
PROCESS SUPPORT FOR SOFTWARE REUSE WITH AUGUSTA

Elke Hochmüller
Institut für Informatik
Universität Klagenfurt

Klagenfurt
AUSTRIA

ABSTRACTABSTRACT

Increasingly complex demands on functionality and quality of
software systems and higher application dynamics require a
fundamental change in the software development process. A
shift from personnel intensive individual software development
to capital intensive industrial software production must take
place. This could only be achieved by utilizing tools supporting
the development process and by planned design and production
of generally applicable and reusable components.

The AUGUSTA system (Ada Units Generalization Utility and
Systems Tailoring Assistant) concentrates on the aspect of
reusability. It allows the instantiation of programs from generic
components and the composition of complete application
systems based on an equally generic application structure.
Furthermore, the AUGUSTA approach postulates a special
process model including a particular concept for user roles
according to their experience and tasks in the software
construction process.

This paper explains how the AUGUSTA system would support
software development based on component integration,
prototyping and reuse. It demonstrates the approach using an
example from the domain of electric power plants.

MOTIVATIONMOTIVATION

The way software is developed has undergone substantial
changes within the last decades. Increased size and complexity
of software with the myriads of modifications made during their
long lifetime led to systems which are very hard to maintain.
New programming techniques (e.g. structured programming,
module concept, information hiding), new design methods (e.g.
Jackson System Development, Structured Design, Object

Oriented Design), new management methods (e.g. partitioning
the development process into life cycle phases), and tools came
into use - the integration of these techniques, methods and tools
constitutes the current basis of software engineering.

But in spite of the improvements made, a set of crucial
problems is still plaguing today’s software development.
Examples thereof are:

- The cost of software is constantly increasing.
- The demand for complex software systems exceeds the

supply of well educated software engineers.
- Too often, software is delivered too late.
- Software maintenance is tedious and error prone, and its

cost is very high.
- Only modest increases in software productivity could be

materialized in recent years.
Software engineering methods and tools improved this

situation far less than expected. Furthermore, case studies at a
large software developer have demonstrated that within their
originally created code, only 40 to 60 per cent were inherently
original and specific. The rest existed in more or less the same
form in more than one application (Horowitz, 1989). Hence, an
improvement in software productivity by incorporating reuse
into the process of software development in combination with
adequate automation of this development process seems to be
achievable and desirable.

The scope of reuse clearly is not limited to the individual
software engineer building and using his personal library. Only
if reuse is an integral part of the whole enterprise, its
organization, and its process structure, all of its benefits will
accrue (Tracz, 1990, Dusink, 1992). Reuse specific process
models are proposed by Caldiera and Basili (1991), Prieto-Diaz
(1991), and Hochmüller and Mittermeir (1993).

However, implementing such changes is often hampered by
already installed software engineering environments. Most



existing CASE tools are built in the tradition and along the
paradigm of a phased, top-down oriented waterfall life cycle
model. Notably after a development phase has been completed,
it is difficult to step back and apply changes. Likewise, it is
difficult to look forward for preparing design units for the future
integration of reusable components.

AUGUSTA (Ada Units Generalization Utility and Systems
Tailoring Assistant) (Hochmüller, 1992) was designed to be a
reuse-oriented software engineering environment for the
development of Ada-applications aiming at an improvement in
software productivity by proposing and supporting a particular
software production process tailored to software reuse.

The next section gives a short introduction to the AUGUSTA
approach. Afterwards, the reuse-oriented process model
supported by AUGUSTA will be described. Finally, the concepts
of the AUGUSTA approach will be illustrated by using a
technical example.

CONCEPTCONCEPT BEHINDBEHIND AUGUSTAAUGUSTA

Introduction
Before introducing AUGUSTA, the ideas behind the concept

upon which it was built, the notion of a software base
(Mittermeir and Oppitz, 1987), will be described briefly. The
main aim of this concept is to reduce software development
costs by speeding up the processes of development and
maintenance in benefitting from reuse and by involving end-
users in the development and maintenance of software systems.

