
PPOST� A Parallel Database in Main Memory

L�aszl�o B�osz�orm�enyi� Johann Eder� Carsten Weich

Institut f�ur Informatik� Universit�at Klagenfurt
Universit�atsstr� ��� A����� Klagenfurt� Austria
e�mail	 flaszlo�eder�carsteng
i��uni�klu�ac�at

Abstract We present the PPOST�architecture �Persistent Parallel Object Store�
for main�memory database systems on parallel computers� that is suited for
applications with challenging performance requirements� The architecture takes
full advantage of parallelism� large main memories and fast switching networks�
An important property of this architecture is its excellent scaling behavior�

Keywords parallel database system� main�memory database system� object ori�
ented database system� object store� database architecture�

� Introduction

New advances in hardware and systems software demand to revisit design crite�
ria for database management systems� Some well known obstacles against main
memory databases �main memory is too small� too expensive and does not scale
up� are no longer valid� With �highly� parallel systems made of powerful com�
modity processors and fast switching networks main memory database systems
managing Gigabytes to Terabytes of data can easily be envisioned� While most
database vendors take advantage of these developments by extending their �disc�
oriented� DBMS with better management of large bu�er areas or porting their
DBMS to parallel hardware� we take the other approach� Data should reside pri�
marily in main memory �where it can be retrieved and processed very e�ciently�
and is brought to secondary storage only for the sake of safety and recoverabil�
ity� Furthermore� the trend to object oriented databases �or extended relational
databases� requires that database systems have not only to deal with storing and
retrieving data but also with processing user de	ned data manipulationmethods
on that data� Of course� this processing is performed much more e�ective� if data
resides in main memory�

In the PPOST architecture parallelism is employed in two ways� With vertical
parallelismwe delegate processes for logging� checkpointing and archiving to own
processors such they do not in
uence the performance of user operations� With
horizontal parallelismwe can spread the objects managed by the database across
several �maybe many� processors for speeding up the processing of queries or
methods and for increasing the size of the databases�

� The Architecture of PPOST

PPOST�s main components are �	gure �� object store �consisting of a number
of object storage machines�� log machine� checkpoint machine� archive machine

katja
published in: Karagiannis D. (ed.): Proceedings of the 5th International Conference on Database and Expert Systems Applications (DEXA'94), Springer Verlag, 1994, pp. 754-758



Fig� �� The components of PPOST

and users �consisting of a number of user machines�� All the data of the stored
objects �i� e� their attributes and methods� lie in the memory of the storage
machines� Every transaction that reads or changes the data is executed on those
machines� PPOST is transaction�oriented� Transactions are initiated by the user
machines and processed by the object store� Changes of the data in the object
store are reported to the log machine which saves the information onto a log	le
in nonvolatile memory�

The checkpoint machine reads the log produced by the log machine and saves
all commited changes to the disc�based database� Only the checkpoint and the
log machine is involved in producing the disc image� The user transaction can
go on as soon as the information about the changes is transmitted to the log
machine�

The archive machine saves the disc�database to a secondary storage� like a
magnetic tape� This is considered as a normal activity of the data�store and
again is done in background without interrupting the user�transactions�

We call this pipeline�like way to decouple user�transactions from issues of
persistence vertical parallelism�

� Transactions

When data is changed in the object store� log information is produced and sent
to the log machine� The log machine would ideally store the log�tail in stable
main memory� In this case� transactions whose log information arrived in the



log machine can be committed immediately� We do not insist� however� on the
existence of a stable main memory� In the lack of this� we precommit ��� �� the
corresponding transactions and let run other transactions �locks are released��
In the meantime� the log information is stored on disc in the form of simple
sequential 	les �this can be done at full disc�speed�� After that� precommitted
transactions may be committed� In case of a system crash precommitted trans�
actions are handled as not�yet�committed�

��� Parallel checkpointing and archiving

The task of the checkpoint machine is to apply the logs on the last valid disc
image ���� After processing a certain amount of log information� a new image is
created� and the corresponding log 	les are deleted� Checkpointing is done by
a separate machine� therefore its speed has no in
uence on the response time
of the transactions� If the database is more or less quiescent� the disc image
may come very close to the primary copy� During heavy load the backup might
become relatively �old� and the log 	les become long� This is unlikely� however�
because a database rarely has a constant heavy load over a long period of time
�i� e� days�� The newest image generated by the checkpointer can be archived on
additional nonvolatile storage �such as tapes��

��� Transaction undo

For transaction undo we use before�images or shadow copies in volatile storage�
In the case of a system crash� the primary copy of the database in memory is
lost anyway� All not�yet�committed transactions are trivially �undone�� There�
fore� transaction undo is in accordance with the concept of a memory�resident
database�

��� Recovery

In the case of a system crash� a recovery must be executed� The image of the
disc based database is loaded in main memory and the log is applied on it� Note
that in this case the actual memory image is generated with �memory speed�
�instead of �disc�speed�� as in the case of checkpointing��

� Scalability

If we have more than one physical storage machine� we can use horizontal par�

allelism either to speed up operations or to scale up the size of the database
without loosing performance When we spread the objects that are processed by
an operation over several nodes of the object store �we call this data distribu�

tion� then each node can process its part of the set independently of the others�
Operations like selecting certain objects or starting a method of a certain set of
objects can be done in parallel The only condition is that the set of objects to



be distributed has to be large enough� such that the enhanced speed gained by
parallelism can make up for the time needed for communication � otherwise we
would lose performance�

When the databases increases in size� we add nodes to the object store� This
means� we not only add storage capacity but also computational power� We can
show that in many cases it is possible to scale up the size of an object set without
degrading the performance of a certain operation on that set by adding nodes
����

On the other hand we can add nodes to a data distribution to enhance per�
formance� It is possible to calculate the optimal number of nodes with which an
operation runs fastest� It is not possible though to keep this optimized speed
when the size of the distributed object set grows� Then a new optimal distribu�
tion has to be calculated which will be slower in most cases�

Example Our prototype installation consists of very fast processors but com�
paratively long network latency times ��� DEC�ALPHA OSF� workstations
connected by a FDDI net�� For a simple selection�operation distributed among
� nodes we need ����� objects in the set to equal the performance of the same
operation with all objects on one node� If the set is smaller than ����� objects
the parallel operation will become slower than the sequential� If the set is much
larger than that we can achieve nearly linear speedup when we add nodes to the
distribution� With a setsize of ������� objects we reach a speedup of factor � with
� nodes for the selection operation� If we add even more nodes� the additional
speedup gets poorer �� with �� nodes for instance� It reaches a maximum of
���� with �� nodes � adding more than �� nodes will lead to a less than optimal
performance ����

� Conclusions

We have presented the architecture of PPOST and demonstrated that parallelism
can overcome the limitations of memory resident database systems� The hori�
zontal extendability together with little performance penalties are very desired
features� PPOST will be the implementation platform for an object oriented
database system supporting views ���� In particular object oriented databases
can take advantage of the proposed architecture because it facilitates the in�
tegration of databases and programming languages� Major design issues like
pointer swizzling strategies become less crucial since the disc is accessed only in
the background and all conversions between internal and external format do not
slow down user processes� This promises a great performance gain�

The application areas of PPOST are those with high performance require�
ments� Currently we analyze how PPOST can be integrated with disc�based
DBMS such that PPOST will be responsible for the hot data while the disc
based DBMS manages cold data� One of the approaches we investigate is to
use a standard DBMS as backup database which contains a �probably through
the logging process delayed� image of the main memory database in form of a
replication�



References

�� L� B�osz�ormenyi� K� H� Eder� C� Weich� PPost � A Persistent Parallel Object Store�
to appear in the Proceedings of the International Conference Massively Parallel
Processing Applications and Development� Delft �����

�� M� Dobrovnik� J� Eder� A Concept of Type Derivation for Object�OrientedDatabase
Systems� Proceedings of the Eight International Symposium on Computer and
Information Sciences �ISCIS VIII�� Istanbul �����

�� P� Apers� C� van den Berg et� al�� PRISMA�DB� A Parallel� Main Memory Rela�
tional DBMS� IEEE Transactions On Knowledge And Data Engineering� Vol� ��
No� �� December �����

�� H� Garcia�Molina� K� Salem� Main Memory Database Systems� An Overview� IEEE
Transactions On Knowledge And Data Engineering� Vol� �� No� �� December �����

�� H� Garcia�Molina� K� Salem� System M� A Transaction Processing Testbed for
Memory Resident Databases� IEEE Transactions On Knowledge And Data En�
gineering� Vol� �� No� �� March �����

�� H� Garcia�Molina� K� Salem� Checkpointing Memory Resident Databases� Interna�
tional Conference On Data Engineering� Los Angeles �����

�� J� Gray� A� Reuter� Transaction Processing � Concepts and Techniques� Morgan
Kaufmann Publishers Inc� ����

This article was processed using the LaTEX macro package with LLNCS style




