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ABSTRACTABSTRACT
Views in OODBMS are a concept which is heavily opted for by

key database people but rather seldomly implemented in commercial
systems. They are an important mechanism to modularize information
systems and to gain ogical data independence. This paper presents a
concept for updateable views in OODBMS which separates application
programs from the conceptual schema by introducing a layer of
external schemas.Our approach supports all the traditional purposes of
views and is based on a clear distinction of and division between
externaland conceptual schemas. The external schemas can be used
much in the same way by applications as a conceptual schema could
be used. In particular, special attention is given to dynamic binding
and invariant (steady) method resolution with respect to static types.
This method steadiness ensures that the most special method is found
even across schema boundaries. We discuss  some aspects of views in
OODBMS, concentrating on coupling characteristics, change
transparency and security, and we make brief architectural
considerations for the implementation of a view system.

1  INTRODUCTION
Concepts for the support of views and external schemas in object

oriented database management systems are highly desired (Atkinson
1989, Bancilhon 1990, Kim 1994, Kotz-Dittrich 1995). Nevertheless,
there is no commercial implementation available at this point of time
(Meier 1995, Zand 1995, Kim 1995b), although several proposals
appeared in the scientific literature in the last years (Abiteboul 1991,
Barclay 1993, Bertino 1992, Busse 1995, dos Santos 1994, dos Santos
1995, Geppert 1993, Heiler 1988, Heiler 1990, Heuer 1990, Heuer
1991, Heuer 1993, Ishikawa 1992, Jungklaus 1991, Kifer 1992, Kim
1995, Heuhold 1988, Rundensteiner 1992, Scholl 1990, Scholl 1991,
Schiefer 1993, Schiefer 1993b, Shilling 1989, Tanaka 1988). For a
comparison of the approaches, the reader is referred to Dobrovnik
1995, Geppert 1992, Kuno 1993 and Motschnig 1995.

One reason for this gap between theory and practice surely is the

rather preliminary and partial nature of the proposals (especially the
early ones), which is quite understandable when one takes into account
the dissens on  much more fundamental issues in the OODB
community.

A major initiative to gain a common understanding of OODBMS
and a basic foundation for the implementation is the effort of the
ODMG consortium. But up to now, there is no treatment of views in
the published proposals Cattell 1993, Cattell 1994 of the group.

The greater power and flexibility of object oriented data models
compared to the relational model demands for a much more
sophisticated view mechanism rather than a predefined query over
some relations (Kim 1995, Motschnig 1995). On the level of single
types and classes, views have to allow for type and class restructuring
which permits to build customized types and support structural as well
as behavioral differences.

On the schema level the view system has to provide mechanisms
for dealing with inheritance and aggregation  relationships (schema
restructuring).  A clear concept is needed how the elements of the
conceptual schema and the external schema interact. This includes the
derivation of external schema elements, the mapping of objects
(instances) between the schemas, and the adequate treatmentof object
identifiers across schema boundaries.  For the dynamics the interaction
of methods from different schemas plays an important role. Late
binding and name resolution have to be extended to external schemas
and possibilities for updates through views have to be developed.

This paper gives an overview of a concept for external schemas
in OODBMS, which takes into account all the before mentioned issues.
We have been developing this concept over the past years (Dobrovnik
1993a, Dobrovnik 1993b, Dobrovnik  1994 and Dobrovnik 1995). The
most important contributions of this approach are the clear separation
of external and conceptual schemas, the consistent extension of method
resolution and subtyping to external schemas and full fledged solution
of the view-update problem. In this paper we show how this concept
can be used to achieve generally requested design goals for
object-oriented databases and application systems.
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2 VIEWS IN eXoT/C11

The proposal explicitly handles whole external schemas, and not
single and isolated views. It provides external type constructors which
allow one to derive schema elements of the external schemas on the
basis of schema elements of the conceptual schema. In particular, not
only support for structural derivation is provided, the approach deals
quite extensively with behavioral aspects such as method resolution
and method steadiness.

In the following, we give a short sketch of our data model,
present the idea of the external schemas and describe the derivation
operations we provide.