DatabaseDatabase Analogy.Analogy. As end-users cannot be expected to
dispose of professional programming skills, they should be
supported in their software development effort by a powerful
tool, the so-called Software Base Management System (SBMS).
The term SBMS expresses an analogy to the area of databases;
in a software base, programs should be collected like data in a
data base. The SBMS is intended to fulfil the same function as
a DBMS fulfills in the database field. From this point of view,
an application system can be regarded as a combination of
programs stored in a software base.

ProgramProgram Classification.Classification. In order to store and retrieve the
programs administered by the SBMS a classification of these
software components must be made. For this purpose, two
classifying dimensions are proposed: On one hand programs
can be classified according the function (task) they fulfil (e.g.
input, calculation, output), on the other hand programs can be
related to a particular application (e.g. temperature control, fluid
level control, rotation speed control) they serve. Similar tasks
can be grouped together into a special task category, while
similar applications form a particular application category.
Conceptually, classification of programs on these two
dimensions yields a so-called program classification matrix
(Figure 1). In this matrix, Pij represents a program which
fulfills the function j within application i. Usually the program
classification matrix will be a sparse matrix since individual
applications will consist only of few particular functions.

TASK-CATEGORY

TC1 TC2 TC3 .. TCm
A
P A1 P11 P12 P13 .. P1m
P
L A2 P21 P22 P23 .. P2m
I
C A3 P31 P32 P33 .. P3m
A
T .. .. .. .. Pij ..
I
O An Pn1 Pn2 Pn3 .. Pnm
N

FIGURE 1: PROGRAM CLASSIFICATION MATRIX

GeneralizationGeneralization andand ProgramProgram DevelopmentDevelopment
For reuse purposes one of the following two conditions should

hold for as many programs as possible:
(1) ∃ s,t: Psj=Ptj

(2) ∃ PGj: ∀ s: Psj IS-A PGj

Condition (1) implies that the same program can be used in
more than one application. This is the ideal case, but not
necessarily the most usual one, as many applications may use
functions of the same task category requiring a specific adaption
of the program to the particular application purpose.

Condition (2) states that there exists a code skeleton which is
a program generalization (PG) of all programs within a task
category.

The AUGUSTA Software Base aims at this last condition
where each task category has it’s own program skeleton (the so-
called program generic). This skeleton is not yet executable and
has to be refined according to application-specific requirements
in order to receive the programs of the program classification
matrix.

Each task category is provided with a set of specialization
rules which play a twofold role. First of all, they have to be
obeyed during the refinement process, secondly they represent
stubs to be refined by specializations concerning algorithm, data
and interfaces. A schematic view of the task refinement is
represented in Figure 2.

TypesTypes ofof Specialization.Specialization. The concept of software bases
(Mittermeir and Oppitz, 1987) proposes three main types of
specializations: algorithm, data and interfaces. AUGUSTA
(Hochmüller, 1992) gives each of these types of specialization
a set of specific interpretations and extends it even to
specializations on the level of types.

Algorithmic specializations are realized in AUGUSTA by the
substitution of the so-called procedure-stubs by complete
procedures. Formal parameters can either be completely defined
during the development of the program generic or instantiated
during the refinement process. In the latter case, specialization
rules have to be defined at the task category level. Furthermore,
stubs for procedure or function calls and the appropriate actual
parameters are possible, too.



TASK-CATEGORIES

TC1 TC2 ... TCm

PG1 SR1 {IT1.} PG2 SR2 {IT2.} ... PGm SRm {ITm.}
--------------------------------------------------------

A A1 S11 S12 ... S1m

P A2 S21 S22 ... S2m

P .. ... ... ... ...
L An Sn1 Sn2 ... Snm

.

FIGURE 2: PROGRAM CLASSIFICATION MATRIX WITH TASK REFINEMENT

In extension to the software base concept, AUGUSTA is not
limited to constant values when dealing with data
specializations, since specializations of type definitions, type
identifiers and variable identifiers are also supported. Identifier
specializations should help programmers to place appropriate
names within the application context.

