
Abstract - As the role that software metrics in general
and coupling in particular play with respect to maintain-
ability of software products is widely accepted, current ap-
proaches to handle coupling and / or cohesion in object-
oriented systems are evaluated. Having identified some in-
adequacies, we provide a comprehensive framework to
deal with all sorts of coupling.

This framework takes into account the distinction be-
tween object level - and class level coupling. This distinc-
tion refers to dynamic dependencies between objects on
one hand and static dependencies between implementa-
tions on the other hand, representing important aspects of
software quality at run-time and during the maintenance
phase, respectively.

As far as cohesion is concerned, we analyze a well
known metric put forward by Chidamber and Kemerer
and re-stated by Li and Henry. As a result, we present a
graph theoretic improved version of this metric.

Index Terms - Object-oriented programming, software
metrics, measure theory, coupling, cohesion, software
maintenance

I. INTRODUCTION

Trying to control software quality - and all related at-
tributes as, e.g., reliability, maintainability, usability and so
forth - it is obviously necessary to measure to what extend
these attributes are achieved by a certain product. Such mea-
surements are valuable both, in an a posteriori analysis of a
finished product, and, even more important, in an a priori
manner to guide the production process in order to avoid un-
desirable results in the first place. In this spirit, many software
metrics have been established in the past, mainly in the area of
traditional (“structured”) software design. However, in the re-
cent past a series of critiques of the methodological founda-
tions of software measurement have been published (e.g.,
[9][10][25]), challenging some of the previously defined soft-
ware metrics. Moreover, since the advent of the object-ori-
ented paradigm in software engineering, even more problems
have been identified with respect to applying traditional soft-
ware metrics to object-oriented systems [4]. Thus, any attempt
do define a measure for object-oriented software

• must take into account general measure theoretic foun-
dations and

• must suit to the specific characteristics of object-ori-
ented software.

With respect to the first requirement, we feel that in addition
to the measure theoretic guidelines published, especially two

important rules must be obeyed when attempting to measure
internal1 product attributes: Firstly, the attributes to be mea-
sured should have causal influences on some external at-
tribute, and secondly, the corresponding measure must
preserve all generally accepted empirical relations estab-
lished.

In structured design and programming the importance of
coupling and cohesion as main attributes related to the good-
ness of decomposition has been well understood; software en-
gineering experts assure that designs with low coupling and
high cohesion lead to products that are both, more reliable and
more maintainable [10][16][21]. From the beginnings of this
design paradigm [18], the various kinds of communication be-
tween modules have been discussed and ordered with respect
to their effects on the quality of the design. This ordinal “met-
ric” has obtained more or less general acceptance, even
though it has taken a long time before a numeric measure had
been proposed for this attribute [10]. In short, the following
list introduces the different types of coupling in increasing or-
der of malignity:

1. Data Coupling (communication via scalar parameters)
2. Stamp Coupling (dependency induced by the type of

structured parameters)
3. Control Coupling (parameters are used to control the be-

havior of a module)
4. Common Coupling (communication via shared global

data)
5. Content Coupling (one module shares and/or changes

the definition of another nodule)
For object oriented software, the notion of coupling has not
been considered with similar rigor by the pioneers who deter-
mined the major design guidelines of this paradigm. There are
two main reasons for this negligence:

1. In structured design, there were few semantic guidelines
to decompose a system into smaller subsystem. Conse-
quently, syntactic aspects like size, coupling etc. played
a major role. In contrast, in the object-oriented para-
digm, the main criterion for systems decomposition is
the mapping of objects of the problem domain into clas-
ses or subsystems in the analysis / design model, thus re-
ducing the relative importance of syntactic criteria.

2. Object-oriented analysis and design strive to incorporate
data and related functionality into objects. This strategy
in itself certainly reduces coupling between objects.
Therefore, explicitly controlling coupling does not seem
to be as important as in structured (especially top-down)
design.

1For a discussion of internal versus external attributes, see [10].

Measuring Coupling and Cohesion
In Object-Oriented Systems

Martin Hitz, Behzad Montazeri

Institut für Angewandte Informatik und Systemanalyse, University of Vienna
hitz@ifs.univie.ac.at

MARTIN HITZ, BEHZAD MONTAZERI: MEASURING COUPLING AND COHESION IN OBJECT-ORIENTED SYSTEMS 2

However, since employing object-oriented mechanisms in it-
self does not guarantee to really achieve minimum coupling,
there is good reason to study coupling in object-oriented sys-
tems:

1. In many cases, data or operations cannot be unambigu-
ously assigned to one or another class on the grounds of
semantic aspects, thus designers do need some kind of
additional criteria for such assignments.

2. Although introduction of classes as a powerful means
for data abstraction reduces the data flow between ab-
straction units and therefore reduces also total coupling
within a system, the number of variants of interdepen-
dency rises in comparison to conventional systems [24].
This can be attributed to
• the variety of mechanisms (inheritance, delegation,

using- and has-relationships etc.) and
• the diversity of modules (classes and objects as well

as functions and procedures in hybrid systems).
The different mechanisms can sometimes also be em-
ployed interchangeably, e.g., inheritance can sometimes
be simulated by delegation, or using-relationships can
sometimes be replaced by has-relationships etc. Each of
these variants exhibits different impacts on quality at-
tributes which must be investigated and measured.

3. The principles of encapsulation and data abstraction, al-
though fundamental to object-orientation, may be vio-
lated to different extents via the underlying
programming language [7]. This leads to different
strength of de-facto coupling which should be taken into
account.

In this spirit, several researchers have tried to adopt the notion
of coupling for the object-oriented paradigm, as will be dis-
cussed in Section A. Budd, for instance, demands that “Ob-
jects from distinct classes should have as little coupling as
possible, not only to make them more understandable, but so
that they may easily be extracted from a particular application
and reused in new situations” [3]. Thus, coupling seems to be
even more important in object-oriented systems:

• Coupling of client objects to a server object may intro-
duce change dependencies. The tighter the coupling, the
harder the effects on the clients whenever a crucial as-
pect of the server is being changed.