2.1 Data Model and Conceptual Schema
Our data model is somewhat generic, since we tried to make our

view concept easily adaptable to existing systems and emerging
standards (ODMG). From a theoretical point of view, we follow the
principles of Beeri 1990, Beeri 1992, while also keeping an eye on
some notable industrial efforts as in Deux 1991 and  Cattell 1994.

During the following explanations, the reader is referred to the
example given in Fig. 1, where (a part of) a conceptual schema
Research is defined. We distinguish between extensional and
intensional concepts, a schema in our data model consists of a set of
types and a set of containers. The types describe the structural and
behavioral aspects of the objects and values. We provide some atomic
value types (boolean, integer, string, ...) and an atomic object
type (Object).

The type constructors set and tuple can be orthogonally
applied to types to build set valued and tuple valued structured value
types. Object types  (cf. Researcher, Professor, Paper  and
ResearchGroup, in Fig. 1) can be declared through the use of the
object type constructor object. They are positioned in an inheritance
lattice which supports conventional structural top down multiple
inheritance semantics. Conflicts are circumvented by demanding an
unambiguous origin of the object type components and methods.

The definition of a subtype can make use of covariant redefinition
of attributes and method signatures as can be seen for the component
Boss and the method NewBoss of the object types Researcher and
Professor in the example. The subtype relation also defines type
substitutability and assignment compatibility, namely wherever an
instance of a certain type can be used, it is also allowed to use an
instance of one of its subtypes.

At the extensional level, we provide containers, which can be
described as typed object sets. An instance of an object type can be
added to any type compatible container and can also be removed from
it. The containers are user defined object sets which also provide for
persistence.  An object persists the current session when it is in at least
one object container or when it is referenced by another persistent
object (persistence by reachability). Currently, there is no hierarchy
defined between the containers. The object types are the factories and
the containers are the warehouses of the object instances.

We assume the existence of a Turing complete procedural
language for the implementation of methods and also of a declarative
query language.

schema Research {
 
  object Researcher: Object {
    Boss: Researcher;
    Name: string;
    Born: date;
    Skills: set(Qualification);
    PublicationPoints: real;
    Age(): integer;    
    NewBoss(B: Researcher);
  }; //Researcher

  object Professor: Researcher {
    Boss: Professor;
    For: string ;
    TeachObligation: integer;
    Offers (s: Semester): set(Course);
    NewBoss(B: Professor);
  }; //Professor
 
  object ResearchGroup: Object {
    Boss: Professor;
    Name: string;
    MainField: string;
    Members: set(Researcher);
    budget(year: integer): money;
    spend(reason: string; amount: money);
    receive_donation(amount: money);
  }; //ResearchGroup
 
  object Paper: Object{
    Title: string;
    Authors: set(Researcher);
    accept();
  }; //Paper;            

  method accept() in Paper {
    foreach author in self->Authors {
      author->PublicationPoints += 
        1/card(self->Authors);  
    }
  }; //accept() in Paper

  container TheResearchers: Researcher;
  container TheResGroups: ResearchGroup;
  container ThePapers: Paper;

}; //schema Research 

Figure1: A Section of a Conceptual Schema

2.2 External Schema Derivation
An external schema is defined on top of a conceptual schema.

The elements of the conceptual schema are starting points for the
derivation of the types and containers of the external schema.

We distinguish between derived database types and application
types. Derived database types use object preserving semantics whereas
instances of application types are constructed in an object generating
manner.

 eXoT/C (speak: exotic) stands for external  object types in Carinthia1



The access to the database takes place exclusively via an external
schema. A direct reference or manipulation of conceptual schema
elements is not possible for the user or application program. But of
course, the designer of an external schema has available all the
components of the conceptual schema. During the definition of the
external schema, indirect access to the conceptual layer can be allowed
or forbidden to any degree.

During the following discussion we will constantly use the
example given in Fig. 2.

