
A Formal Semantics for mOPS5

Herbert Groiss
Institut für Informatik
Universität Klagenfurt

A-9022 Klagenfurt, AUSTRIA
e-mail: herb@ifi.uni-klu.ac.at

Abstract

In this paper a formal declarative semantics of the rule-
based language mOPS5 is defined. As the name of the lan-
guage says, it is a simplified version of OPS5. At first we
describe informally this language, the semantics of mOPS5
is then defined in terms of Datalogf�, a logic programming
language, which has a well-defined minimal model seman-
tics and fixpoint semantics. The availability of a clean se-
mantics has several advantages: it allows program analy-
sis and optimization as well as judging the correctness of
implementations.

1 Introduction

Rule-based languages are widely used in the fields of Ar-
tificial Intelligence and expert systems, because they pro-
vide a problem-near knowledge representation for many
domains. Popular representatives of this language class are
OPS5 [6, 2], CLIPS [4] and SOAR [8]. In the field of
databases rule-based languages have gained more attention
in the last years as so-called Active Databases. Generally
the semantics of rule-based languages is defined by giv-
ing an informal description of the evaluation algorithm and
the conflict resolution strategy. This lack of formal defini-
tion prohibits the use of formal methods for program anal-
ysis. Moreover, the descriptions of the semantics is often
incomplete so that some programs are indeterministic, port-
ing such programs to another machine or version of the lan-
guage may lead to unexpected results. Namely, in OPS5
the specification of the conflict resolution strategy is incom-
plete [6, 2], i.e. in certain cases an instantiation is arbitrarily
chosen.

We have defined the language mOPS5 (for miniOPS5),
a slightly restricted dialect of the popular rule-based lan-
guage OPS5, and describe the semantics of this language
formally. For formalizing the state changes a rule per-
forms in the working memory we use a kind of situation

calculus (originally from McCarthy [9]) which can be ex-
pressed in Datalogf�, a subset of first-order predicate logic
which has a well-defined model-theoretic and fixpoint se-
mantics. Each mOPS5 rule can then be translated to a set
of Datalogf� clauses.

There has been some approaches to formalize the se-
mantics of rule-based languages, but in general for very
simple languages or for languages with execution models
different from the widely used rule-based languages [7]. In
[14], Jennifer Widom presents a denotational semantics of
the Starburst rule language. The main difference to lan-
guages like OPS5 is the kind of evaluation: In Starburst the
evaluation is set-oriented, i.e., in each cycle, an action is ap-
plied to a set of tuples, not a single tuple. In [16] a fixed
point semantics of rule trigger systems is presented. This
allows it to formulate a sufficient criteria for identifying the
class of programs computing an unique least fixpoint inde-
pendent from the rule evaluation order.

The situation calculus is used to formalize database
updates in [13]. Zaniolo [15] also uses situation calcu-
lus in combination with XY-stratified programs (similar to
acyclic programs we use) to formalize the behavior of rule-
based systems with set-oriented evaluation. Raschid [11]
defines a declarative and fixpoint semantics for a rule-based
language, which is slightly extended in [12]. However,
only a restricted class of rule-based programs - stratified
ones - are considered and the rule language is far from the
power of OPS5. The main contribution of this work is the
consideration and declarative description of rule priorities
and tuple-oriented execution.

The rest of this paper is organized as follows: In the next
section we describe informally the language mOPS5. The
following two sections describe the syntax and semantics of
Datalog and the extensions we define as well as the situa-
tion calculus. In section 5 we present the formal semantics
of mOPS5 by giving the translation algorithm to Datalog.
Concluding remarks and an outlook are given in section 5.



2 The Language mOPS5

We assume the reader is familiar with the language
OPS5 and refer to [6]. The main restrictions of mOPS5 are:
in the LHS no disjunctions are allowed, in the RHS only
the actions make, modify, and remove are possible. The
first restriction is only syntactical because disjunctions in
the LHS can be factored into multiple rules.

The LHS of a rule is composed of one or more negated
or non-negated condition elements (CEs). A CE consists of
a class name and a set of attribute-value pairs. The attribute
is specified by a caret ’ˆ’ followed by a declared attribute
name. The value is either a constant, a variable - repre-
sented by a name enclosed in angled brackets -, an expres-
sion, or a functional expression. An expression consists of
a predicate (����� ����� ��) and a value, a variable or
a functional expression. A set of expressions enclosed in
fg indicates a conjunction. A functional expression is indi-
cated with the keywordcompute and evaluates arithmetic
functions with the operators +,-,*,and /.

