A Formal Semantics for mOPS5

Herbert Groiss
Institut fur Informatik
Universitat Klagenfurt
A-9022 Klagenfurt, AUSTRIA
e-mail: herb@ifi.uni-klu.ac.at

Abstract

In this paper aformal declarative semantics of therule-
based language MOPS5 is defined. As the name of the lan-
guage says, it is a simplified version of OPS5. At first we
describeinformally thislanguage, the semantics of mMOP5
isthen definedin terms of Datalog/ ™, alogic programming
language, which has a well-defined minimal model seman-
tics and fixpoint semantics. The availability of a clean se-
mantics has several advantages: it allows program analy-
sis and optimization as well as judging the correctness of
implementations.

1 Introduction

Rule-based languagesarewidely usedinthefieldsof Ar-
tificial Intelligence and expert systems, because they pro-
vide a problem-near knowledge representation for many
domains. Popular representatives of thislanguageclass are
OPS5 [6, 2], CLIPS [4] and SOAR [8]. In the field of
databases rule-based languages have gained more attention
in the last years as so-called Active Databases. Generally
the semantics of rule-based languages is defined by giv-
ing an informal description of the evaluation algorithm and
the conflict resolution strategy. Thislack of formal defini-
tion prohibits the use of formal methods for program anal-
ysis. Moreover, the descriptions of the semantics is often
incompleteso that someprogramsareindeterministic, port-
ing such programsto another machineor version of thelan-
guage may lead to unexpected results. Namely, in OPS5
the specification of the conflict resol ution strategy isincom-
plete[6, 2], i.e. incertain casesaninstantiationisarbitrarily
chosen.

We have defined the language mOPS5 (for miniOPS5),
a dlightly restricted dialect of the popular rule-based lan-
guage OPS5, and describe the semantics of this language
formally. For formalizing the state changes a rule per-
forms in the working memory we use a kind of situation

calculus (originally from McCarthy [9]) which can be ex-
pressed in Datalog’ ™, a subset of first-order predicatelogic
which has a well-defined model-theoretic and fixpoint se-
mantics. Each mOPSS5 rule can then be trandated to a set
of Datalog’ ™ clauses.

There has been some approaches to formalize the se-
mantics of rule-based languages, but in general for very
simple languages or for languages with execution models
different from thewidely used rule-based languages([7]. In
[14], Jennifer Widom presents a denotational semantics of
the Starburst rule language. The main difference to lan-
guageslike OPS5isthekind of evaluation: In Starburst the
evaluationisset-oriented, i.e., ineach cycle, anactionisap-
plied to a set of tuples, not asingle tuple. In[16] a fixed
point semantics of rule trigger systems is presented. This
allowsit to formulate asufficient criteriafor identifying the
class of programs computing an unique least fixpoint inde-
pendent from the rule evaluation order.

The situation calculus is used to formalize database
updates in [13]. Zaniolo [15] also uses situation calcu-
lus in combination with XY-stratified programs (similar to
acyclic programswe use) to formalize the behavior of rule-
based systems with set-oriented evaluation. Raschid [11]
definesadeclarative and fixpoint semanticsfor arule-based
language, which is dlightly extended in [12]. However,
only a restricted class of rule-based programs - stratified
ones - are considered and the rule language is far from the
power of OPS5. The main contribution of thiswork is the
consideration and declarative description of rule priorities
and tupl e-oriented execution.

Therest of thispaper isorganized asfollows: Inthe next
section we describe informally the language mOPS5. The
following two sectionsdescribethe syntax and semanti cs of
Datalog and the extensions we define as well as the situa-
tion calculus. In section 5 we present the formal semantics
of mOPS5 by giving the trandlation algorithm to Datalog.
Concluding remarks and an outlook are given in section 5.

2 ThelLanguage mOPS5

We assume the reader is familiar with the language
OPS5 and refer to [6]. The main restrictions of mOPS5 are:
in the LHS no disjunctions are allowed, in the RHS only
the actions make, modify, and remove are possible. The
first restriction is only syntactical because digunctionsin
the LHS can be factored into multiple rules.

The LHS of aruleis composed of one or more negated
or non-negated condition elements (CEs). A CE consistsof
aclassnameand aset of attribute-value pairs. Theattribute
is specified by acaret’~’ followed by a declared attribute
name. The value is either a constant, a variable - repre-
sented by a name enclosed in angled brackets -, an expres-
sion, or afunctional expression. An expression consists of
apredicate (<, <=, >, >=, <>)and avaue, avariableor
afunctional expression. A set of expressions enclosed in
{} indicatesaconjunction. A functional expressionisindi-
cated with thekeyword compute and evaluates arithmetic
functions with the operators +,-,* ,and /.