2.2.1 Derived Database Types
Conceptual object types do manifest in the external schema by

derived database types (cf. the types Scientist, HeadOfGroup
ThinkTank). Each derived database type is based on exactly one
conceptual type, which is called its base type (with ResearchGroup
being the base type of ThinkTank in the example). As already
mentioned, we use an object preserving semantics for this derivation,
so each instance of a derived database type is identical to an instance
of its base type. During the type derivation, three basic restructuring
operations can take place. They are combined and featured in the
derive operator:

(1) Components and methods of the conceptual object type can
be virtually removed  by projection (type restriction). In the
external schema XRes only the component Name and the
method NewBoss are mentioned in the projection clause of
Scientist, the other components and methods of
Researcher were projected away.

(2) New methods which are specific for this external schema can
be defined (type extension). This is illustrated by the
method LeadsGroups of HeadOfGroup and the method
budget_per_member of ThinkTank.

(3) References to conceptual types can be substituted by
references to external types (type  redefinition). Such
references can occur in many places in a schema. Types are
used to declare the supertypes of an object type (see the
definition of type Scientist as supertype for
HeadOfGroup); they are used to constitute the aggregation
structure (refer to the usage of HeadOfGroup to type the
attribute Boss in ThinkTank), and types can also be
found in method signatures for typing the parameters and
return values (cf. the parameters for the methods NewBoss
of Scientist and HeadOfGroup).

When an derived database type is constructed, its position in the
type hierarchy of the external schema must be explicitly defined. We
permit the designer to omit any information about the supertypes,
thereby declaring the external type being defined as the root of a
separate type hierarchy. Using that feature, it is possible to define
multiple unrelated hierarchies of derived database types (as far as
inheritance, not aggregation,  is concerned) in one external schema.

Furthermore, it is also allowed to derive several different derived
types from the same conceptual type. By combining these multiple
external definitions with the unrelated type hierarchies, the schema
designer can restrict type compatibility in the external schema. But
conceptually incompatible types cannot be made compatible externally.
The possibility of multiple external types also provides for different
perspectives to the same types in one external schema.

The concept poses some difficulties, as far as method resolution

under late binding is concerned. We therefore provide means to ensure
unambiguous, covariant and steady method resolution in such situations
by introducing a predicate for well formed derivations and posing
three schema invariants which deal with problematic constellations by
forbidding them.

Methods of the conceptual base type of an derived database type
are not necessarily directly callable from the user of an external
schema. This is only the case, if the signature of the conceptual
method has been included in the projection list of the external type (cf.
method receive_donation in the example of Fig. 2).

derive schema XRes from Research {
 
  derive Scientist {
    from Researcher {
      Name: string;
      NewBoss(B: Scientist);
    }
  }; //Scientist

  derive HeadOfGroup: Scientist {
    from Professor {
      NewBoss(B: HeadOfGroup);
    }
    LeadsGroups(): set(ThinkTank);
  }; //HeadOfGroup

  derive ThinkTank {
    from ResearchGroup {
      Boss: HeadOfGroup;
      Name: string;
      MainField: string;
      receive_donation(amount: money);
    }
    budget_per_member(year: integer):money;
  }; //ThinkTank

}; //schema XRes 

Figure 2: Derivation of an External Schema

method LeadsGroups() : set(ThinkTank) 
in HeadOfGroup {
  return(select t 
         from t in TheResGroups@
         where t->Boss@=self;
        );
}; // LeadsGroups() in HeadOfGroup

method budget_per_member(year:integer):money
in ThinkTank {
return(
 self->budget(year)@/card(self->members@));
};// budget_per_member() in ThinkTank

Figure 3: Definition of external Methods

Newly defined external methods can also have the same name as
methods originating from the conceptual schema, but the signature may
be defined differently. Within the body of external methods, the
conceptual methods (also those not included in the projection) can be
called via explicit qualification. Calling a conceptual defined method
means also that a context switch to the conceptual level takes place,
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so the called method executes in the context it is defined in. A transfer
back to the external context is made only when the execution of the
transferring method terminates. In Fig. 3 this is illustrated for two
externally defined methods. The body of LeadsGroups() mainly
consists of a query against a conceptually defined container (cf. Fig.
1). The "at" character @ is used to qualify conceptual elements (the
container TheResGroups and the attribute Boss of
ResearchGroup, which is the base type of ThinkTank). The
calculation of the average budget per member of a ThinkTank is also
shown in Fig. 3. This method makes use of an attribute and a method
of ResearchGroup. The conceptually defined method budget
executes in the conceptual context and can use all the schema elements
and data defined there. The user of the external schema does not have
any clue about the implementation of the computation of the average
budget.