• High coupling between two objects makes it harder to
understand one of them in isolation. In contrast, low
coupling leads to self-contained and thus easy to under-
stand, maintainable objects (“KISS”-principle: “keep it
simple & stupid”).

• High coupling also increases the probability of remote
effects, where errors in one object cause erroneous be-
havior of other objects. Again, lose coupling makes it
easier to track down a certain error, which in turn im-
proves testability and eases debugging.

In this paper, based on a general notion of coupling, we at-
tempt to give appropriate definitions for coupling and cohe-
sion in object-oriented systems and identify a collection of
dimensions that should be taken into account upon measuring
these attributes. Analyzing the effects of coupling, it turns out

that these can naturally be partitioned into two classes attrib-
uted to two different variants of coupling, namely object level
coupling and class level coupling, respectively.

Although our primary focus is on coupling as one of the
most important internal attributes of software products, we
must necessarily consider also cohesion because of the dual
nature of these two attributes: Attempting to optimize a design
with respect to coupling between abstractions (modules,
classes, subsystems...) alone would trivially yield to a single
giant abstraction with no coupling at the given level of ab-
straction. However, such an extreme solution can be avoided
by considering also the antagonistic attribute cohesion (which
would yield inadmissibly low values in the single-abstraction
case).

In the remainder of this paper, after giving some defini-
tions, we provide an overview of current approaches of how
to define and handle coupling in object-oriented systems. Is-
sues which are, in our opinion, not adequately dealt with in
the literature are then being put into a comprehensive frame-
work in Section B. Section C contains a preliminary attempt
to define a coupling metric on an ordinal scale within the
framework proposed, complemented by a discussion of some
coupling related attributes in Section D. Finally, Section iv is
devoted to measuring structural cohesion in object-oriented
systems.

II. PRELIMINARIES

In this section we provide some prerequisites used through-
out the rest of this paper. Definition 1 clarifies some object-
oriented parlance, while the following definitions are sup-
posed to give a preliminary idea of coupling in object oriented
systems. These definitions will be refined in Section B.

Definition 1 (Object oriented concepts): We will use the
terms object and class according to the usual object-oriented
terminology: A class provides the definition of structure (in-
stance variables) and behavior (methods) of similar kinds of
entities, an object is an instance of its respective class. Classes
may be organized in inheritance hierarchies as super- and sub-
classes.

An object accessing another object will be called client
while the object accessed will be referred to as server; the cor-
responding classes will be called client class and server class,
respectively. This definition also applies when an object ac-
cesses parts inherited from its own superclass (the server class
in this case).

By access to the interface of a class we refer to sending
messages according to its method protocol only; in this way,
instance variables can never be directly read or modified. On
the other hand, the term access to the implementation de-
scribes the situation when an instance variable is immediately
accessed, either via a direct reference (i.e., by name) or indi-
rectly via a method returning a reference to that variable. �

An ontological foundation of coupling has been given by
Wand and Weber [22] as follows.

Definition 2: The history of a thing is defined as the set of
ordered pairs <t, s> each recording the thing's state s at a
given point t in time. Two things are coupled if and only if at

MARTIN HITZ, BEHZAD MONTAZERI: MEASURING COUPLING AND COHESION IN OBJECT-ORIENTED SYSTEMS 3

least one of the things' history depends upon the other thing's
history. �

Starting from this, we strive for a notion of coupling in ob-
ject-oriented systems suitable for the definition of a measure
of coupling strength. Thus, all variants of coupling should be
captured, as various kinds of coupling are likely to differ with
respect to

• their contribution to the overall measure and to
• the phase in the development life cycle (i.e., design, im-

plementation, maintenance) they are most relevant for.
Recalling that a history in the above sense results from a se-
ries of state changes, we identify two major categories of state
and state change:

• The state of an object (in the usual sense) in an object-
oriented application may change at run-time.

• The state of an object's implementation (i.e., its class
specification and the program code of the corresponding
methods) may change during the development life cy-
cle.

Accordingly, in the following definitions we distinguish be-
tween object level coupling and class level coupling:

Definition 3: Object level coupling (OLC) represents the
coupling (in the sense of Definition 2) resulting from state de-
pendencies between objects during the run-time of a system. �

Definition 4: Class level coupling (CLC) represents the
coupling resulting from implementation dependencies in a
system. �

Although in most cases object level coupling implies class
level coupling, it is important to distinguish both types and
their respective coupling strengths. Establishing such mea-
sures will be our major task in what follows.

III. COUPLING

A. Survey of previous work

Chidamber and Kemerer [4] give the first formal definition
of coupling between classes. Transforming the definition by
Wand and Weber [22], Chidamber and Kemerer conclude,

“... any evidence of a method of one object using methods
or instance variables of another object constitutes coupling.”

As a metric for coupling, they define CBO (Coupling Be-
tween Objects) as proportional to the number of non-inherit-
ance related couples with other classes.

While this idea has been widely appreciated in the litera-
ture in principle (and has recently been republished [5]), some
deficiencies have been identified, notably that it does not scale
up to higher levels of modularization [17]. Moreover, we may
note that

• coupling is defined as an attribute of pairs of objects, but
as a metric, it is aggregated to the total number of cou-
ples that one class has with other classes, thus implicitly
assuming that all basic couples are of equal strength.
This does certainly not hold, e.g., when message passing
is intermingled with direct access to foreign instance
variables. This has generally been identified as the worst
type of coupling, also in traditional design [10]. But
even if only message passing is considered, several au-

thors have distinguished various forms of coupling with
different strengths [12][14]. For example, sending mes-
sages to objects is considered superior to sending
messages to one of an object’s components, even if the
selection of such a component is accomplished by
means of an access message.