TheRHS of arule consists of asequenceof actions. The
only actions allowed in mOPS5 are make, modify and re-
move. The arguments for make are a class name and a se-
guence of patterns like in the LHS. The first argument of
modify and the only argument of removeis a number n in-
dicating that the element matching condition » should be
modified or removed. The remaining arguments of modify
are attribute-value pairslikein the LHS.

Examplel. Inatable t eams the names of teams and their
points are stored. The points of a team are raised by two
points, when aplay between the team and another one took
place and theteam shot more goal sthan the other team. The
following rule implements this situation:

(p winner
(play “"teaml <tls> “teaml <t2>
“goall <gl>
~“goal2 {<g2> < <gl>})
(team "name <tls> “points <p>)
-->
(modify 2
“points (compute (<p> + 2)))
(remove 1))

The working memory may contain the following facts:

1: (team tl 4)
2: (team t2 5)
3: (play tl t2 6 4)

In thisrule, the attribute points of the fact matching the
second condition ((team .. .)) isaltered. Applyingthe

ruleonthefactsresultsin aninstantiation with fact 1 match-
ing the first condition and fact 3 matching the second con-
dition. Fact 1isthen dteredto (team t1 6) andfact3
isremoved.]

2.1 Conflict Resolution

The conflict resolution strategies of OPS5 are MEA and
LEX. They are incomplete and therefore not suitable for
defining a semantics which gives every program a unique
meaning. We use adlightly modified strategy which defines
atotal order over al possiblerule applications. Wefirst de-
scribe this strategy informal, in section 5 it is defined for-
mally.

The rules are ordered with natural numbers from 1 to
n. The order correspondsto the position of therulesin the
source file. The facts are numbered according to the time
of insertion in the working memory, this number is called
the time-stamp.

The evaluation of a rule program is done in a cycle
(recognize-act cycle) with the following steps: 1. match,
2. select, 3. apply.

In the match phase al instantiations containing working
memory elements added in the previous cycle are inserted
into the conflict set (cs). Aninstantiationisatuple contain-
ing arule and n working memory elements, where the i-th
element matchesthes-thrulecondition. Inthenext step one
of those is selected for evaluation, where the search order
isthefollowing:

1. Select from cs the instantiations containing the ele-
ments with the lowest time-stamp.

2. Select from the set produced by step 1 the instantia-
tions with the rule with the lowest order.

3. if thereis still more than oneinstantiation, compare at
first the elements matching thefirst condition, then the
elements matching the second condition, and so on.
When the first differenceis found, select the instanti-
ation where the element has the lowest time-stamp.

In the third step the rule is applied and the rule actions
are performed. The algorithm stops when the conflict set
becomes empty. Although this strategy differs from the
MEA and LEX strategiesof OPS5, thedifferenceswill only
come up in few programs which can be reformulated eas-
ily. Miranker [10] usesasimilar conflict resolution strategy
for theimplementation of a OPS5 version using the LEAPS
algorithm.

3 Datalog

In the following we assume the reader is familiar with
first order logic. However, we begin by reviewing some
well-known concepts of first-order logic and logic pro-
gramming. The main notations used throughout the paper
are presented in this section.

For adeeper introductioninto thefield of logic program-
ming and databases we refer to [3] or [5].

3.1 Syntax

The syntax of Datalog is similar to that of PROLOG. A
Datalog program consists of afinite set of rules and facts.
Both, rules and facts are represented as Horn-Clauses with
the following syntax: Lg :- Ly, ..., L,. Each L; is alit-
era of theform p;(¢1, ..., t), p; isapredicate symbol and
the t; are terms. A term can be a constant or a variable.
Throughout the paper we use lowercase letters from the
start of the a phabet to represent constants (a, b, c, ...), low-
ercase | etters from the end of the alphabet to represent vari-
ables (s, ...,z,y, 2).

Theleft-hand side of a Datalog clauseis called its head
and the right-hand side is called its body. The body of a
clause may be empty. Clauses with an empty body repre-
sent facts, clauses with at least one literal in the body rep-
resent rules. A literal or clause which does not contain any
variables is called ground. The set of predicate symbols
Pred is divided into two parts, EPred (extensional predi-
cates) containsall predicatesoccurringinfactsstoredinthe
database. |Pred (for intensional predicates) isthe set of the
predicates occurring in the program but not in the exten-
sional database.