Regardless of the context a method of a derived database type
executes in, it always operates directly on an instance of the conceptual
base type. Updates via the external schema are made against
conceptual instances, therefore no explicit propagation is needed.

2.2.2 Method Resolution
As already mentioned, method resolution in external schemas is

not straightforward. One has to take into account the external as well
as the conceptual inheritance hierarchy both combinated with potential
method redefinitions.

Conventionally, all resolution mechanisms are invariant with
respect to the static type of the object (the type of the variable an
object is referred by). It is solely the dynamic type, by which the most
special applicable method can be found. We called this property of
dynamic resolution method steadiness or steady resolution (Dobrovnik
1994, Dobrovnik 1995), since it expresses that it makes no difference
for the result of the resolution, if we call a method 

- directly on an object o of type T via o.m() or 
- if we call v.m(), after we assign o to a variable v of type S

with S being a supertype of T.
In the presence of only one inheritance hierarchy, this highly

desirable property is rather straightforward to achieve; in the case of
two connected and intertwined hierarchies (of the conceptual and of
one external schema) it is far from trivial to guarantee method
steadiness. For the purpose of this paper,  it is sufficient to present our
resolution mechanism by means of an example (for a theoretical
discussion and a proof for the steady resolution property of the
approach, we again refer to Dobrovnik 1994 and Dobrovnik 1995).

Consider the conceptual schema in Fig. 1 and the external schema
in Fig. 2, where the type Scientist was derived from
Researcher and HeadOfGroup has been derived from
Professor. In the derivation of both types, the method Age() was
projected away. Now we will discuss four variations of this situation
to present the inherent problems of multi-schema resolution and to
illustrate the concept of our approach. We will use o  to denote objectsP

of (dynamic conceptual) type Professor, while v  stands forS

variables of (static external) type Scientist In each of the
following four cases, the sequence  v  := o ; v .Age(); is executed.S P S 

The central point here is the question, which of the implementations
of Age()will be executed in each of the cases, which differ in the
positions where Age() was projected or redefined. The situations are
depicted in Fig. 4, where the initial characters of the type names are
used as an abbreviation.

Figure 4: Method Resolution

 a) Age() was projected in Scientist, and was redefined in
HeadOfGroup. The mentioned sequence should execute the method
Age() at HeadOfGroup, since the projected method
in Scientist was specialized in HeadOfGroup.

b) Age() was projected in Scientist, and was redefined
in Professor. The same sequence as above in case a) should lead
to the execution of method Age() at Professor, since this is the
most special method for objects of type Professor in this
constellation.

c) Age() was defined as new external method Scientist,
was projected in HeadOfGroup, and was redefined in Professor.
Here again, method  Age() at Professor should be executed,
since the projection took place below Scientist, and should
therefore be considered as a specialization of Age() at Scientist.

d) Age() was defined as new external method in Scientist,
and was projected in HeadOfGroup. Also in this case, the explicit
definition of a new method at Scientist is being overridden by the
projection at HeadOfGroup,  thereby declaring that the conceptual
method at Researcher should be regarded as appropriate for
HeadOfGroup.The mentioned program sequence should therefore
execute the method Age() at Researcher.

Of course, the execution of o .Age() should lead to the executionH

of the same method body in each of the four cases. Our resolution
mechanism is constructed to take into account the complex interaction
between projection, redefinition, inheritance and derivation in exactly
the way illustrated by the example. Thereby the most special method
is found irrespective of the static type of the variable referencing the
receiver.