• it is not clear whether messages sent to a part of self
(i.e., an instance variable of class type) contribute to
CBO or not. Strictly adhering to [22], messages to self
(or parts thereof) do not alter a foreign object's history
and therefore do not constitute coupling. However, it
does lead to a certain amount of class level coupling,
which cannot be attributed to coupling as defined by [4].
Li and Henry refer to this type of coupling as data ab-
straction coupling (DAC), measured by the number of
instance variables having an abstract data type [13].

• by explicitly neglecting inheritance related connections,
Chidamber and Kemerer exclude from their measure
contributions attributed to immediate access to instance
variables inherited from superclasses, a kind of coupling
considered to be among the worst types of coupling
[14][20][24].

Chidamber and Kemerer also define RFC (Response For a
Class) as the union of the protocol a class offers to its clients
and the protocols it requests from other classes. Measuring the
total communication potential, this measure is obviously re-
lated to coupling and is not independent of CBO.

In [6], Coad and Yourdon dedicate three paragraphs to em-
phasize the importance of coupling in general and its influ-
ence to change dependencies within the system (without
providing a metric). Interestingly, they distinguish between
“connection between objects” and “connection between
classes”, but use the latter term to refer to generalization rela-
tionships between classes only.

Lieberherr et al. give a plausible practical guideline for
“good” object-oriented design, partly also controlling some
aspects of coupling (“Law of Demeter” [14][15]). However,
being formulated as a “law” with a dichotomous character, it
is not intended to be used as a measure of coupling strength.
LeJacq elaborates on this guideline and proposes a corre-
sponding ordinal metric [12].

Budd tries to reinterpret the classical concepts of coupling
and cohesion in the context of object-oriented languages [3].
The terms Internal Data Coupling and Global Data Coupling
seem to fit easily to the object-oriented paradigm, although we
believe that “data coupling” is of minor importance in object-
oriented systems where the main communication mechanism
is message passing between objects rather than sharing data.
A similar argument applies to Control Sequence Coupling
which seems even more alien to object-oriented design. Of
course, if such situations do arise, it is indeed a sign of bad
object-oriented style. Interestingly, Budd does not at all dis-
cuss the role of Stamp Coupling, although it seems to be the
one most relevant for object-oriented programming.

Budd's discussion indicates a general inadequacy we found
in the literature where the traditional notion of coupling is be-
ing extended to object-orientation: Traditionally, operations

MARTIN HITZ, BEHZAD MONTAZERI: MEASURING COUPLING AND COHESION IN OBJECT-ORIENTED SYSTEMS 4

are considered to be applied only to “data” in the classical
sense but not to “objects”. Data in the sense of structured pro-
gramming usually belong to standard data types with a stable
protocol where no change dependencies with respect to their
implementation occur. In contrast, the usage of complex data
types in object-oriented systems leads not only to coupling to
data but also to data types (i.e., class level coupling).

B. A comprehensive framework for measuring object-
oriented coupling

As a synthesis of the above discussion, we propose a
framework into which any suitable measure for coupling in
object-oriented systems should be embedded. The design of
this framework is intended to avoid the deficiencies identified
in the above section while incorporating most of the profitable
results of previous research.

In contrast to approaches published so far, as already men-
tioned in Section ii, we emphasize the distinction between
coupling among objects (CLO) and coupling among classes
(CLC). CLC is especially important when considering main-
tenance or change dependencies within an application:
Changes in a server class may call for corresponding changes
in client classes. Reusability is obviously also affected by
CLC. On the other hand, OLC is relevant for all kinds of run-
time-oriented activities like testing and debugging.

In what follows, we will try to find a measure for CLC and
OLC, respectively.

Class level coupling

In order to refine our preliminary definition of CLC (Defi-
nition 4), we need the following clarification of the notion of
state of a class:

Definition 5: By state of a class we refer to the class defini-
tion and the program code of its methods, i.e., a version of the
class implementation (cf. Section ii).2 �

Thus, changes in one class require changes in all classes
coupled to it. This leads to

Definition 4’: Class level coupling represents the coupling
(in the sense of Definition 2) resulting from state dependen-
cies between classes during the development life-cycle. �

In the sequel, CC will denote the dependent client class and
SC the server class being changed.

In order to assess the strength of coupling between classes
CC and SC, we must measure the expected extent of required
change in CC. For this purpose, we identify the following fac-
tors the strength of class level coupling is depending on:

• Stability of SC: If SC is considered stable, no changes
are likely to occur and thus CC will not incur any depen-
dent changes. Stable classes are normally imbedded in
the environment of a programming language (“founda-
tion classes”), but they could also be part of an estab-
lished class library for a certain application domain. The
latter case arises when the application concepts are well

2In this definition, we do not deal with class variables and the “state of
class” they define at run-time. Our notion of “state of class” is not defined at
run-time.

defined and the implementations of those concepts are
stable.
Consider, for instance, the classification of “attribute
types” (i.e., types of instance variables) given by White
which happens to be perfectly compatible with the no-
tion of stability (in decreasing order) [23]:
1. Basic types of the implementation language like inte-

ger or character.
2. Small reusable classes like string, date, time etc.
3. Problem domain classes.
Messages to instance variables of the first and second
group are likely to be disregarded with respect to cou-
pling, while messages to instance variables of the third
group are certainly considered by most subjective no-
tions of coupling (cf. design guidelines stating that it
might not even be necessary to depict relationships to
group 2 classes in a design document!). Such an empiri-
cal relation system (“group 1 and 2 coupling is less im-
portant than group 3 coupling”) can easily be explained
by the different stability of the classes involved.
In cases where SC is unstable, we have to consider two
subcases:
1. Only SC's implementation is subject to change with-

out affecting its interface.
2. SC's interface may be modified also.
Obviously, case 2 is more harmful than the first, while
totally stable classes represent the ideal case.