Interface specializations concern the execution order of
programs as well as the description of data to be exchanged by
the programs concerned. This type of specialization is of special
nature as programs of different task categories have to be
considered jointly. Programs may consist of several procedures
and functions which could be called by other programs.
Provided this general case, one could imagine that the
administration of interface information, including refinement
guidelines, represents a complex problem. As this is not
intended to be the central point of this work it is suggested that
each task category communicates with the external world only
through one particular procedure, the so-called interface
procedure. The formal parameters of this special procedure
grant the data exchange between programs of different task
categories. Additional to the essential declarations, the interface
procedure is the main element of the program generic. Further
procedures are either available in their code representation or as
stubs.

For better administration of interface information, the software
base concept distinguishes two levels of integrity constraints -
task category and program - and proposes a matrix structure at
each level: the task interface matrix (TIM) at the task category
(TC) level and the program interface matrix (PIM) at the
program level. The entries of these structures represent
information whether direct connections between pairs of task
categories (TIM) and pairs of programs (PIM) have to, might, or
must not be provided. These two structures are the only
interface representations suggested by the software base concept,
but during the work on AUGUSTA they turned out to be not
sufficient. Hence, at each level of integrity constraints an
additional list structure is proposed: the task interface attention
list (TIAL) at TC level and the program interface attention list
(PIAL) at program level. These structures represent strong
constraints, while TIM and PIM are regarded as weak
constraints which have to be obeyed by TIAL and PIAL. The
latter two lists contain for each task category and program the

identifiers of task categories and programs to be necessarily
executed before; thus, these list structures guarantee that the
input data is available before calling any particular task or
program.

GeneralizationGeneralization andand ApplicationApplication DevelopmentDevelopment
As enterprises will often need several similar applications, the

generalization concept can be applied at the level of application,
too. Hence, the software base approach postulates for each
application category a so-called application lattice which can be
completed to various applications by replacing composition stubs
with programs according to particular composition rules. These
composition rules refer to programs to be candidates for
composition stub substitution.

Figure 3 shows in a simple manner a possible application
lattice with some stubs. The shape of the stubs depends on the
connected composition rule, e.g. CS1 and CS4 are examples for
stubs with the same composition rules and therefore the same
choice of possible programs to be plugged in, whereas the
different shapes of stub CS2 and CS3 indicate that they need to
be instantiated with programs drawn from different task
categories.

FIGURE 3: APPLICATION LATTICE WITH
COMPOSITION STUBS

The AUGUSTA approach distinguishes two different kinds of
composition stubs - mandatory and optional stubs.

Mandatory stubs have to be refined by choosing one particular
program, meeting the requirements of the appropriate
composition rule. Composition rules can be of one of the



following three types:
(a) Complete List: The composition rule contains all

possible programs gained from the interface
specialization rules at program level (PIM, PIAL).

(b) Selection List: The composition rule contains only
some of the candidate programs of those which
would on principle be possible according to (a).

(c) Exclusion List: This list contains some programs
which meet the interface specialization rules at
program level (a) but must not be used in the
particular case. The actual composition rule
containing the candidate programs will be generated
automatically using the exclusion list as input.

Optional stubs may be refined but don’t have to. It can be
decided at composition time whether it is necessary to plug in
an appropriate program or whether the stub can be simply
removed without any substitution. This kind of stubs can occur
within sequences as well as in relation to selections.
Furthermore, optional stubs provide the possibility to determine
the flow of control during application composition by choosing
alternative ways of generation.

Comparison with object-oriented Concepts
Since generalization as a prerequisite for inheritance represents

an essential part of object-orientation, the necessity of
comparing the AUGUSTA approach with object-oriented
concepts becomes obvious. Pure object-orientation allows as
many levels of class hierarchies as you like and also permits
unlimited overwriting if only interfaces are preserved. Certainly,
the generalization concept of AUGUSTA allows only single-
stage hierarchies in both Program and Application Development,
but yet a clear distinction between reusable generic and rather
application specific software pieces takes place such that
specialization and composition rules can be posed in order to
guide as well as restrict the software development process.
Beyond that, AUGUSTA offers a particular process model which
will be described in the next section.