2.2.3 Application Types
The second ‘‘kind’’ of external object types are application types.

In contrast to derived database types, the application types are not
based on exactly one, but on an arbitrary number of conceptual object
types. In particular, the construction of application types without a base
type is allowed. But application types can also base on more than one
conceptual type, which makes them well suited to deal with explicit
joins.

For the instantiation of the objects of application types, we use an
object generating semantics, which builds new external objects based
on the states and identities of the conceptual objects participating in
the join. These objects do exist only in the external context, so it is not
possible to reference them from derived database types. Taking into
account our definition of persistence via reachability, this also means
that application objects cannot persist the session.

  derive aptype Group_Paper {
  from
    ResearchGroup R {
      Boss: HeadOfGroup;
      Name: string;
      MainField: string;
    }
    Paper P {
      Title : string;
      Authors : set (Scientist);
      accept();
    }
  group_share_of_paper: real;
  };//Group_Paper
 

Figure 5: Definition of an Application Type

In Fig. 5 an application type Group_Paper is defined. It has
two base types, ResearchGroup and Paper. The variables R and
P are called base variables and make it possible to use a conceptual
type more than one time as a base type in an application type (for
instance when joining researchers with their bosses).

The type constructor aptype for application types again allows
three  restructuring mechanisms to be applied. In principle, these are
the same as for derived database types, namely type restriction, type
extension and type redefinition, but differ in subtle ways.

The projection of attributes and methods is not carried out just
virtually in terms of visibility, but really applied to the types, so those
components are not longer accessible by any means. In addition to the
extension of types by newly defined methods,  application types can
be extended by stored attributes, too (cf. the component
group_share_of_paper in Fig. 5). Via type redefinition,
conceptual types can be substituted by application types or derived
database types. So it is possible to use a derived database type or an
application type as type of a component (note the usage of
HeadOfGroup as component type for Boss in the example) or as
type in a method signature of an application type. But application types
form a type hierarchy of their own in an external schema. There is no
subtype relationship between any derived database type and an
application type, and as already mentioned, derived database types
cannot refer to application types.

On the contrary to derived database types, updates posed on
instances of application types do not automatically manifest as updates
of conceptual objects, since there is no direct one-to-one

correspondence between instances of application types and instances
of conceptual types. Updates are feasible by means of specially written
methods which have access to the conceptual objects that were used
in the instantiation process of the application object. So it is possible
to explicitly propagate updates to the underlying conceptual objects.

2.2.4 External Containers
Containers in the external schema are constructed on top of one

ore more conceptual containers via a query expression, which is
illustrated in Fig. 6.

  container CSGroupLeaders : HeadOfGroup =
            select G.Boss
            from G in TheResGroups@
            where G.MainField=’CS’;

  container TheGroupPapers : Group_Paper =
            select (r,p)
            from r in TheResGroups@,
                 p in ThePapers@
            where r.Members intersect 
                  p.Authors;

Figure 6: Definition of External Containers

The set of instances of the external containers cannot be operated
on directly, it is solely the query expression which is used to generate
this set. This instantiation takes place every time the container is
referenced, containers could therefore be viewed as snapshots of the
database. Updates of the extension sets of containers in the conceptual
schema are possible if the external schema designer provides explicit
methods for doing so.

3 APPLICATIONS AND CONTRIBUTIONS OF VIEWS

3.1 Better Coupling Characteristics
A major reason to introduce views in database systems was to

achieve logical data independence. From a more general software
engineering point of view this means to reduce the degree of coupling
between the database and the application programs. Since object
oriented databases provide methods additional to data containers, we
believe that this more general notion is adequate for discussing views
in OODBMS.

The introduction of views makes the coupling between the
database and the application schema explicit. All elements of the
conceptual schema needed by the application program are explicitly
contained in the external model. This has great influence on the
complexity of changes in application programs or schemas. We will
discuss this important issue in the following subsection.