• As a second factor, we consider the type of access to SC:
CC may either restrict its access to the interface of SC
(as usually desired in object-oriented design) or may re-
fer to at least one instance variable of SC. The breach of
the important design rule of encapsulation certainly
yields higher coupling values.
The more assumptions about the server are made by a
client, the tighter the coupling. CC can rely on the fol-
lowing informations regarding SC:
I. Access to interface:
1. Protocol (or type) of SC (CC must know the mes-

sages understood by SC)
2. Class of SC. While usually only the type of the server

is important, i.e., the actual server may be an instance
of any class implementing this type, there are cases
where clients explicitly refer to the concrete class of
the server, thus effectively reducing potential poly-
morphism. As an example, in the context of lan-
guages that support value semantics (like C++),
whenever an object is defined to be a value (rather
than a reference), its concrete class must be known.

II. Access to implementation:
3. Protocol of the instance variables of SC. If the in-

stance variable of SC itself is returned by a method of
SC, only its protocol, but not its identification are
necessary for the communication.

4. Names of instance variables of SC. In this case, CC
explicitly refers to a specific instance variable of SC.

• Lastly, the scope of access to SC objects within CC also
influences the coupling strength: The extent of required

MARTIN HITZ, BEHZAD MONTAZERI: MEASURING COUPLING AND COHESION IN OBJECT-ORIENTED SYSTEMS 5

change also depends on where SC objects are used in-
side CC: The larger the program area from which SC
may potentially be referenced, the higher the expected
volume of follow-up changes caused by changes to SC.
The following variants are possible:
1. SC is the class of an instance variable of CC: Refer-

ences to SC may occur in any method of CC.
2. A local variable of type SC is used within a method

of CC: Only this method must be checked when SC is
changed.

3. SC is a superclass of CC: Similar to case 1.
4. SC is the type of parameter of a method of CC: Simi-

lar to case 2.
5. CC accesses a global variable of class SC: Again

similar to the first case.
It is worth noting that some combinations of the above criteria
are not of interest. For instance, in the case where SC is a to-
tally stable class, we need not consider any other dimensions
as far as CLC is concerned.

Object level coupling

Before dealing with object level coupling, we need the fol-
lowing auxiliary definition:

Definition 6: Consider two objects M and A. If and only if
a) A is a genuine aggregate of M, i.e., M is a subobject of A

that can only exist as a part3 of A, or
b) M is represented by a local variable of one of A’s

method, i.e., M can only exist during the activation period of
that method, or

c) M is a subobject of A inherited from one of A’s super
classes,

then M is called a native object of A (or simply: M is native
to A). �

The state of native objects thus represent parts of the owner
object’s state. Therefore, sending messages to native objects
does not contribute to object level coupling. This is in agree-
ment with [22], as such a message to one of its own compo-
nents - although this message need not be part of its protocol -
will only affect its own history as a complex object. However,
such a message may well constitute class level coupling as
discussed above.

As a result, on the object level, coupling is introduced only
by accessing non-native objects. In the restricted scope of
OLC, we can now in principle agree with [4] on the definition
of coupling, restating it as the following lemma used to actu-
ally detect OLC in a system:

Lemma: Any evidence of a method of one object using
methods or instance variables of a non-native object consti-
tutes OLC. �

Paralleling the discussion in the subsection on class level
coupling, we identify the following three dimensions influ-
encing the strength of OLC between objects O and X:

3From a technical point of view, native objects may either be physically
included in the aggregate (as a “value”), or be associated to the aggregate via
a pointer (although this kind of implementation is usually preferred for non-
native subobjects).

• Type of access to X: O may either restrict its access to
the interface of X or may refer to at least one instance
variable of X.

• Scope of X: Being an object non-native to O, in order for
O to have access to X may be one of the following [2]:
1. a parameter to one of O's methods.
2. a non-native part of O.
3. a global object.

• Complexity of interface: In the case of message passing,
it may be useful to consider the number of arguments of
the message to X.

C. An initial ordinal metric within the framework pre-
sented

In this section, we give an initial partial mapping of the
points of the space spanned by our framework onto an ordinal
scale. The most common combinations of dimensions are
covered, while some of the missing ones are not likely to oc-
cur given a minimum of programming discipline.

Table 1 presents class level coupling. Entries correspond to
an ordinal measure of the strength of coupling contributed by
a single access by a method of C to some server SC.

The specific values assigned to the cells of Table 1 can be
motivated as follows:

SC is
stable

SC is unstable

Access
to

inter-
face4

Access
to

inter-
face

Access
to

imple-
men-
tation

SC
is
na-
tive
to
CC

CC is a genuine ag-
gregate of SC (SC is
the class of an “exclu-
sive” instance vari-
able of CC)

1 3 5

A local variable of
type SC is used
within a method of
CC

1 2 4

SC is a superclass of
CC

1 3 5

SC
is
non-
na-
tive
to
CC

SC is the class of a
“shared” instance
variable of CC
(pointer or reference)

1 3 5

SC is the type of a pa-
rameter of a method
of CC

1 2 4

CC accesses a global
variable of class SC

1 3 5

Table 1: Class level coupling
(Stability × Access Type × Scope of Access)

MARTIN HITZ, BEHZAD MONTAZERI: MEASURING COUPLING AND COHESION IN OBJECT-ORIENTED SYSTEMS 6

Strength 1: Accessing the interface of any server class SC,
provided SC is a stable class or features at least a stable inter-
face, the most harmless type of class level coupling occurs, as
no change dependencies are introduced. Of course, accessing
a global variable (line 6 in Table 1) will certainly lead to
strong coupling at the object level (cf. Table 2 below).

Strength 2: Changing the interface of an SC method called
via an object local to one of CC's methods, only this latter
method needs to be changed correspondingly. The same argu-
ment applies to the case where SC is the type of a parameter
of a CC method.