To guarantee the safety of a Datalog program P, i.e. the
finiteness of the set of factsthat can be derived by the pro-
gram, it must satisfy the following conditions: Each fact
must be ground, each variable which occursin the head of
arule of P must also accur in the body of the sasmerule.

3.2 Semantics

Each Datalog Fact F' can be identified with an atomic
formula of First-Order-Logic. Each Datalog rule R of the
form specified above represents afirst order formula R* of
theformVz;..Vz,, (L1 A...AL, — Lo), wherez, ..., z,,
are dl the variables occurring in R. A set S of Datalog
clauses corresponds to the conjunction of all formulas C*
suchthat C' € S.

The semantics of alogic program is defined by means
of particular models of the program. Again, we make some
definitions. The Herbrand base HB is the set of all ground
facts of theform p(cy, ..., ¢,), where p is a predicate sym-
bol in Pred and al ¢; are constants. Analogous to EPred

and IPred we define the extensional HB (EHB) and thein-
tensional HB (IHB).

A Herbrand Interpretation HI is a subset of the HB, i.e.
the set of ground facts holdingin theinterpretation. Implic-
itly, ground facts not in HI are false for HI. If aclause C'is
trueunder agiveninterpretation I, we say that thisinterpre-
tation satisfies C and that I isamodel for C. A Herbrand
Interpretation M isaminimal model of a set of clauses F'
iff M isamodd of F' and for each M’ such that M’ isa
model of F', M' C M impliesM = M'.

A ground fact p(cq, ..., ¢,) IS true under the interprete-
tion I iff p(cy,...,c,) € I. A Datalog ruleistrue under 1
iff for each substitution 8 which replaces variables by con-
stants, whenever Ly € I A ... A L, € I,thenit aso holds
that L, € 1.

The declarative semantics of a Datalog program P is
simply defined as the minimal Herbrand model of P. The
semantics of Datalog can also be defined with fixpoint the-
ory, see[3].

3.3 Functions

Built-in predicates (or " built-ins”) are expressed by spe-
cial predicate symbols such as <, >, <, etc. with a prede-
fined meaning.

In most cases built-insrepresent infinite relations, there-
fore the Herbrand model of a Datalog program using built-
ins is not necessarily finite. Safety can be guaranteed by
requiring that each variable occurring as an argument of a
built-in predicate in a rule body must also occur in an or-
dinary predicate of the same rule body, or must be bound
by an equality (or a sequence of equalities) to avariable of
such a predicate or a constant.

In a similar way, functions can be used, for example
arithmetic functions (+, —, %, /) or user-defined functions.
A predicate plus(z,y, z) can be used to express the rela-
tionz + y = 2. The”input variables’, x and y must oc-
cur in an ordinary predicate of the rule body. The function
can then be evaluated as soon as these variables are bound.
Note, that for guaranteeing the finiteness of the Herbrand
model all arguments would have to be bound in ordinary
predicates.

3.4 Negation

In pure Datalog, negated literalsin rules or facts are not
allowed. However, wemay infer negativefactsby adopting
the closed world assumption (CWA): If afact F' does not
follow from aset of Datal og clauses, then we concludethat
the negation of F', =F, istrue.

Theextension of pure Datal og including negated literals
in the body of rulesis called Datalog™. For safety reasons
werequirethat each variable occurringin an negativeliteral

in the rule body also occursin apositive literal in the same
body. A set of Datalog™ clauses may have more than one
minima model. Stratified Datalog™ programs are a sub-
class of Datalog™, where one distinguished minima model
can be selected asthe model of the program. For thiswere-
quire, that each negativeliteral in the body of arule can be
evaluated beforethe predicate of thehead of theruleiseval-
uated. If aprogram fulfills this condition it is called strati-
fied. Any stratified program can be partitioned into digjoint
sets of clauses P = P! U ... U P" called strata, such that
each P? containsonly clauseswhosenegativeliteralscorre-
spond to predicates defined in lower strata. The evaluation
is now done stratum-by-stratum. First, P! is evaluated, by
applying the CWA locally to the EDB. Then the other strata
are evaluated in ascending order.

