
Liebhart Walter WADL: Technical Report 1

University of Klagenfurt
Department of Informatics

Austria

Technical Report
Walter Liebhart, 1995

email: walter@ifi.uni-klu.ac.at

The Workflow Activity Description Language WADL

Workflow management involves everything from modeling processes up to synchronizing the
activities and tasks which constitute a workflow and which are performed automatically by
software systems or partially automatic by humans. In particular, management of a workflow
includes [GHS95]:� process modeling and workflow specification� process reengineering� workflow implementation and automation

Performing workflow specification requires a workflow model. A workflow model typically
includes a set of concepts that are usefull to describe processes, their tasks, the dependencies
among tasks, and the required roles that can perform the tasks. During workflow specification
the workflow designer is faced with the identification and modeling of functional, behavioral,
organizational and informational aspects of a complex business process [Jab94].

The aim of this technical report is to focus on the dynamic (behavioral) modeling of a
workflow process. By dynamic aspects the interdependencies or execution order of activities
and tasks in a workflow are investigated. Since automatic failure handling (recovery and
rollback) is supported in WAMO it is not only important to describe "regular" execution
orders but also the behavior of a process in certain failure situations. If an essential activity
or tasks fails then a corresponding compensation mechanism is activtated.

In WAMO [EL95], processes are structured hierarchically and the execution order of activities
and tasks in the hierarchy are based on explicit control flow specifications. The execution of
a hierarchical structured workflow starts at the top-level activity which leads to the execution
of the first underlying layer of subactivities. Because of the hierarchic structure the control
flow is always related to an activity and its directly subrelated subactivities. Additionally, the
relation between a parent and a child activity may be specified as vital (default) or non vital.

Liebhart Walter WADL: Technical Report 2

To describe the semantics of the different control structures in a hierarchy the following
aspects have to be clarified:� What happens when an activity is started?

- Which subactivities have to be started and in which order?� When does a parent activity (control structure) terminate successfully / unsuccessfully?
- What happens if a vital / non vital (sub)activity fails / succeeds?

- Concerning the parent activity
- Concerning other sibling activities� What happens when an activity is compensated?

- Which subactivities have to be compensated and in which order?� What happens when an activity is aborted?
- Which subactivities have to be aborted and/or compensated and in which order?

For the specification of the dynamic part of a workflow we have developed the simple to use
and high-level Workflow Activity Description Language WADL which is based on the
Workflow Activity Model WAMO (refer to [EL95] [EL94]). The definition and extension of
WADL is still in work.
The basic elements of the model are activities, tasks, control structures and transaction
specific parameters. The transaction specific parameters support selective use of transactional
properties (e.g., atomicity, consistency, isolation and/or durability) for individual tasks,
activities or entire workflows.

1 Definition of WADL in Backus-Naur form

<WF> ::= "definition" <Activity> "end"
<Activity> ::= <AID> <A>
<AID> ::= letter {letter | digit}
<A> ::= <SA> | <RCA> | <FCA> | <PA> | <Task>
<SA> ::= "sequence" ["non vital"] <Activity> {["non vital"] <Activity>} "end"
<RCA> ::= "ranked-choice" <Activity> {<Activity>} "end"
<FCA> ::= "free-choice" <Activity> {<Activity>} "end"
<andPA> ::= "and-pa" ["non vital"] <Activity> {["non vital"] <Activity>} "end"
<orPA> ::= "or-pa" <Activity> {<Activity>} "end"
<IA> ::= "iteration" "non vital" <Activity> "end"
<Task> ::= <T1> | <T2>
<T1> ::= "task" <TID> "(" ["force"] <StornoT1> ")"

"task" <TID> "(" "force" ")"
<T2> ::= "task" <TID> "(" ["force"] <StornoT2> ")"
<StornoT1> ::= "undoable" | "compensatable"
<StornoT2> ::= "none" | "critical"
<TID> ::= letter {letter | digit}

pay

NV

Trip

Reservation

Flight

Reservation

Car-Room
Payment

exec_FR.