Strength 3: Changing the interface of an SC method in-
voked via a message sent to one of CC's instance variables of
class SC, due to the class scope of instance variables, poten-
tially all methods of CC are affected. This is why this case is
less favorable than the above.

Similarly, changing the interface of a method of the super-
class SC of CC affects all methods of CC calling this super-
class method. Thus, again potentially all methods of CC may
be affected.

As a global variable is accessible from all methods of a
class, the same argument applies for global variables, too.

Strengths 4 and 5: Following the same arguments as for
strengths 2 and 3 and noticing that change dependencies are
generally stronger when breaching the information hiding
principle, these assignments result.
4

Table 2 displays the cases where non-native objects are in-
volved. Here both, class level and object level coupling occur,
however, only the OLC strengths are given, while in Table 3
OLC and CLC (where applicable) are combined.

Entries correspond to the strength of coupling constituted
by a single access by a method of CC to the corresponding SC
object, without considering the complexity of the message in-
terface.

4We exclude column “Access to implementation” here because we are not
yet sure of the respective value assignments. We thus fail to cover all possible
cases. We feel that this omission is not very significant, because in many
cases, this kind of access is prohibited anyway. However, if it does occur, the
coupling strength is allocated somewhere between the values in column 1 and
column 3: It is stronger than in the case where only the interface is accessed,
because it introduces some dependency on the class invariants of SC (i.e., C
cannot be modified freely without taking into account SC’s design). On the
other hand, it is for obvious reasons weaker than in the case of unstable clas-
ses, because the probability of changes in SC itself is zero or at least very low.

Access to
interface

Access to
implemen-

tation

SC is the class of a shared
instance variable of CC

II V

SC is the type of parame-
ter of a method of CC

I IV

CC accesses a global vari-
able of class SC

III VI

Table 2: Object level coupling
(Access Type × Scope of Access)

Strength I: Obviously, sending a message to a non-native
object passed as a parameter is the cleanest way of communi-
cation, clearly documenting the dependency thus established.

Strengths II and III: In accordance to the findings of struc-
tured programming, accessing a global variable is inferior to
the case above. As the scope of instance variables is smaller
than the scope of global variables, but wider than the scope of
parameters, the upper left cell is assigned a medium coupling
strength of II.

At this point, it seems to be worthwhile to spend some
more thoughts on the assignment of strength III to the lower
left cell. In the structured programming paradigm, two mod-
ules are “common coupled” when they share a common, glo-
bally defined storage space. As Budd explains, this kind of
coupling can be avoided in object-oriented systems by intro-
ducing a new class [3]:

“In an object-oriented framework, an alternative to global
data coupling that is frequently possible is to make a new
class that is charged with “managing” the data values, and
route all access to the global values through this manager.
(This is similar to our use of access functions to shield direct
access to local data within an object). This reduces global
data coupling to parameter coupling, which is easier to un-
derstand and control.”

Until now, we have used the notion of object for instances
of all kinds of data types. Here, we must distinguish between
basic types of the implementation language like integer, char-
acter and so forth from “real” objects. If SC belongs to the
former group, it is hard to imagine that a corresponding in-
stance x is considered an “object” with respect to CC, because
of the different level of abstraction. In this case, two clients
using x are not directly coupled, although there is a strong in-
direct coupling (via x) in the classical sense. We may subsume
this case in the lower right cell of Table 2, identifying the ac-
cess to a “naked” variable x with the case of access to the im-
plementation of some global object. On the other hand, we
assigned strength III to the lower left cell by considering SC
as a genuine class. In comparison to the coupling classifica-
tion of the traditional paradigm, this case is equivalent to the
more desirable “parameter coupling” because (as stated by
Budd, cf. above) the global object of type SC stands for a glo-
bal module rather than for a global data item.

Strengths IV, V, and IV: Arguments motivating assignments
in the right column are similar to those for the left column
given above, however taking into consideration the penalties
resulting from violating the information hiding principle.

Combining the compatible parts of Tables 1 and 2 yields
Table 3.

At this point, we must recall that the values in Tables 1 and
2 belong to ordinal scales, prohibiting actual computation of
the sums in Table 3. Moreover, the two scales are also differ-
ent and thus incomparable; this is why they are given as ara-
bic and roman ordinal numbers, respectively.

However, partitioning Table 3 with respect to the stability
dimension, we obtain two tables where the value assignments
happen to be totally comparable. We can thus map each them
onto 2 distinct new ordinal scales as follows. For the stable

MARTIN HITZ, BEHZAD MONTAZERI: MEASURING COUPLING AND COHESION IN OBJECT-ORIENTED SYSTEMS 7

case, we have 1+I < 1+II < 1+III which leads to Table 4:

Table 5 (the entries of which cannot be compared with
those of Table 4!) can be constructed in a similar manner for
the unstable case.

Considering also the interface complexity not yet covered
by the values of Tables 2 to 5, one could borrow the idea of
Fenton [10] to define a fine grained metric in the form of

X + p / (1+p)
where X denotes the respective table entry and p is the num-
ber of parameters passed.

SC is stable
or has a sta-

ble inter-
face

SC is unstable

Access to
interface

Access to
interface

Access to
implemen-

tation

SC is the class of a
shared instance
variable of CC

1 + II 3 + II 5 + V

SC is the type of
parameter of a
method of CC

1 + I 2 + I 4 + IV

CC accesses a glo-
bal variable of
class SC

1 + III 3 + III 5 + VI

Table 3: Overall coupling strength (non native server objects)

SC is stable or has a
stable interface

Access to interface

SC is the class of a shared instance
variable of CC

2

SC is the type of parameter of a
method of CC

1

CC accesses a global variable of
class SC

3

Table 4: Overall coupling strength for stable (non-native) servers

SC is unstable

Access to
interface

Access to
imple-

mentation

SC is the class of a shared in-
stance variable of CC

2 5

SC is the type of parameter of a
method of CC

1 4

CC accesses a global variable of
class SC

3 6

Table 5: Overall coupling strength for unstable (non-native)
servers

Summing up, we may conclude that coupling appears to be
a complex notion that does not lend itself to be measured by a
single measure. Thus, a software engineer interested in cou-
pling should realize which aspect(s) of coupling she is in fact
interested in and should consequently concentrate her investi-
gations on suitably defined attributes. In the following section,
we present some examples of such coupling-related attributes.