Application programmers have only to know the external model.
They perceive the external schema as a closed world where all
elements needed are defined or declared.  All interaction between an
application program and the database has to go through the external
schema. In our approach the derived types and containers of the
external  schema can be presented to the application programmer or
user just as a simple data model. There are no links and references to
the conceptual schema contained in this presentation nor are they
needed to understand the external schema or to write programs using
the database. This enormously reduces the complexity of designing and



implementing application programs.
With object oriented databases it is in principle possible to write

one complex system containing the database and all application
programs using it. In contrast to relational databases there is no system
defined boundary between the database and the application program.
It is the designer who decides where types or methods are defined
according to design methods, quality criteria, and - last but not least
-  the modularization concepts provided by the system. Our concept for
external schemas offers the designer great flexibility in this decision.
Our view concept allows the design of ’lean’ conceptual schemas, i.e.
the conceptual schema contains the definition of all stored data and the
methods which are intrinsically needed to manipulate these data objects
and those which are shared by several applications or users. There is
no need to place methods and even whole types of (transient) objects
in the conceptual schema, if they are only needed by single
applications.

This support of modularization will allow object-oriented
databases to become building blocks of very large application systems.
Without such modularization object-oriented application system are
likely to become to complex for being manageable.

3.2 Change Transparency
The management of change is one of the big issues in software

engineering. It is folklore knowledge by now that the largest share of
the overall life cycle cost of software products is in the maintenance
phase. For databases this observation holds even more due to their
comparatively long lifetime.

The lower degree of coupling between the database and the
application programs subsumes the effects of changes, as the traditional
logical data independence does for conventional databases.  The
influence of changes should be as local as possible. Furthermore, the
interdependencies of application programs and the conceptual schema
are explicitly given in the external schemas. So we can easily
determine which external schemas (and which application programs)
are affected by changes of the conceptual schema. External  schemas
serve also as interface modules. Quite often changes in the conceptual
schema can be dealt with by changing solely external schemas without
the need to even check the corresponding application program.

For simple changes in an application program, it is only required
to change the definition of the external schema in order to provide a
suitable interface for the application. A schema change at the
conceptual level can be avoided, thereby the change is confined in the
rather narrow boundaries of one external schema and does not interfere
neither with other applications nor with other external schemas.

Support for new applications can be provided easily. If a fresh
application cannot operate on top of an existing external schema, then
an additional external schema specially designed for the new
application can be constructed. Again, other external schemas, other
applications and especially the conceptual schema are not affected by
this extensions.

Even, if requirements for drastic changes of applications which
cannot be accomplished by changing an external schema definition
arise, or if the conceptual schema itself really needs to be changed, the
view system has great advantages. Since the connections between an
external schema and the conceptual schema are made explicit in the
view definition phase, it is straightforward to find out which of the
external schemas are afflicted by the change, and which schemas are
not. So the scope of the effect of the applied change can be narrowed

to a subset of the external schemas and equally to a subset of the
applications. The effects of the changes of the conceptual schema can
then be tackled by adapting the definitions of the afflicted external
schemas. The original interface to the application programs (the
generated schema) can also often be derived from the new conceptual
schema in their original form. Therefore applications will be immune
to changes of the conceptual schema to a large extent.

3.3 Tighter Security
Views can also be used as an effective means of access control

and to implement a fine grained security mechanism. Since the usage
of components and notably also of methods can be restricted via
projection, the definition of external schemas enables the DBA to draw
a tight security boundary between the parts of the database the user is
entitled to work on and the part he has no clearance for. In particular,
the usage of views does not only allow to restrict the rights of an user
to access data elements. The power and flexibility of external schemas
with respect to security is the ability to put strong confinements on the
user concerning his possibilities to apply certain operations on those
data objects.

The external schema can be constructed on top of a small and
narrow part of the conceptual schema, thereby effectively limiting the
visibility of the omitted conceptual schema and data elements.

Only the parts of the database, which are explicitly mapped to the
outer interface of the external schema are accessible to the user of the
external schema, and the way of manipulation of those visible parts
can be restricted to any degree. By providing methods for certain
selections or updates of the data, the designer of the external schema
can make available operations for the user of the external schema in
a strictly controlled way. These methods can be made arbitrarily
restrictive on their execution. Checks for permissions of users on
schema elements, validation of receivers and parameters of the
methods and arbitrary complex access and modification rights can be
implemented in such methods.