A refinement of stratification is local stratification,
where the Herbrand Base instead of the predicates is di-
vided into strata. If the HB is infinite (due to the use of
functions), we can have aninfinite number of strata. A sub-
classof locally stratified programsare the so-called acyclic
programs [1]. We define a level mapping £ : HB — N
of ground facts to natural numbers. If in every ground in-
stance of every ruleof P, £L(L;) < L(L), i.e, the level
of al literals of the body is less than that of the head, then
program P isacyclic. Thelevel of alitera aso definesits
stratum, every acyclic programis also locally stratified.

Example 2. Let us consider alogic program that defines
the predicate even for natural numbers:

even(0).
even(y) :— succ(z,y), ~even(x).

succ is the successor function, defined as. succ(i,i +
1) for al ¢ € N. The level mapping can be defined as
L(even(x)) = x, L(succ(z,y)) = 0.

Itiseasy to see, that: L(even(z + 1)) > L(even(z)) and
L(even(y)) > L(succ(z,y)). The program is therefore
acyclic and, as a consequence, locally stratified. |

Acyclic programs can be evaluated using fixpoint iter-
ation. In the following we denote by Datalog’/™ acyclic
Datalog™ with built-in predicates.

4 Situation Calculus

For formalizing database updates we use a variation of
the situation calculus, originally developed by McCarthy,
[9]. Those relations, whose truth values may vary from
state to state, are called fluents and are denoted by pred-
icate symbols taking a state term as additional argument.
This state term specifies the particular state (or situation),
in which the fact is true.

The main difficulty with this formalism is the so-called
Frame problem: "Which facts holding in an earlier situa-
tion are still valid in a later situation?’ or in other words:
which facts are not invalidated by an action?

Here we use a smple solution, which is, however, less
general than others (for example[13]). For each fluent p we
definethe predicatesp’ and p™, either with the state term as
additional argument. p’ isused to emphasizethat p holdsin
astate s, p~ represents that p becomes false in a situation
S.

Atermp(zy, ..., z,) isthen true, if p’ with the same ar-
gumentswastruein an earlier state and has not been inval -
idated by p™ since then. More formally:

Definition 3. p(zy, ..., x,) istruein situation s, iff
I51Vsa(p' (z1, ooy Ty S1) A "D (Z1y ooy Ty S2)A
§ > 59 > sl). O

By using single numbers as state term, we can formulate
thiscalculusin Datalog/ ~. To guarantee acyclic programs,
we demand that:

1. each fact has a unique state constant,

2. for dl rules and all possible substitutions: the state
variable of the head of theruleis greater than all state
variables of literalsin the body.

Thelevel mapping can then be defined as:
L(p*(z1,...,xn,s)) = s,wherepisapredicateof Pred and
* iseither ' or —.

So far, we have defined the formal basis for the formu-
lation of the semantics of mMOPSb5.

5 Trangation of mOPSS5 to Datalog/™

In this section, we define the semantics of mOPS5 by
giving an agorithm for translating a mOPS5 program L
into an equivalent Datalog/ ™ program P. The result of P,
theminimal model M p, isthenretrandatedto aset M, the
result of the original program L.

As mentioned above, we use the situation calculus for
describing the updates in the database. Each fact initialy
in the database or asserted by arule has aunique state term
s, represented by a sequence.

A fact asserted by arule has the state term:

min(cy, ..., cn) + [Op, 1, -, Cn]

where ¢; to c,, are the state terms of the facts of the in-
stantiation, + is the concatenation operator, and O,. is the
order of the applied rule. Thefactsinitialy in the database

have the state terms [1] to [|db|], where |db| is the cardinal-
ity of theinitial database. This representation guarantees a
unigue state constant of al elementsin the working mem-
ory.

Between two state sequences s and ¢ the relation < is
defined as follows:

s <gtiff ImVE :0 < k <mn,s =tg,and
(Sk1 < trs1 OF |s| =k, [t| > k)

A sequence s islessthan asequencet, iff thefirst k ele-
ments of s and ¢ are equal and the next element of s isless
than the corresponding element of ¢ or if the sequence s has
k elementsand ¢ hasmorethan k elements. For thistotal or-
dering we can define apolynom computing asingle number
for each state term. Inthefollowing the relationsrepresent-
ing the functions which compute the state sequences for a
rule r and action k are denoted by next, i (sr,c1, ..., cn)s
where the ¢;'s are the input variables and s,. is the output
varigble. s, is the sequence of maz(c;) appended with
[0y, c1, ..,c,] @nd asequence of k — 1 zeros, where k is
the position of the action in the right-hand side of the rule.