D. Coupling-Related Attributes

Change Dependency Between Classes (CDBC)

As an application of our framework defined above, let us
investigate a special case of CLC in the context of unstable
server classes. The attribute change dependency between
classes (CDBC) determines the potential amount of follow-up
work to be done when class SC is being modified in the
course of some maintenance activity. While the actual number
of changes necessary to bring class CC to par is not predict-
able in general, CDBC determines the number of methods to
be considered upon such a change of SC.

According to our framework, CDBC depends on
1. the scope of visibility of the changed server class within

the client class (determined by the type of relationship
between CC and SC) and

2. the kind of access of CC to SC (interface access or im-
plementation access).

Investigating possible relationship types yields Table 6,
where n denotes the number of methods of class CC.

Of course, α is only relevant if those parts of SC accessed
by CC are in fact subject to change. This motivates the point 2
mentioned above: If SC represents a mature abstraction, its in-
terface is assumed to be much more stable than its implemen-
tation. Thus, many of the changes to the implementation of
SC can be performed without affecting its interface. We there-
fore introduce a factor k (0≤k≤1) corresponding to the stabil-
ity of SC’s interface and multiply the contribution of an access
to the interface with 1-k.

α = number of
methods of CC po-
tentially affected

by a change

SC is not used by CC at all 0

SC is the class of an instance variable
of CC

n

Local variables of type SC are used
within j methods of CC

j

SC is a superclass of CC n

SC is the type of parameter of j meth-
ods of CC

j

CC accesses a global variable of
class SC

n

Table 6: Relationship types between CC and SC and their cor-
responding contribution α to change dependency.

MARTIN HITZ, BEHZAD MONTAZERI: MEASURING COUPLING AND COHESION IN OBJECT-ORIENTED SYSTEMS 8

We can now express the degree of CDBC as follows:

CDBC can be minimized by restricting access to the interface
of the server class and restricting the visibility of server
classes to small scopes, which may be enforced by language
mechanisms like the access specifiers in C++ (public, pro-
tected, private). Thus, for designs conforming to the usual
guidelines for object-oriented design with stable interfaces
and access restricted to the interface only, the change depen-
dency becomes negligeable.

We want to point out that although the measure suggested
above may be subject to further improvements, the underlying
internal attribute itself is certainly highly relevant for control-
ling the quality of a product in a changing environment, as
stressed by Jarke and Pohl [11].

Locality of Data (LD)

Locality of data (LD) represents an attribute directly con-
nected with the quality of the abstraction embodied by a class.
Classes with high data locality are more self-sufficient than
those with low data locality. This attribute influences external
attributes like the class's reuse potential or its testability.

We can construct a measure for LD by relating the amount
of data local to the class to the total amount of data used by
that class. For C++, we can define more precisely for a class C

with
Mi (1≤i≤n) methods of class C (excluding all trivial

read/write methods for instance variables)
Li (1≤i≤n) set of “local” variables accessed by Mi (di-

rectly or via read/write methods). These are:
non-public instance variables of class C, in-
herited protected instance variables of its su-
perclasses, static variables defined locally in
Mi

Ti (1≤i≤n) set of all variables used in Mi, except for
nonstatic local variables defined in Mi

For the sake of robustness of the measure, we excluded all
auxiliary variables defined in Mi because they don’t play a
major role in a design.

A protected instance variable which has been inherited by a
class C is local for an object CO of type C (and hence a mem-
ber of Li), even though it is not declared in class C. Using
such a variable by methods of C is harmless with respect to
LD (it is only accessible by CO itself) but it is undesirable if
we are interested to achieve a low value of CDBC. This exam-
ple shows again that coupling is a multi-dimension attribute
which must be divided into more elementary ones5.

A αi

accesses i to
implementation

∑ 1 k–() αi

accesses i to
interface

∑⋅+=

CDBC CC SC,() min n A,()=

LD

Li
i 1=

n

∑

Ti
i 1=

n

∑
------------------=

IV. COHESION

Cohesion is an important attribute corresponding to the
quality of the abstraction captured by the class under consid-
eration. Good abstractions typically exhibit high cohesion.
The original object-oriented cohesion metric as given by
Chidamber and Kemerer [4] (and clarified by the same au-
thors in [5]) represents an inverse measure for cohesion. They
define Lack of Cohesion in Methods (LCOM) as the number
of pairs of methods operating on disjoint sets of instance vari-
ables, reduced by the number of method pairs acting on at
least one shared instance variable6. The definition given in [5]
is reproduced below:

“Consider a Class C1 with n methods M1, M2, ..., Mn. Let

{Ij} = set of instance variables used by Method Mj.
There are n such sets {I1}, ..., {In}.

Let P = {(Ii, Ij) | Ii∩Ij=∅} and Q = {(Ii, Ij) | Ii∩Ij≠∅}.

If all n sets {I1}, ..., {In} are ∅ then let P = ∅.

LCOM = |P| - |Q|. if |P| > |Q|
= 0 otherwise.”

For example, in class X below, there are two pairs of methods

accessing no common instance variables (<f, g>, <f, h>),
while exactly one pair of methods shares variable E, namely,
<g, h>. Therefore, LCOM is 2 - 1 = 1.

Although the principle idea behind this definition seems
very sensible, the resulting cohesion metric exhibits several
anomalies with respect to the intuitive understanding7 of the
attribute, the most important of which will be explained be-
low.