Hence, as a result of the comparison parallels to the
differences between third and fourth generation languages come
into mind: the concept of object-orientation is rather generally
applicable whereas the AUGUSTA approach is more powerful
within a special domain.

THETHE AUGUSTAAUGUSTA PROCESSPROCESS MODELMODEL

The core of the AUGUSTA process model consists of a
particular role concept which is tightly integrated with integrity
constraints grouped in layers corresponding to the roles. Before
going into the details of the process model, two important
strategies for the incorporation of reuse into the software
development process will be briefly introduced.

ReuseReuse StrategiesStrategies
Development for Reuse deals with the construction of new

software components for later reuse. Unlike traditional good
software engineering technology (e.g. structured analysis/

structured design, structured programming) not only the
development of easily maintainable software satisfies the notion
of development for reuse, but specially anticipation of future
requirements and independence of each single design component
are characteristics of development for reuse. Thus, on one hand
software components must be as generic as possible to guarantee
repeated reuse by instantiation, and on the other hand they must
be independent concerning their immediate environment in order
to be applicable in as many contexts as possible.

During Development with Reuse the components produced in
a development for reuse process are used again within various
software projects. In case that existing components do not
exactly meet the required specification adequate adaptations
must take place.

These reuse strategies should not be considered as alternatives,
most powerful reuse potential can only be achieved by
benefitting from their interrelationship. Thus, this correlation is
also evident within the role concept suggested by the AUGUSTA
approach which will be discussed next.

TheThe AUGUSTAAUGUSTA RoleRole ConceptConcept
In order to take into account the structure of the contents of

the software base the development process proposed by
AUGUSTA is divided into several subprocesses which support
the division of labour between members possessing different
user roles.

Hence, the AUGUSTA SBMS supports the following five
classes of users (Figure 4):

FIGURE 4: SCHEMATIC VIEW OF USER ROLES AND
THEIR ACTIVITIES



FIGURE 5: LAYERS OF INTEGRITY CONSTRAINTS

SoftwareSoftware BaseBase AdministratorAdministrator (SBA)(SBA) atat tasktask categorycategory
(TC)(TC) level.level. All task categories are characterized by the same
meta-structure, the so-called task category type. Completely
defined task categories are called task category instances. The
Software Base Administrator is responsible for the definition of
these task category instances. He must specify one program
generic and the appropriate specialization rules concerning data,
algorithm and interfaces (TIM, TIAL) for each TC instance. A
special language - Task Definition Language (TDL) - consisting
of Ada constructs and additional elements for the representation
of specialization stubs supports the SBA in defining the TC
instances.

The tasks of the SBA at TC level are the only ones which
doubtless belong to development for reuse.

Programmer.Programmer. At the program level, the programmer
integrates a given task category instance to one or more
programs by refining the given program generic according to the
given specialization rules. During interface specialization he
defines entries for PIM and PIAL obeying the information
contained in TIM and TIAL. The usage of the Specialization
Definition Language (SDL) assures that the program generic
cannot be changed by the programmer at this level any more.

Regarding the reuse strategies mentioned before, the function
of the programmer is twofold: on the one hand he is involved in
development with reuse by instantiating the generics provided
by the SBA, on the other hand he develops for reuse by
constructing programs for later usage.

SoftwareSoftware BaseBase AdministratorAdministrator atat thethe applicationapplication
categorycategory (AC)(AC) level.level. The SBA defines the application lattice
consisting of particular symbols representing programs, stubs
and control structure elements (sequence, selection, iteration).
The language provided at this level is called Application
Definition Language (ADL).