The RHS of a rule consists of a sequence of actions. The
only actions allowed in mOPS5 are make, modify and re-
move. The arguments for make are a class name and a se-
quence of patterns like in the LHS. The first argument of
modify and the only argument of remove is a number n in-
dicating that the element matching condition n should be
modified or removed. The remaining arguments of modify
are attribute-value pairs like in the LHS.

Example 1. In a table teams the names of teams and their
points are stored. The points of a team are raised by two
points, when a play between the team and another one took
place and the team shot more goals than the other team. The
following rule implements this situation:

(p winner
(play ˆteam1 <t1> ˆteam1 <t2>

ˆgoal1 <g1>
ˆgoal2 {<g2> < <g1>})

(team ˆname <t1> ˆpoints <p>)
-->
(modify 2

ˆpoints (compute (<p> + 2)))
(remove 1))

The working memory may contain the following facts:

1: (team t1 4)
2: (team t2 5)
3: (play t1 t2 6 4)

In this rule, the attribute points of the fact matching the
second condition ((team ...)) is altered. Applying the

rule on the facts results in an instantiation with fact 1 match-
ing the first condition and fact 3 matching the second con-
dition. Fact 1 is then altered to (team t1 6) and fact 3
is removed. �

2.1 Conflict Resolution

The conflict resolution strategies of OPS5 are MEA and
LEX. They are incomplete and therefore not suitable for
defining a semantics which gives every program a unique
meaning. We use a slightly modified strategy which defines
a total order over all possible rule applications. We first de-
scribe this strategy informal, in section 5 it is defined for-
mally.

The rules are ordered with natural numbers from 1 to
n. The order corresponds to the position of the rules in the
source file. The facts are numbered according to the time
of insertion in the working memory, this number is called
the time-stamp.

The evaluation of a rule program is done in a cycle
(recognize-act cycle) with the following steps: 1. match,
2. select, 3. apply.

In the match phase all instantiations containing working
memory elements added in the previous cycle are inserted
into the conflict set (cs). An instantiation is a tuple contain-
ing a rule and n working memory elements, where the i-th
element matches the i-th rule condition. In the next step one
of those is selected for evaluation, where the search order
is the following:

1. Select from cs the instantiations containing the ele-
ments with the lowest time-stamp.

2. Select from the set produced by step 1 the instantia-
tions with the rule with the lowest order.

3. if there is still more than one instantiation, compare at
first the elements matching the first condition, then the
elements matching the second condition, and so on.
When the first difference is found, select the instanti-
ation where the element has the lowest time-stamp.

In the third step the rule is applied and the rule actions
are performed. The algorithm stops when the conflict set
becomes empty. Although this strategy differs from the
MEA and LEX strategies of OPS5, the differences will only
come up in few programs which can be reformulated eas-
ily. Miranker [10] uses a similar conflict resolution strategy
for the implementation of a OPS5 version using the LEAPS
algorithm.



3 Datalog

In the following we assume the reader is familiar with
first order logic. However, we begin by reviewing some
well-known concepts of first-order logic and logic pro-
gramming. The main notations used throughout the paper
are presented in this section.

For a deeper introduction into the field of logic program-
ming and databases we refer to [3] or [5].

3.1 Syntax

The syntax of Datalog is similar to that of PROLOG. A
Datalog program consists of a finite set of rules and facts.
Both, rules and facts are represented as Horn-Clauses with
the following syntax: L� :- L�� ���� Ln. Each Li is a lit-
eral of the form pi�t�� ���� tn�, pi is a predicate symbol and
the ti are terms. A term can be a constant or a variable.
Throughout the paper we use lowercase letters from the
start of the alphabet to represent constants �a� b� c� ����, low-
ercase letters from the end of the alphabet to represent vari-
ables �s� ���� x� y� z�.