The trandation of the facts from a mOPS5 program to
Datalog/™ is simply done by adding the state constant to
each of them.

We can now formulate the trand ation procedure for the
rules:

INPUT: amOPS5 rule R with . conditions and m actions
OUTPUT: one or more Datalog’ ™ rules.

1. Replacethe RHS-action modify by remove and make.

2. If there is more than one action in the RHS, split the
rule R into m rules R; to R,,, with the corresponding
actionsin the RHS.

3. Conditions. The variables and constants of the
attribute-value pairs are ordered according to the def-
inition of the predicate, for attributes not appearingin
the condition a variable uniquein the rule is inserted.
Inthe following X stands this sequence of terms.
The condition is then trandated to
P'(X,s;:), 07 (X,s}),s; < s < sg,wherei isthe
position of the literal in the LHS of therule, and p is
the predicate.

4. The body of the k-th rule is completed with:
next,(sr, s1, ..., Sn), Where k is between 1 and m.

5. The compute functions and comparison expressions
in the RHS of the rule are replaced with variables, the
predicatesfor the arithmetic functionsare added to the
rule body.

6. Theactionsin the RHS of therules are handled in the
following way:

a) (make p X):thehead of theruleisp’'(X, s;)

b) (remove i): the headisp™(X,s,), where the
predicate of the i-th condition is p and X is the se-
guence of terms for this condition.

With this steps donefor al rules of amOPS5 program L
an equivalent Datalog” ™ program P is generated. The pro-
gram P isacyclic, because sp > max(s;), by definition of
next,. Theresult of P istheminimal modd Mp. There-
sult of theoriginal program L isthe set of facts M, defined
in analogy to definition 3:

Definition 4.
My, = {p(x1,....,x,)|3s1 : P'(21,...,n,51) € Mp A
Vso > 51 :p (T, ey Tn,y S2) & Mp} O

The following example shows how the translation of a
MOPS5 program is performed:

Example5. Thisprogram computesthesumof all x inele-
ments (element <x>), whenever an element (sum 0
0) isinserted into the database:

(p sum
(element <i>)
(sum "res <j> “number <k>)
-=>
(remove 1)
(modify 2 “res (compute (<i> + <j>))
“number (compute (<k> + 1))))

On each rule application one matching element is removed
from the working memory and the two attributes of the el-
ement sum are modified, where the first holds the sum, the
second the number of elements.

Therulemust be splitinto threerules, all withthefollowing
body (i runsfrom 1 to 3):

BODY:

element’ (i, s1), nelement™ (i, s]), s1 < s < spi,
sum'(j,k,s2), nsum™(j, k, s), 82 < s < $pi,
nextsum,i(Sri, 51, 52)

The completerules are:

element™ (i, s,1) '—BODY.
sum™(j,k, sy2) :—BODY.
sum'(m,1, s.3) :—BODY, plus(i, j,m), plus(k,1,1). O

The next example shows that the behavior of mOPS5
programs can be anayzed using the corresponding
Datalog/ ™ program.

Example 6. Consider the following two rules:

(a 0)
(p rl (a <x>)
--> (make a (compute (<x> + 1)))

(p r2 (a <x>)
--> (remove 1))

Intuitively it is clear that the program behaves different de-
pending on the priority of therules: If ruler2 isfired first,
the program stops. Otherwise, it does not terminate, be-
cause rulerl computes p(x) for all € N.

Due to the formal semantics we can investigate under
which conditions the program does not terminate. The
trand ation to Datalog? ~ yields to the following program:

(0, [1]).

a'(y,sr) i—a'(z,s1),~a"(z, sl) Sp1 > 8] >
s1,nexty(sr1,s1),plus(z, 1,y).

a”(z,sp2) —a'(x,s1),-a”(x, sl) Spp > 87 >
51;n€$trz(5rz,52)

We examine now under which conditionsthefirst rule does
not fire: This is the case when the negated literal in the
body, —a™(z, s}), becomes true, this fact can be asserted
from the second rule. Therefore the rule does not fire, if

Sp1 > Sp2 > S1, nextrl(srl, 51)7 nextr2(5r27 51)

From the definition of thefunctionnext, we can follow that
thisexpression becomestrueonly if O,.; > O,.»,i.€. theor-
der of rlislower thanthat of r2. If theorder of the priorities
is reverse, the program does not terminate. |