Similar to the equivalent tasks at TC level the SBA also
constructs generic structures at the AC level, hence he develops
for reuse. Nevertheless, at the same time the SBA is also
involved in development with reuse by reusing components (i.e.
task categories, programs, interface structures) produced during
earlier stages of the development process.

Application Expert. At application level the application
expert composes the application system using a particular
Application Manipulation Language (AML). On one hand he
influences the system structure by his decisions in case of
optional stubs, on the other hand he determines the contents of
the application system by replacing stubs with special programs.

Classifying the function of the application expert according
reuse strategies, it is obvious that the related work is integrated
within development with reuse.

Application User. The application user runs the generated
system. As this kind of user is not directly involved in the
development process in the strict sense, there will be no
relationship to any of the reuse strategies discussed before.

Integrity Constraints
In order to achieve a smooth process course the software base

concept as well as the AUGUSTA approach provide a lot of
integrity constraints defined either within the SBMS itself or by
different types of users. The model of integrity constraints
suggested by AUGUSTA introduces various layers of constraints
according to the role concept previously explained. A schematic
view of this model is represented in Figure 5 expressing the
principle that constraints specified at an inner layer have to be
obeyed by agents working on outer layers.



The AUGUSTA Environment and its Application
The overall architecture of AUGUSTA is represented in Figure

6. It corresponds in principle to the structure of the ECMA/
NIST-"toaster"-model for integrated CASE environments
(Norman and Chen, 1992, Chen, 1992). The fundamental three
layers of the AUGUSTA environment are the AUGUSTA-User-
Interface, the AUGUSTA-Software-Base and the set of special
AUGUSTA-tools tailored to the specific user roles. Hence, these
tools support the SBA in base administration, TC management,
and AC management, the programmer in program management,
and the application expert in application management.

FIGURE 6: GLOBAL SYSTEM ARCHITECTURE

The AUGUSTA-User-Interface provides a homogeneous look-
and-feel by using uniform graphical elements in order to ease
handling and to have only very tiny differences between the
individual tools in user interaction. This can be achieved by the
same menu structure for all user groups as well as by using
standard elements provided by OSF/Motif. The only difference
exists in the various selection possibilities according to special
user roles.

The AUGUSTA-Software-Base serves as a uniform repository
for all documents generated and manipulated using the five
AUGUSTA-Tools. According to various user roles and integrity
constraints the tools have only restricted access to different
software components.

The data exchange within the AUGUSTA environment is
realized using a client-server model (Figure 7). The environment
is partitioned into two main components - the server for the
administration of persistent data and the clients for user
communication.

The AUGUSTA-SBMS performs the function of the server by
administrating the AUGUSTA-Software-Base. Each access to the
contents of the software base can only take place using the
AUGUSTA-SBMS.

The clients are implemented as window-based environments
provided by particular tools according to the different user roles.

The communicational components (CC in Figure 7) are
necessary to bridge differences between different languages (and
platforms) used for the server (implemented in Ada) and the
clients (implemented in C). They serve for conversion of data
structures from one language into a particular standard data
format before data transmission and the other way round after
data transmission, respectively.

The clients communicate with the server via request-response-
channels. The requests of the clients are atomic and independent
of each other. They are serially sent to the server via a uniform
communication interface. The server processes the requests
according to the order of arrival.

FIGURE 7: CLIENT-SERVER ARCHITECTURE OF
AUGUSTA

Let us take now a closer look at the application of the
AUGUSTA environment concerning prototyping support, multi-
user and teamwork support, and required user profiles.

PrototypingPrototyping Support.Support. Besides life cycle support from the
phase of detailed design, AUGUSTA also supports prototyping,
particularly at the application level. Thus, the application expert
may create and test applications in a straightforward manner. In
doing so, the application expert is supported by a software
integration platform (Buchhäusl, 1991) which serves for the
generation of the application system out of the composition
decisions. Prerequisite for rapid prototyping at the application
level is the existence of a variety of candidate programs which
can be chosen for application composition. Hence, the efficiency
of the AUGUSTA SBMS depends on the contents of the
Software Base, and, therefore, on the competence of its users.