NV

Room-Res Car-Res

Hilton Other

Cash Cheque

Document

Reservation

deliver

Handling

archive

deliver

NV

archiveF-Res R-ResComp.
F-Res

Comp.
R-Res

prepare

Activity

ranked choice

free choice

sequence

parallel
NV Non Vital

Critical
Task

Task
Task

Compensation

Forcable
Task

Liebhart Walter WADL: Technical Report 3

Figure: Trip Reservation

Example:

definition Trip_Reservation
sequence

Flight_Reservation
parallel

prepare task prepare (compensatable) task inv_prepare (force)
exec_FR task exec_FR (compensatable) task inv_exec_FR (force)

end
non vital Car_Room_Reservation

paralle
Room_Res

ranked-choice
Hilton task R_Res (compensatable) task inv_R_Res (force)
Other task R_Res (compensatable) task inv_R_Res (force)

end
non vital Car-Res ...

end
Payment

free-choice
Cash task pay (critical)
Cheque ...

end
Document_Handling

parallel
deliver task deliver (compensatable force) task inv_...
non vital archive task archive ...

end
end

end

Liebhart Walter WADL: Technical Report 4

2 A Short Overview of ACTA

ACTA [CR92] is a transaction framework which facilitates the formal description of
properties of extended transaction models. It allows the specification of transaction types,
whereby a transaction type intentionally describes a set of transaction instances that share
structure and behavior. With ACTA, the effects of transactions on other transactions
(intertransaction dependencies) and also their effects on objects (visibility of and conflicts
between operations on objects) through constraints on histories can be formally specified.
Transaction instances issue events, mainly transaction events (i.e., begin, commit) and object
events (i.e., data manipulation events). An event causes a unit of work to switch to a
particular state. The following concepts are important:� A history H of the concurrent execution of a set of transactions T contains all the events

associated with the transactions in T and indicates the (partial) order in which these events
occur. � The predicate e → e' is true if event e precedes event e' in history H. It is false,
otherwise.� (e ∈ H) ⇒ Condition , where ⇒ denotes implication, specifies that the event e canH

belong to history H only if Condition is satisfied. In other words, Condition is necessaryH H

for e to be in H. Condition is a predicate involving the events in H.H� Condition ⇒ (e ∈ H) specifies that if Condition holds, e should be in the history H. InH H

other words, Condition is sufficient for e to be in H. Typically, (parts of) the semanticsH

of one transaction type depend on its relationships to other types which may be expressed
by dependencies. A dependency is an implication that constrains the occurrence or order
of events of two transactions.

Dependency Definition Meaning

Abort Dep. t AD t (Abort ∈ H) ⇒ (Abort ∈ H) if t aborts then t abortsj i ti tj i j

Commit -on-Termination (e ∈ H) ⇒ (e → Commit) where
Dep. t CTD t e ∈ {Commit , Abort }j i

tj

ti ti

if t terminates then t commitsi j

Serial Dep. (Begin ∈ H) ⇒ (e → Begin) t cannot begin execution until t
t SD t where e ∈ {Commit , Abort } either commits or abortsj i

tj tj

ti ti

j i

Begin Dep. t cannot begin execution until t
t BD t has begunj i

(Begin ∈ H) ⇒ (Begin → Begin)tj ti tj j i

Begin-on-Commit Dep. t cannot begin execution until t
t BCD t commitsj i

(Begin ∈ H)⇒ (Commit → Begin)tj ti tj j i

Begin-on-Abort Dep. (Begin ∈ H) ⇒ (Abort → Begin) t cannot begin execution until t
t BAD t abortsj i

tj ti tj j i

Force-Commit-on-Abort (Abort ∈ H) ⇒ (Commit ∈ H) if t aborts, t commits
Dep. t CMD tj i

ti tj i j

Table1: Examples for ACTA-Dependencies

Intermediate Activity State

Start State

Final State

start

active

compensated

compensating

error

aborted

aborting

committed unsuccessfully

committed successfully

compensate

succeed

fail

fail

succeed

abort

succeed

fail

Liebhart Walter WADL: Technical Report 5

Figure 2: Event-state diagram for activities

Dependencies can arise due to structure (e.g., dependencies between a parent and child
transactions) or due to behavior (operations on objects). Some examples of structural
dependencies which are used in WADL are summarized in table 1.