The next example shows how the semantics defines an
ordering between multiple instantiations of the same rule:

Example 7. Therulerl fires once and removes the tuples
of the instantiation from the database.

o

)
)
)

rl (a <x>) (b <y>)
-=>
(remove 1)

@

1
1
2

@

(
(
(
(

e}

(remove 2))

The corresponding Datalog/ ™ programis:

(L, [1])- a(L, [2). a(2, 3)).

a”(z,sr11) :— BODY.

b (y,8r12) —BODY.

where BODY is: a'(z, s1), na " (,82),81 > S2 > 8,

b (y,s3), 707 (y,83),83 > s4 > s,nexty1(s1, 82, Sr14)-

The state variable of a™ (1, s,.11) istherefore:

[27 Prl, [2]7 [1]]

andof a™(2,s).,,) itis: [3, P.1,[3], [1]]

sr11 is smaler than s..,,, the level of the corresponding
fact is therefore lower and the fact is derived. The next
fact which is derived is b7(1, s,12). With this a fixpoint
is reached and the minima model is found. Note that se-
lecting the other instantiation (with (a 2)) does not lead to
amodel of the program.

Therefore, the resulting database contains only thefact (a
2). a

6 Conclusions

A formal declarative semantics of the rule-based lan-
guage mOPS5 has been presented. The advantages of hav-
ing a well-defined semantics are numerous. The seman-
tics can be used as a basis for program analysis, for exam-
ple to check programs for termination, redundancy, or un-
reachable rules. Further research should focus on the de-
velopment of such tools. Optimization techniquesbased on
rewriting the rules - as known for Datalog - should be ap-
plicable. Moreover, the formulation of mOPS5 in terms of
Datalog/ ™ should make the unification of activeand deduc-
tive databases easier, because most languagesfor deductive
databases are based on Datalog. This combination alows
the development of languages suitable for awider applica-
tion area.

References

[1] Krysztof R. Apt and Marc Bezem. Acyclic programs.
New Generation Computing, 9:335-363, 1991.

[2] L.Brownston, R. Farrell, E. Kant, and N. Martin. Pro-
gramming Expert Systemsin OPS5. Addison Wesley,
1985.

[3] Stefano Ceri, Georg Gottlob, and LetiziaTanca. Logic
Programming and Databases. Springer-Verlag, 1990.

[4] C. Culbert. CLIPS Reference Manual. Artificia In-
telligence Section, Johnson Space Center, Houston,
1989.

[5] Johann Eder. Logic and databases. InV. Marik, editor,
Advanced Topicsin Al. Springer-Verlag, 1992.

[6] C.L.Forgy. Ops5 users's manual. Technical report,
Department of Computer Science, Carnegie-Mellon
University, 1981.

[7]

8]

[9]

[10]

(11]

Herbert Groiss. A formal semantics for a rule-based
language. In [JCAI-93 Workshop on Production Sys-
tems and their Innovative Applications, 1993.

John E. Laird, Allen Newell, and Paul S. Rosen-
bloom. SOAR: An architecture for genera intelli-
gence. Artificial Intelligence, 33(1):1-64, September
1987.

John McCarthy. Programs with common sense. In
M. Minsky, editor, Semantic Information Processing,
pages 403 — 418. MIT Press, 1968.

Daniel P. Miranker and David A. Brant. An agorith-
mic basis for integrating production systems an large
databases. In Proc. of the National Conference on Ar-
tificial Intelligence, 1990.

Louiga Raschid. A semantics for aclass of stratified
production system programs. Journal of Logic Pro-
gramming, 21(1):31-57, 1994.

[12]

[13]

[14]

[15]

[16]

Louiga Raschid and Jorge Lobo. Semantics for up-
date rule programsand implementation in arelational
database management system. to appear in Transac-
tions on Database Systems, 1995.

Raymond Reiter. On formalizing database updates:
Preliminary report. In Proc. of EDBT, 1992.

Jennifer Widom. A denotational semantics for the
starburst rule language. SGMOD Record, 21(3):4-9,
1992

Carlo Zaniolo. A unified semanticsfor active and de-
ductive database systems. In Norman W. Paton and
M. Howard Williams, editors, Rulesin Database Sys-
tems. Springer, 1993.

Yuli Zhou and Meichun Hsu. A theory for rule trig-
gering systems. In Proc. of EDBT, 1990.