Another possibility for prototyping exists at the task level by
supporting the generation of defaults for program stubs. Thus,
the SBA can test new generics by instantiating default
specializations, too.

Multi-UserMulti-User andand TeamworkTeamwork Support.Support. AUGUSTA was
designed for multi user development. Furthermore, the built-in
process model enforces teamwork by supporting different
categories of users (SBA, Programmer, Application Expert).
Each of these categories can consist of more persons. A client-
server architecture in combination with a simple transaction
concept protects against inconsistent modifications. Integrity can
be guaranteed by automatic checks regarding constraints
expressed within the layered integrity model of AUGUSTA.

Every user disposes of a private workspace where programs
and applications can be developed locally. However, all software
components are visible for all users because potential reuse
should not be artificially inhibited.



RequiredRequired UserUser Profiles.Profiles. In order to benefit as much as
possible from the AUGUSTA role concept, the following
technical skills are suggested for members of the different user
categories:

The Software Base Administrator should dispose of sound
software engineering experience. Furthermore, practice in Ada
programming is required for the task category management
whereas domain knowledge is necessary for the application
category management.

The Programmer activities require practice in Ada
programming in combination with experience in structured
programming.

The Application Expert is expected to have expert knowledge
within the application domain. Additionally, he should be able
to read data and control flow diagrams.

AA DEMONSTRATIVEDEMONSTRATIVE EXAMPLEEXAMPLE

The following example should illustrate the usage of the
AUGUSTA approach within the domain of a process control
system of an electric power plant.

Considering a process control system, we can identify several
possible application categories, e.g. measurement, statistical
reporting, plant maintenance, and specific feedback control
systems.

In the context of a feedback control system (FCS) iterative
control and adjustment actions take place. These actions concern
the actual values of a given measurable property where future
values are to be influenced according to particular set points.

Boiler temperature control in steam power plants, reservoir
level regulation and turbine rotation speed control in hydro-
electric power plants are just some of the possible applications
of a FCS. Each of these applications could be considered an
instance of a generic application lattice. A very simplified form
of this application lattice is represented in Figure 8.

The system starts with an input task measuring the actual
value, identifying the appropriate set point as well as
terminating the system on demand. An additional task of
adjustment will be necessary, if the actual input value requires
further treatment (e.g. aggregation, filtering) in order to yield
the definite value which finally is of interest for control. Soon
after availability of this accurate value a threshold value control
has to take place. If the threshold value is reached or even
exceeded the system has to react with an alert. Afterwards the
actual regulation takes place. The kind of regulation behaviour
is application specific because it depends on the particular
property to be controlled. In our case we identify three possible
actions: proportional control action (P), proportional plus
integral control action (PI), and proportional plus integral plus
derivative control action (PID). The comparison of the actual
value and the set point as well as the calculation of the required
action take place within these three task categories whereas the
regulation action itself will be performed within the subsequent
output task.

Within the application lattice of Figure 8 the stubs for Input,
TVC (threshold value control), and Output are mandatory

stubs. Additionally, the Input stub represents an example for
loop control stubs expecting a boolean return value such that the
number of actual loops can be decided at runtime. Adjust
(adjustment) is an example of an optional stub. During
application composition, the application expert can decide
whether to refine this task category by choosing a program out
of the possible candidate programs or to eliminate the stub
without any substitution. Alert illustrates the case where a
particular program was already chosen during lattice creation.
This program will be component of all applications within the
FCS application category.

AUGUSTA supports two different types of selection stubs, they
differ in the time at which the decision is made in favour of a
specific choice. The mandatory selection stub TVC is an
example for the classical case of selections where the path to be
executed will be chosen at runtime. The other kind of selection
stubs allows for higher flexibility during application composition
by enabling the application expert to chose out of several
alternative paths for application generation. In our example the
actual type of control action (P, PI, PID) used for each
particular feedback control system depends on the decision of
the application expert during system composition.