3 Semantics of WADL

In this subsection we describe parts of the semantics of WADL with the help of structural
ACTA dependencies. First we identify the essential events and states of our model, presented
in Figure 2.

The invocation of a transaction management primitive is termed a significant event in ACTA.
The following significant events are valid in WAMO:� Initiation events: start, compensate� Termination events: succeed, fail, abort

An activity can be started if it is in the initial state startable. By triggering the event start,
the activity changes its state from startable to active. An active activity can be terminated by
the following events:

Succeed: This event is equal to commit successfully or commit with a positive result. The
corresponding termination state is committed successfully.

Fail: This event is equal to commit unsuccessfully, commit with a negative result or
abort semantically. The corresponding termination state is committed
unsuccessfully.

Abort: An active activity can be aborted by the user or by the system (e.g., if the client

Liebhart Walter WADL: Technical Report 6

for whom the trip reservation is arranged, falls ill then the whole reservation
should be interrupted). An abort may be a complex process with two possible
results: the process either succeeds (normal case) or fails (then a manual
intervention is necessary). Additionally, it must be mentioned, that an abort is not
always possible because it may endanger the safety of the overall process.

An important feature of WAMO is its compensation concept. Normally, a compensation is
initiated if a vital activity fails. Only successful committed activities can be compensated. A
compensation may succeed (normal case) or fail. If the compensation fails then a manual
intervention will be necessary.

Manual intervention depends on the current situation and means to correct the failure, to
restart the task or to change the execution state of the task in order to support process
progress.

3.1 Structural dependencies in WADL

For the formalization of structural dependencies between activities (transactions) the following
abbreviations are used:

PA: Parent Activity
CA: Child Activity
VCA: Vital Child Activity; the relation between the CA and its PA is vital
CompA: Compensation Activity; because of implementation aspects, each activity has a

corresponding compensation activity which controls the compensation of A.
T: Task
n: number of last activity in a control structure

Additionally, there are two invariant constraints for the compensation process:� If an activity is triggered by an compensate event then the corresponding compensation
activity CompA is started.� CompA can only be started if the corresponding (original) activity has committed
successfully before.� If CompA is started then it must commit successfully! Otherwise a manual intervention
is necessary.

The structural dependencies in the rest of this section are presented not only in a short hand
notation but also in a textual description.

Liebhart Walter WADL: Technical Report 7

3.1.1 Structural dependencies in a sequence

(a) CA BD PA % Begin Dependency1

(b) PA CTD CA % Commit-on-Termination Dep.n

(c) PA AD VCA % Abort Dependencyj

(d) CA SD CA : 1 < i ≤ n % Serial Dependencyi i-1

(e) CA BCD VCA : 1 < i ≤ n % Begin-on-Commit Dep.i i-1

If a vital child activity (VCA) fails then the compensation process is activated. All previous
executed activities which have committed successfully are compensated in inverse order. At
last the parent activity fails.

(f) CompA BAD VCA : j > i % Begin-on-Abort Dep.i j

(g) CompA BCD CompA % Begin-on-Commit Dep.j-1 j

The compensation of a sequence (the successfull committed parent activtiy) consits of the
following dependencies:

(h) CompA BD CompPA % Begin Dependency1

(i) see rule (g)
(j) CompPA SCD CompA % Strong-Commit Dependency

Description:
(a) The first child activity CA of a sequence cannot start before its parent activity PA has1

been started.
(b) PA succeeds as soon as the last CA in the sequence terminates (succeeds or fails).
(c) PA fails if vital child activity VCA fails (then the whole sequence fails).
(d) If the sequence consists of several child activities, then the activity CA in thei

sequence is started as soon as the previous activity CA has terminated. i-1

(e) If the previous child activity is a vital activity then the next child activity CA in thei

sequence is started only if VCA succeeds.i-1

(f) A is the last successfull committed activity immediately before VCA . CompA isi j i

started as soon as VCA fails. j

(g) If there are several compensatable activities in the sequence then the compensation
activity CompA is started as soon as CompA has committed successfully.j-1 j

(h) The sequence is compensated in inverse order. The last successfull committed
subactivity A is compensated by starting CompA . CompA cannot be started before1 1 1

CompPA has begun.
(i) see rule (g)
(j) The sequence is compensated successfully as soon as the last CompA succeeds.