The left-hand side of a Datalog clause is called its head
and the right-hand side is called its body. The body of a
clause may be empty. Clauses with an empty body repre-
sent facts, clauses with at least one literal in the body rep-
resent rules. A literal or clause which does not contain any
variables is called ground. The set of predicate symbols
Pred is divided into two parts, EPred (extensional predi-
cates) contains all predicates occurring in facts stored in the
database. IPred (for intensional predicates) is the set of the
predicates occurring in the program but not in the exten-
sional database.

To guarantee the safety of a Datalog program P , i.e. the
finiteness of the set of facts that can be derived by the pro-
gram, it must satisfy the following conditions: Each fact
must be ground, each variable which occurs in the head of
a rule of P must also occur in the body of the same rule.

3.2 Semantics

Each Datalog Fact F can be identified with an atomic
formula of First-Order-Logic. Each Datalog rule R of the
form specified above represents a first order formulaR* of
the form �x�����xm�L�� ����Ln � L��, where x�� ���� xm
are all the variables occurring in R. A set S of Datalog
clauses corresponds to the conjunction of all formulas C*
such that C � S.

The semantics of a logic program is defined by means
of particular models of the program. Again, we make some
definitions. The Herbrand base HB is the set of all ground
facts of the form p�c�� ���� cn�, where p is a predicate sym-
bol in Pred and all ci are constants. Analogous to EPred

and IPred we define the extensional HB (EHB) and the in-
tensional HB (IHB).

A Herbrand Interpretation HI is a subset of the HB, i.e.
the set of ground facts holding in the interpretation. Implic-
itly, ground facts not in HI are false for HI. If a clause C is
true under a given interpretation I , we say that this interpre-
tation satisfies C and that I is a model for C. A Herbrand
Interpretation M is a minimal model of a set of clauses F
iff M is a model of F and for each M � such that M � is a
model of F , M � �M implies M � M �.

A ground fact p�c�� ���� cn� is true under the interpreta-
tion I iff p�c�� ���� cn� � I . A Datalog rule is true under I
iff for each substitution � which replaces variables by con-
stants, whenever L� � I � ��� � Ln � I , then it also holds
that L� � I .

The declarative semantics of a Datalog program P is
simply defined as the minimal Herbrand model of P . The
semantics of Datalog can also be defined with fixpoint the-
ory, see [3].

3.3 Functions

Built-in predicates (or ”built-ins”) are expressed by spe-
cial predicate symbols such as ������ etc. with a prede-
fined meaning.

In most cases built-ins represent infinite relations, there-
fore the Herbrand model of a Datalog program using built-
ins is not necessarily finite. Safety can be guaranteed by
requiring that each variable occurring as an argument of a
built-in predicate in a rule body must also occur in an or-
dinary predicate of the same rule body, or must be bound
by an equality (or a sequence of equalities) to a variable of
such a predicate or a constant.

In a similar way, functions can be used, for example
arithmetic functions ����� 	� �� or user-defined functions.
A predicate plus�x� y� z� can be used to express the rela-
tion x � y � z. The ”input variables”, x and y must oc-
cur in an ordinary predicate of the rule body. The function
can then be evaluated as soon as these variables are bound.
Note, that for guaranteeing the finiteness of the Herbrand
model all arguments would have to be bound in ordinary
predicates.

3.4 Negation

In pure Datalog, negated literals in rules or facts are not
allowed. However, we may infer negative facts by adopting
the closed world assumption (CWA): If a fact F does not
follow from a set of Datalog clauses, then we conclude that
the negation of F , 
F , is true.

The extension of pure Datalog including negated literals
in the body of rules is called Datalog�. For safety reasons
we require that each variable occurring in an negative literal



in the rule body also occurs in a positive literal in the same
body. A set of Datalog� clauses may have more than one
minimal model. Stratified Datalog� programs are a sub-
class of Datalog�, where one distinguished minimal model
can be selected as the model of the program. For this we re-
quire, that each negative literal in the body of a rule can be
evaluated before the predicate of the head of the rule is eval-
uated. If a program fulfills this condition it is called strati-
fied. Any stratified program can be partitioned into disjoint
sets of clauses P � P � � ��� � Pn called strata, such that
eachP i contains only clauses whose negative literals corre-
spond to predicates defined in lower strata. The evaluation
is now done stratum-by-stratum. First, P � is evaluated, by
applying the CWA locally to the EDB. Then the other strata
are evaluated in ascending order.