Consider the following two designs (each Venn diagram re-
presents a method by the set of instance variables it employs):

5In fact, the first motivation to define LD stemmed from the analysis of a
related general coupling measure defined by Stiebellehner [19], who does not
distinguish between the distinct aspects of CDBC and LD.

6Note that this approach is not applicable to abstract classes due to the
lack of method definitions and instance variables.

7In the course of preparing the camera ready version of this paper, a report
by Eder et al. was published which contains a comprehensive taxonomy of
cohesion attributes which includes our view under the term separable cohe-
sion [8].

class X {
int A, B, C, D, E, F;
void f () { ... uses A, B, C ... }
void g() { ... uses D, E ... }
void h() { ... uses E, F ... }

};

A B C f()

D
E

F

g()

h()

MARTIN HITZ, BEHZAD MONTAZERI: MEASURING COUPLING AND COHESION IN OBJECT-ORIENTED SYSTEMS 9

According to our own the empirical relations, both cases are
equally non-cohesive: Without taking into account any se-
mantic information, we must conclude that both classes
should be broken up, despite the lower LCOM-value for Case
I. However, if the reader feels that the additional method in
Case II should be reflected by the LCOM-score, it should
most probably yield a lower value rather than a higher one!
However, if the reader insists in the correct behavior of
LCOM, i.e., in the additional method qualifying for the higher
score, then removing one of the overlapping methods of Case
I should, ceteris paribus, yield a lower value - however, it
does remain the same:

Moreover, we dislike the fact that LCOM depends on the
number of methods n: Given the fact that the total number of
pairs is , we conclude that

where P denotes the set of disjoint (w.r.t. the instance vari-
ables used) method pairs and yields k, if k>0, 0 other-
wise. Now, for a family of classes that we deem structurally
equivalent, the n in the above formula becomes significant.
Consider for example the following general class structure,
where n methods are sequentially “linked” by shared instance
variables:

Thus we have |P|= yielding

For n<5, LCOM is 0, for n=5, 6, 7, and 8, LCOM becomes 2,
5, 9, and 14, respectively, which is certainly counter-intuitive,
as it is in fact equally hard (or easy) to split the class in two in
each case.

A. Improving LCOM

Li and Henry [13] improved the original version of LCOM
given in [4]8 as follows:

“LCOM = number of disjoint sets of local methods; no two
sets intersect; any to methods in the same set share at least
one local instance variable; ranging from 09 to N; where N
is a positive integer.”

8It is interesting to note that the improved version by Chidamber and Ke-
merer [5] suffers more measure theoretic anomalies than the older improve-
ment by Li and Henry [13].

Case I

LCOM = 2-1 = 1

Case II

LCOM = 4-2 = 2

Case 0

LCOM = 1-0 = 1

n
2 

 

LCOM 4 P n n 1–()–
2

+=

k +

...

Case III

n
2 

  n 1–()–

LCOM
n
2 

  2 n 1–()–
+

=

With this definition, an LCOM value of k>1 hints at the possi-
bility to split X into k smaller and more cohesive classes. Ap-
plying this definitions to cases 0, I, and II above yields a value
of 2 in all cases which is in accordance with the intuitive no-
tion of cohesion. In all instances of Case III, the value of
LCOM is 1, which seems again sensible.

Although with the improved definition of Li and Henry the
anomalies discussed above disappear, their set-theoretic for-
mulation is still not quite precise. Hence, we re-state their def-
inition in graph-theoretic terms as follows:

Let X denote a class, IX the set of its instance variables of
X, and MX the set of its methods. Consider a simple, undi-
rected graph GX(V, E) with

V = MX and E = {<m, n> ∈V×V | ∃ i∈IX: (m accesses i)
∧ (n accesses i)}.

LCOM(X) is then defined as the number of connected compo-
nents of GX (1≤LCOM(X)≤|MX|).

In addition to this mere formal improvement of the defini-
tion of LCOM, we would like to get rid of a more semantic
flaws in the definition of LCOM: Firstly, the not uncommon
design principle to restrict accesses to instance variables to
special purpose read/write methods introduces an anomaly of
this measure: An otherwise cohesive class would yield very
high LCOM-values, as all of the “real” methods would yield
isolated nodes in the graph, as they do not directly share any
instance variable anymore. Secondly, there are many practical
cases in which methods exist which do not at all access in-
stance variables (neither directly nor via mere access meth-
ods) but are coded entirely in terms of other (more basic)
methods of their class. For example, in a class LIST method
size() might be recursively defined in C++ as

int size() const { return empty() ? 0 : 1 + tail().size(); }
Although such methods can certainly be considered very co-
hesive, according to the above definitions of LCOM they are
classified as “structurally unrelated” to the rest of the class.

To avoid these anomalies, the definition of GX could be
changed as follows:

E = {<m, n>∈V×V | (∃ i∈IX: (m accesses i)∧(n accesses i))
∨ (m calls n) ∨ (n calls m)}

In the cases where LCOM = 1, there are still more and less
cohesive classes possible. Especially for big classes, it might
be desirable to find a finer grained measure to tell the struc-
tural difference between the members of the set of classes
with LCOM = 1. For this purpose, let us consider the two ex-
treme cases of connected components:

90 can only occur in cases of classes without any methods, a certainly de-
generate case. A more sensible lower value is therefore 1.

...
m1 m2 m3 mn

m1 m2

m3

m...

mn

|E| = n-1

|E| = n⋅(n-1)/2

(n = |V|)

MARTIN HITZ, BEHZAD MONTAZERI: MEASURING COUPLING AND COHESION IN OBJECT-ORIENTED SYSTEMS 10

The chain represents the minimum cohesive graph with
LCOM=1, while maximum cohesion occurs in the complete
graph. The obvious generalization of connectivity leads to the
graph theoretic notion of “connectivity of degree k” (k edges
must be removed to disconnect the graph) which is unfortu-
nately not easy to determine for higher values of k. Instead,
we propose a linear mapping of the interval [n-1, n⋅(n-1)/2]
onto the interval [0, 1] as follows:

For classes with more than two methods, C can be used to dis-
criminate among those cases where LCOM=1 as C gives us a
measure of the deviation of a given graph from the minimal
connective (that is, cohesive) case.

