusinkiewicz and A. Shet. On transactional workflows.
Bulletin of the Technical Committee on Data Engineering,
16(2), 1993.

[25] P. Vogel and R. Erfle. Backtracking office procedures. In
A. M. Tjoa and I. Ramos, editors,Proc. of the Int. Confer-
ence on Database and Expert System Applications (DEXA
92). Springer-Verlag, 1992.

[26] H. Waechter and A. Reuter. The contract model. In A. Elma-
garmid, editor,Database Transaction Models for Advanced
Applications. Morgan Kaufmann, 1992.