A refinement of stratification is local stratification,
where the Herbrand Base instead of the predicates is di-
vided into strata. If the HB is infinite (due to the use of
functions), we can have an infinite number of strata. A sub-
class of locally stratified programs are the so-called acyclic
programs [1]. We define a level mapping L � HB � N

of ground facts to natural numbers. If in every ground in-
stance of every rule of P , L�Li� � L�L�, i.e., the level
of all literals of the body is less than that of the head, then
program P is acyclic. The level of a literal also defines its
stratum, every acyclic program is also locally stratified.

Example 2. Let us consider a logic program that defines
the predicate even for natural numbers:

even����
even�y� :– succ�x� y��
even�x��

succ is the successor function, defined as: succ�i� i �
�� for all i � N� The level mapping can be defined as
L�even�x�� � x�L�succ�x� y�� � ��
It is easy to see, that: L�even�x � ��� � L�even�x�� and
L�even�y�� � L�succ�x� y��. The program is therefore
acyclic and, as a consequence, locally stratified. �

Acyclic programs can be evaluated using fixpoint iter-
ation. In the following we denote by Datalogf� acyclic
Datalog� with built-in predicates.

4 Situation Calculus

For formalizing database updates we use a variation of
the situation calculus, originally developed by McCarthy,
[9]. Those relations, whose truth values may vary from
state to state, are called fluents and are denoted by pred-
icate symbols taking a state term as additional argument.
This state term specifies the particular state (or situation),
in which the fact is true.

The main difficulty with this formalism is the so-called
Frame problem: ”Which facts holding in an earlier situa-
tion are still valid in a later situation?” or in other words:
which facts are not invalidated by an action?

Here we use a simple solution, which is, however, less
general than others (for example [13]). For each fluent pwe
define the predicates p� and p�, either with the state term as
additional argument. p� is used to emphasize that p holds in
a state s, p� represents that p becomes false in a situation
s.

A term p�x�� ���� xn� is then true, if p� with the same ar-
guments was true in an earlier state and has not been inval-
idated by p� since then. More formally:

Definition 3. p�x�� ���� xn� is true in situation s, iff
�s��s��p

��x�� ���� xn� s�� � 
p
��x�� ���� xn� s���

s � s� � s��. �

By using single numbers as state term, we can formulate
this calculus in Datalogf�. To guarantee acyclic programs,
we demand that:

1. each fact has a unique state constant,

2. for all rules and all possible substitutions: the state
variable of the head of the rule is greater than all state
variables of literals in the body.

The level mapping can then be defined as:
L�p��x�� ���� xn� s�� � s, where p is a predicate of Pred and
* is either ’ or 
.

So far, we have defined the formal basis for the formu-
lation of the semantics of mOPS5.

5 Translation of mOPS5 to Datalogf�

In this section, we define the semantics of mOPS5 by
giving an algorithm for translating a mOPS5 program L
into an equivalent Datalogf� program P . The result of P ,
the minimal modelMP , is then retranslated to a setML, the
result of the original program L.

As mentioned above, we use the situation calculus for
describing the updates in the database. Each fact initially
in the database or asserted by a rule has a unique state term
s, represented by a sequence.

A fact asserted by a rule has the state term:

min�c�� ���� cn� � �Or � c�� ��� cn	

where c� to cn are the state terms of the facts of the in-
stantiation, + is the concatenation operator, and Or is the
order of the applied rule. The facts initially in the database



have the state terms ��	 to �jdbj	, where jdbj is the cardinal-
ity of the initial database. This representation guarantees a
unique state constant of all elements in the working mem-
ory.

Between two state sequences s and t the relation �s is
defined as follows:

s �s t iff �m�k � � � k � n� sk � tk� and
�sk�� � tk�� or jsj � k� jtj � k�

A sequence s is less than a sequence t, iff the first k ele-
ments of s and t are equal and the next element of s is less
than the corresponding element of t or if the sequence s has
k elements and t has more than k elements. For this total or-
dering we can define a polynom computing a single number
for each state term. In the following the relations represent-
ing the functions which compute the state sequences for a
rule r and action k are denoted by nextrk�sr� c�� ���� cn�,
where the ci’s are the input variables and sr is the output
variable. sr is the sequence of max�ci� appended with
�Or� c�� ��� cn	 and a sequence of k � � zeros, where k is
the position of the action in the right-hand side of the rule.