Nevertheless, these restrictions do not necessarily diminish the
power or the usability of the external schemas to an unwanted degree.
Since the implementor of the external schema has access to all parts
of the whole underlying conceptual layer, he can design and provide
quite powerful methods which are not restricted in any sense.  Neither
the scope of those methods is inherently confined to just a part of the
conceptual schema,  nor are there any system implied limitations on
the operations such methods can execute.

So the designer of the external schema has available the full
power of the complete conceptual schema. It lies in his responsibility
to construct an adequate interface for users in terms of power and
security. Such an external schema should provide only the necessary
and sufficient operations on the data objects the users are entitled to
see, but it should also be restrictive in terms of validation, plausibility
and consistency.

Obviously, the security aspects mentioned above do not only
apply to human users of external schemas but also to applications
which are built on top of an external schema. 

3.4 Architectural Considerations
The client-server architecture of current OODBMS might be used

quite profitable for the implementation of external schemas.Through
the introduction of external schemas, a boundary in the database
between the conceptual and the external level is drawn. This schema



boundary could be mapped directly onto the client-server paradigm. 
Such an implementation would put the responsibility of the

mapping between the external schema and the conceptual schema onto
the client components of the DBMS.  The client itself would have to
deal with those aspects of the external schemas which have no
correspondence in the conceptual schema. In particular, late binding
and method resolution have to be performed in the client as well as
execution of  externally defined methods and also the creation and
administration of instances of application types.

The server could remain relatively unchanged. Virtually no
additional functions would have to be performed by the server at run
time. Of course, the server would be responsible for the storage and
administration of the external schemas themselves in the form of an
adequate meta-schema. But this is merely a rather trivial extension of
a function already present in the server components.

This considerations on an implementation of external schemas via
extension of the client side of an OODBMS cannot be more than a
sketch without any further assumptions about the real architecture of
existing systems. Besides ease of implementation and smooth
integration,  a proposal for such an implementation would have to take
into account the performance degradation of the overall system and the
mere resources needed at runtime to support the extended functionality.

The single most influential property to be considered would be the
general architecture of the division of operations between the client
and the server already in the underlying OODBMS itself. Since this
design would be virtually impossible to change without massive,
difficult and costly rework, it will be used as the underlying framework
without major revisions.

3.5 Application Packaging
An external schema can also be quite useful as a starting  point

for application packaging. Since applications are executed against an
external schema, it is exactly the definition context of the external
schema that is required to run the application. This is the set of all the
types and methods that are used directly or indirectly in the external
schema definition.

This transitive closure of the schema elements used by the
external schema under consideration can be constructed out of the
derivation relationships between the conceptual and the external
schema. An external schema can thereby define a subschema of the
conceptual schema which is necessary and sufficient to run all
applications which are based on this external schema.

This ability to partition the conceptual schema into a set of
relevant and a set of irrelevant elements from an application specific
point of view can be used to construct a conceptual subschema which
forms the basis of the desired application. Together with the definition
of the external schema and the application itself it comprises a closed
application package unit.

4 CONCLUSION
In this paper, we presented some general considerations for view

support in OODBMS. We argued, that for an adequate degree of
power, the system has to provide functionality for all major elements
of the object oriented paradigm. In particular, mechanisms for
restructuring at the type and schema level, the provision of object
preserving as well as object generating semantics and the inclusion of
behavior and dynamics are crucial for the flexibility and applicability
of the views.

With eXoT/C, we presented an approach to introduce external
schemas in OODBMS that takes into account all this aspects and offers
logical data independence and a greater degree of modularity in
information systems built on top of OODBMS. Better coupling
characteristics can be achieved and a a high degree of change
transparency can be gained. Extensions of the system and maintenance
activities can therefore be carried out with much less effort than in a
monolithic system. A high degree of security can be implemented
without diminishing the usability or power of the applications to an
unwanted degree when views are used to specify and enforce access
control. We also discussed to some extend, how views could be
implemented in an existing system and how they could be used as
starting points for application packaging.
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