Liebhart Walter WADL: Technical Report 8

3.1.2 Structural Dependencies in a ranked choice:

(a) CA BD PA % Begin Dependency1

(b) PA SCD CA : 1 ≤ j ≤ n % Strong-Commit Dependencyj

(c) PA AD CA % Abort Dependencyn

(d) CA BAD CA : 1 < j ≤ n % Begin-on-Abort Dependencyj j-1

The compensation of a ranked choice consits of the following dependencies:

(e) CompA BD CompPA % Begin Dependencyj

(f) CompPA SCD CompA % Strong-Commit Dependencyj

Description:
(a) The first child activity CA of a ranked choice cannot start before its parent activity1

PA has been started.
(b) PA succeeds as soon as the first CA (ranked choice activity) succeeds.
(c) PA fails if the last child activity in the choice fails (then the whole choice fails).
(d) CA is started only if CA fails.j j-1

(e) If a ranked choice is compensated then there is exactly one activity A to compensate.j

CompA cannot be started before CompPA has begun.j

(f) The ranked choice is compensated successfully as soon as CompA succeeds.j

3.1.3 Structural dependencies in a free choice:

The dependencies between activities in a free choice are very similar to the dependencies in
a ranked choice. The only difference is the dynamic execution order of activities in a free
choice. The execution order is evaluated at run-time through a certain condition.

(a) CA BD PA % Begin Dependencyi

(b) PA SCD CA : 1 ≤ j ≤ n % Strong-Commit Dependencyj

(c) PA AD CA % Abort Dependencyn

(d) CA BAD CA : i,j ≤ n % Begin-on-Abort Dependencyj i

Description:
(a) The first selected child activity CA of a free choice cannot start before its parenti

activity PA has been started.
(b) PA succeeds (commits successfully) as soon as one CA of the free choice succeeds.
(c) PA fails if all child activities in the choice fail (then the whole choice fails).
(d) CA is started if the previous executing CA fails.j i

The compensation dependencies in a free choice are the same as the compensation
dependencies of a ranked choice.

Liebhart Walter WADL: Technical Report 9

3.1.3 Structural dependencies in a limited choice:

In a limited choice (conditional construct) exactly one child activity is started at run-time,
depending on a certain condition.

(a) CA BD PA % Begin Dependencyi

(b) PA SCD CA % Strong-Commit Dependencyi

(c) PA AD CA % Abort Dependencyi

Description:
(a) Child activity CA which satisfies a certain condition cannot start before its parenti

activity PA has been started.
(b) PA succeeds as soon as CA succeeds. i

(c) PA fails if CA fails.i

The compensation dependencies in a free choice are the same as the compensation
dependencies of a ranked choice.

3.1.4 Dependencies between AND-parallel activities

(a) CA BD PA % Begin Dependency1..n

(b) PA CTD CA % Commit-on-Termination Dependency1..n

(c) PA AD VCA % Abort Dependency

If a vital CA fails then all sibling activities which have committed successfully are
compensated and all active brother activities are aborted. Activities which have not already
started are not allowed to start.

(d) CompA BAD VCA % Begin-on-Abort Dependenyi..j

(e) CA WD VCA % Weak-Abort Dependencyi..j

The compensation of an and-parallel control construct consits of the following dependencies:
(f) CompA BD CompPA % Begin Dependencyi..j