The translation of the facts from a mOPS5 program to
Datalogf� is simply done by adding the state constant to
each of them.

We can now formulate the translation procedure for the
rules:

INPUT: a mOPS5 rule R with n conditions and m actions
OUTPUT: one or more Datalogf� rules.

1. Replace the RHS-action modify by remove and make.

2. If there is more than one action in the RHS, split the
rule R into m rules R� to Rm with the corresponding
actions in the RHS.

3. Conditions: The variables and constants of the
attribute-value pairs are ordered according to the def-
inition of the predicate, for attributes not appearing in
the condition a variable unique in the rule is inserted.
In the following X stands this sequence of terms.
The condition is then translated to
p��X� si��
p

��X� s�i�� si � s�i � sR, where i is the
position of the literal in the LHS of the rule, and p is
the predicate.

4. The body of the k-th rule is completed with:
nextrk�sr� s�� ���� sn�, where k is between 1 and m.

5. The compute functions and comparison expressions
in the RHS of the rule are replaced with variables, the
predicates for the arithmetic functions are added to the
rule body.

6. The actions in the RHS of the rules are handled in the
following way:

a) (make p X): the head of the rule is p��X� sr�

b) (remove i): the head is p��X� sr�, where the
predicate of the i-th condition is p and X is the se-
quence of terms for this condition.

With this steps done for all rules of a mOPS5 programL
an equivalent Datalogf� programP is generated. The pro-
gram P is acyclic, because sR � max�si�, by definition of
nextrk. The result of P is the minimal modelMP . The re-
sult of the original programL is the set of factsML, defined
in analogy to definition 3:

Definition 4.
ML �� fp�x�� ���� xn�j�s� � p��x�� ���� xn� s�� � MP �
�s� � s� � p��x�� ���� xn� s�� 
�MP g �

The following example shows how the translation of a
mOPS5 program is performed:

Example 5. This program computes the sum of all x in ele-
ments (element <x>), whenever an element (sum 0
0) is inserted into the database:

(p sum
(element <i>)
(sum ˆres <j> ˆnumber <k>)
-->
(remove 1)
(modify 2 ˆres (compute (<i> + <j>))

ˆnumber (compute (<k> + 1))))

On each rule application one matching element is removed
from the working memory and the two attributes of the el-
ement sum are modified, where the first holds the sum, the
second the number of elements.
The rule must be split into three rules, all with the following
body (i runs from 1 to 3):

BODY:
element��i� s���
element��i� s���� s� � s�� � sri�
sum��j� k� s���
sum

��j� k� s���� s� � s�� � sri�
nextsum�i�sri� s�� s��

The complete rules are:

element��i� sr�� :– BODY.
sum��j� k� sr�� :– BODY.
sum��m� l� sr�� :– BODY, plus�i� j�m�� plus�k� �� l�� �

The next example shows that the behavior of mOPS5
programs can be analyzed using the corresponding
Datalogf� program.



Example 6. Consider the following two rules:

(a 0)
(p r1 (a <x>)
--> (make a (compute (<x> + 1)))

(p r2 (a <x>)
--> (remove 1))

Intuitively it is clear that the program behaves different de-
pending on the priority of the rules: If rule r2 is fired first,
the program stops. Otherwise, it does not terminate, be-
cause rule r1 computes p(x) for all x � N.
Due to the formal semantics we can investigate under
which conditions the program does not terminate. The
translation to Datalogf� yields to the following program:

a���� ��	��
a��y� sr�� :– a��x� s���
a

��x� s���� sr� � s�� �
s�� nextr��sr�� s��� plus�x� �� y��

a��x� sr�� :– a��x� s���
a
��x� s���� sr� � s�� �

s�� nextr��sr�� s���

We examine now under which conditions the first rule does
not fire: This is the case when the negated literal in the
body, 
a��x� s���, becomes true, this fact can be asserted
from the second rule. Therefore the rule does not fire, if

sr� � sr� � s�� nextr��sr�� s��� nextr��sr�� s��

From the definition of the functionnext, we can follow that
this expression becomes true only ifOr� � Or�, i.e. the or-
der of r1 is lower than that of r2. If the order of the priorities
is reverse, the program does not terminate. �

The next example shows how the semantics defines an
ordering between multiple instantiations of the same rule:

Example 7. The rule r1 fires once and removes the tuples
of the instantiation from the database.