V. CONCLUSIONS AND FUTURE WORK

Having introduced a framework for a comprehensive met-
ric for coupling in object-oriented systems on both, object and
class levels, we were able to identify a basic ordinal metric for
the contribution certain elementary constructs provide to cou-
pling.

As an application of the framework, consider the trade-off
discussed in [1], namely, if using a (non-native) object is pref-
erable to containing an object. Denoting the class of such an
object by X, we find from Table 1 of our framework that if X
is stable, accessing an instance variable of this type X yields
coupling strength 1 for the containing case. The using case is
given as 1+I in the second row / first column cell of Table 3.
Thus, containment is preferable in this case.

Several open problems remain to be solved:
Unifying both sets of values as defined by Table 1 and Ta-

ble 2 in order to achieve a complete ordinal scale within the
coupling framework is of course desirable. To achieve consis-
tent and satisfying results, empirical data obtained from real-
life software engineering projects need be analyzed with re-
spect to the influence of the metrics proposed on external
product attributes. This applies as well to the cohesion mea-
sures presented.

ACKNOWLEDGMENT

The authors would like to thank Günther Vinek for several
fruitful discussions.

REFERENCES

[1] Grady Booch. Object-Oriented Design. Benjamin Cummings,
1991.

[2] Grady Booch. Object-Oriented Design. Second Edition, Benjamin
Cummings, 1994.

[3] Timothy A. Budd. An Introduction to object-oriented Program-
ming. Addison Wesley, 1990.

[4] Shyam R. Chidamber, Chris F. Kemerer. Towards a Metrics Suite
for object-oriented Design. In Proc. OOPSLA '91, ACM 1991,
197-211.

[5] Shyam R. Chidamber, Chris F. Kemerer. A metrics suite for object-
oriented design. IEEE Trans. Software Eng., vol. 20, no. 6, June
1994, 476-493.

C 2
E n 1–()–

n 1–() n 2–()⋅
--=

[6] Peter Coad, Edward Yourdon. Object-Oriented Design. Yourdon
Press, 1991.

[7] Craig Damon, Gordon Landis. Abstract State and Representation
in Vbase. In: Object-Oriented Databases With Applications to
CASE, NETWORKS and VLSI CAD (ed. Rajiv Gupta, Ellis Hor-
witz). Prentice Hall, 1991, 178-188.

[8] Johann Eder, Gerti Kappel, Michael Schrefl. Coupling and Cohe-
sion in Object-Oriented Systems.Technical Report, University of
Linz, Institut für Informationssysteme, 1995 (submitted for pub-
lication).

[9] Lem O. Ejiogu. Five Principles for the Formal Validation of Mod-
els of Software Metrics. ACM SIGPLAN Notices, August 1993.

[10] Norman E. Fenton. Software Metrics - A Rigorous Approach.
Chapman & Hall, 1992.

[11] M. Jarke, K. Pohl. Requirements engineering in 2001: (virtually)
managing a changing reality. Software Engineering Journal, Nov.
1994, 257-266.

[12] Jean Pierre LeJacq. Semantic-Based Design Guidelines for Ob-
ject-Oriented Programs. JOOP, Focus on Analysis & Design,
1991, 86-97.

[13] W. Li, S. Henry. Maintenance Metrics for the Object Oriented Par-
adigm. In Proc. 1st Int. Software Metrics Symp., Los Alamitos,
CA, May 21-22 1993, IEEE Comp. Soc. Press, 1993, 52-60.

[14] Karl Lieberherr, Ian Holland, Arthur Riel. Object-Oriented Pro-
gramming: An Objective Sense of Style. In Proc. OOPSLA '88,
ACM 1988, 323-334.

[15] Karl Lieberherr, Ian Holland. Assuring Good Style for Object-Ori-
ented Programs. IEEE Software, September 1989, 38-48.

[16] Allen Macro, John Buxton. The Craft of Software Engineering.
Addison-Wesley, 1987.

[17] Teri Roberts. Metrics for Object-Oriented Software Development.
Workshop Report in Addendum to the Proceedings OOPSLA '92,
ACM 1992, 97-100.

[18] W. P. Stevens, G.J. Myers, L. L. Constantine. Structured Design.
IBM Systems Journal, Vol. 13, No. 2, May 1974, 115-139.

[19] Johann Stiebellehner. Kopplung in Objektorientierten Systemen
- Definition und Bewertung von Kopplungsmaßzahlen. Disserta-
tion, Institut für Angewandte Informatik und Informationssys-
teme, University of Vienna, 1993

[20] Alan Snyder. Encapsulation and Inheritance in Object-Oriented
Programming Languages. In Proc. OOPSLA '86, ACM 1986, 84-
91.

[21] Douglas A. Troy, Stuart H. Zweben. Measuring the Quality of
Structured Designs. Journal of Systems and Software, Vol. 2, 1981.

[22] Yair Wand, Ron Weber. An Ontological Model of an Information
System. IEEE Transactions on Software Engineering, Vol. 16, No.
11, November 1990, 1282-1292.

[23] Iseult White. Using the Booch Method - A Rational Approach.
Benjamin Cummings, 1994.

[24] Norman Wilde, Ross Huitt. Maintenance Support for Object-Ori-
ented Programs. IEEE Transactions on Software Engineering. Vol.
18, No. 12, December 1992.

[25] Horst Zuse, Peter Bollmann. Software Metrics: Using Measure-
ment Theory to Describe the Properties and Scales of Static Soft-
ware Complexity Metrics. ACM SIGPLAN Notices, August 1989.