(g) CompPA SCD CompA % Strong-Commit Dependencyi..j

Description:
(a) The child activities cannot be started before their parent activity PA has been started.
(b) The parent activity PA succeeds as soon as all CAs have terminated (succeeded or

failed)
(c) The parent activity PA fails if one of its vital child activities fails.
(d) A are successfull committed activities. The corresponding compensation activitiesi..j

of A (CompA) are started as soon as a VCA fails. i..j i..j

(e) All active CAs are aborted as soon as a VCA fails.
(f) A are successfull committed child-activities. The corresponding compensationi..j

activities of A (CompA) are started after CompPA has been started.i..j i..j

(g) If all CompA succeed then CompPA succeeds.i..j

Liebhart Walter WADL: Technical Report 10

3.1.5 Dependencies between OR-parallel activities

(a) CA BD PA % Begin Dependency1..n

(b) PA SCD CA % Strong-Commit Dependencyi

(c) PA AD CA % Abort Dependency1..n

(d) CA ED CA % Exclusion Dependencyj i

!(e)CA EBD CA % Exclusive Begin Dependencyj i

In an OR-parallel construct no vital child activities are allowed. Therefore no compensation
is triggered if a child activity fails.

The compensation of an or-parallel construct comprises the following dependencies:

(f) CompA BD CompPA % Begin Dependenyi

(g) CompPA SCD CompA % Strong-Commit Dependencyi..j

Description:
(a) The child activities cannot be started before its parent activity PA has been started.
(b) The parent activity PA succeeds as soon as the first CA succeeds.
(c) The parent activity PA fails if all child activities fail.
(d) IF CA succeeds and CA has begun executing, then CA aborts (both CA and CAi j j i j

cannot succeed).
!(e) IF CA succeeds and CA has not begun executing, then CA cannot begin.i j j

(f) A is the successfull committed child activity. The corresponding compensationi

activitiy CompA is started as soon as CompPA has begun. i

(g) If CompA succeeds then also CompPA succeeds.i

3.1.6 Dependencies of an iteration

(a) CA BD PA % Begin Dependency1

(b) CA SD CA % Serial Dependencyi+1 i

(c) PA CTD CA % Commit-on-Termination Dependencyi

Description:
(a) The first activation of the CA of an iterativPA cannot be started before the PA has

been started.
(b) The i+1st activation of CA cannot be started before the i-th activation of CA has

terminated.
(c) PA succeeds as soons as the last activation of CA terminates.

To simplify the semantics of an iteration there are three constraints:� An iteration activtiy always succeeds: If an activity is repeated several times (until the
condition is satisfied) then there may be several termination states (e.g. 2 times the
activity may have succeeded and one time the activity may have failed). To compute the

Liebhart Walter WADL: Technical Report 11

result of the iteration activity (PA) on the basis of the different termination states of the
iterating CAs would be very difficult and probably ambiguous.� The relation between the PA (iteration activity) and CA (activity which iterates) is always
"non vital". This makes the handling of iterations easier and it also fits very well to the
previous mentioned constraint (if a "vital" relation would be possible then the PA must
fail if the iterating CA fails).� The compensation of an iteration is a null operation.

3.1. Dependencies between activities and tasks

(a) T BD PA % Begin Dependency
(b) PA SCD T % Strong Commit Dependency
(c) PA AD T % Abort Dependency

Compensation of a task:

(d) CompT BD CompPA % Begin Dependency
(e) CompA SCD CompT % Strong Commit Dependency

Description:
(a) A task T cannot begin execution before the corresponding parent activity PA has

begun.
(b) If task T succeeds then also its PA succeeds.
(c) If task T fails then also PA fails.
(d) The compensation of a task cannot begin before the corresponding parent

compensation activity has begun.
(e) The compensating parent activity succeeds as soon as the compensation task succeeds.

Literature:

[CR92] Chrysanthis P. K., Ramamritham K.: ACTA: The Saga Continues. In: [Elm92].
[EL95] Eder J., Liebhart W.: The Workflow Activity Model WAMO. Proc. of the 3rd Int. Conference on

Cooperative Information Systems, Vienna 1995.
[Elm92] Elmagarmid A. K.: Database Transaction Models for Advanced Applications. Morgan Kaufmann,

1992.
[GHS95] Georgakopoulos D., Hornick M., Shet A.: An Overview of Workflow Management: From Process

Modeling to Workflow Automation. In: Distributed and Parallel Databases, Vol.3, No.2 1995.
[Jab94] Jablonski S.: Functional and Behavioral Aspects of Process Modelling in Workflow Systems. In:

G. Chroust and A. Benczur (ed.): CON 94 Workflow Management: Challenges, Paradigms and
Products, Oldenburg 1994.