(b 1)
(a 1)
(a 2)
(p r1 (a <x>) (b <y>)

-->
(remove 1) (remove 2))

The corresponding Datalogf� program is:
b��� ��	�� a��� �
	�� a�
� ��	��
a��x� sr��� :– BODY.
b��y� sr��� :– BODY.
where BODY is: a��x� s���
a��x� s��� s� � s� � s�
b��y� s���
b

��y� s��� s� � s� � s� nextr��s�� s�� sr�i��

The state variable of a���� sr��� is therefore:
�
� Pr�� �
	� ��		
and of a��
� s�r��� it is: ��� Pr�� ��	� ��		
sr�� is smaller than s�r��, the level of the corresponding
fact is therefore lower and the fact is derived. The next
fact which is derived is b���� sr���. With this a fixpoint
is reached and the minimal model is found. Note that se-
lecting the other instantiation (with (a 2)) does not lead to
a model of the program.
Therefore, the resulting database contains only the fact (a
2). �

6 Conclusions

A formal declarative semantics of the rule-based lan-
guage mOPS5 has been presented. The advantages of hav-
ing a well-defined semantics are numerous: The seman-
tics can be used as a basis for program analysis, for exam-
ple to check programs for termination, redundancy, or un-
reachable rules. Further research should focus on the de-
velopment of such tools. Optimization techniques based on
rewriting the rules - as known for Datalog - should be ap-
plicable. Moreover, the formulation of mOPS5 in terms of
Datalogf� should make the unification of active and deduc-
tive databases easier, because most languages for deductive
databases are based on Datalog. This combination allows
the development of languages suitable for a wider applica-
tion area.

References

[1] Krysztof R. Apt and Marc Bezem. Acyclic programs.
New Generation Computing, 9:335–363, 1991.

[2] L. Brownston, R. Farrell, E. Kant, and N. Martin. Pro-
gramming Expert Systems in OPS5. Addison Wesley,
1985.

[3] Stefano Ceri, Georg Gottlob, and Letizia Tanca. Logic
Programming and Databases. Springer-Verlag, 1990.

[4] C. Culbert. CLIPS Reference Manual. Artificial In-
telligence Section, Johnson Space Center, Houston,
1989.

[5] Johann Eder. Logic and databases. In V. Marik, editor,
Advanced Topics in AI. Springer-Verlag, 1992.

[6] C. L. Forgy. Ops5 users’s manual. Technical report,
Department of Computer Science, Carnegie-Mellon
University, 1981.



[7] Herbert Groiss. A formal semantics for a rule-based
language. In IJCAI-93 Workshop on Production Sys-
tems and their Innovative Applications, 1993.

[8] John E. Laird, Allen Newell, and Paul S. Rosen-
bloom. SOAR: An architecture for general intelli-
gence. Artificial Intelligence, 33(1):1–64, September
1987.

[9] John McCarthy. Programs with common sense. In
M. Minsky, editor, Semantic Information Processing,
pages 403 – 418. MIT Press, 1968.

[10] Daniel P. Miranker and David A. Brant. An algorith-
mic basis for integrating production systems an large
databases. In Proc. of the National Conference on Ar-
tificial Intelligence, 1990.

[11] Louiqa Raschid. A semantics for a class of stratified
production system programs. Journal of Logic Pro-
gramming, 21(1):31–57, 1994.

[12] Louiqa Raschid and Jorge Lobo. Semantics for up-
date rule programs and implementation in a relational
database management system. to appear in Transac-
tions on Database Systems, 1995.

[13] Raymond Reiter. On formalizing database updates:
Preliminary report. In Proc. of EDBT, 1992.

[14] Jennifer Widom. A denotational semantics for the
starburst rule language. SIGMOD Record, 21(3):4–9,
1992.

[15] Carlo Zaniolo. A unified semantics for active and de-
ductive database systems. In Norman W. Paton and
M. Howard Williams, editors, Rules in Database Sys-
tems. Springer, 1993.

[16] Yuli Zhou and Meichun Hsu. A theory for rule trig-
gering systems. In Proc. of EDBT, 1990.