Given the already mentioned three example applications, a part
of the program classification matrix for this application category
could look like as shown in Figure 9 where column identifiers
correspond to task categories and row identifiers characterize
applications. The programs within each task category have a
common origin but can slightly differ according to various
aspects. Thus, the set points identified within input tasks
could either be constant or adjustable values. Programs of each
of the three regulation behaviour task categories could
use different constants or result in different behaviour dependent
on the kind of limit violation. Output tasks can trigger
different actions or require different output formats.

SUMMARYSUMMARY

This paper presented a concept and an environment
(AUGUSTA) for supporting reuse of Ada-code. It organizes
program components in a database like manner and allows for
composing application systems via special queries against this
base. Without demanding object-orientedness, it takes advantage
from generalization hierarchies among program-components and
among applications. Furthermore, a specific process model is
supported in order to take advantage of reuse by integrative
system development with increased end-user involvement.

The current implementation of AUGUSTA runs in a UNIX-
workstation environment. It comprises the functionality as
described in this paper, except for the base administration
support tool and parts of the graphical user interface.



FIGURE 8: APPLICATION LATTICE ’FEEDBACK CONTROL SYSTEM’



TASK CATEGORY

APPLICATION
input adjustment

threshold
value
control

alert
regulation behaviour

P PI PID
output

boiler
temperature

control

constant
set point
monosensory

polling

noise
reduction

immediate
threshold
control

prescribed
alert

procedure
----- boiler

temperature
----- burner

adjustment

reservoir
level

regulation

adjustable
set point

multisensory
polling

noise
reduction &
multisensory
average

interval
threshold
control

prescribed
alert

procedure
reservoir
level

----- ----- weir flap
setting

turbine
rotation

speed
control

constant
set point
interrupt
driven
sensor

-----
immediate
threshold
control

prescribed
alert

procedure
----- -----

rotation
speed

guide vane
setting

FIGURE 9: PROGRAM CLASSIFICATION MATRIX ’FEEDBACK CONTROL SYSTEM’

ACKNOWLEDGEMENT

Many thanks to Prof. Mittermeir for his fruitful comments on
former versions of this paper. Additionally, the author wishes to
thank Mr. Erich Buchacher and Mr. Michael Dobrovnik for their
technical contributions as interviewees with respect to the
demonstrative example.

The work on this paper was performed while the author was
on leave at Österreichische Draukraftwerke AG, which lead her
to pick out the demonstrative example from the domain of
electric power-supply companies.

REFERENCESREFERENCES

Buchhäusl, F., 1991, "Die Realisierung eines Software-
Integrationssystemes für ein Software Base Management
System", Technical Report, Institut f. Informatik, Universität
Klagenfurt.

Caldiera, G., and Basili, V.R., 1991, "Identifying and
Qualifying Reusable Software Components", IEEE Computer,
Vol. 24, No. 2, pp. 61-70.

Chen, M., and Norman, R.J., 1992, "A Framework for
Integrated CASE", IEEE Software, Vol. 9, No. 2, pp. 18-22.

Dusink, E.M., 1992, "Reuse is not done in a vacuum",
Proceedings, 5th Annual Workshop on Institutionalizing
Software Reuse, Palo Alto.

Hochmüller, E., 1992, "AUGUSTA - eine reuse-orientierte
Software-Entwicklungsumgebung für die Erstellung von Ada-
Applikationen", Ph.D.-Thesis, Vienna.

Hochmüller, E., and Mittermeir, R.T., 1993, "Rahmen-
bedingungen für erfolgreiches Software Reuse", Proceedings,
Der Wiener IT-Kongreß 1993 "Informations- und Kommuni-
kationstechnologie für das neue Europa", ADV, Vienna, pp.
269-284.

Horowitz, E., and Munson, J.B., 1989 "An Expansive View of
Reusable Software", Software Reusability, Vol.1, T.J.
Biggerstaff, and A.J. Perlis (eds), pp. 19-41.

Mittermeir, R.T., and Oppitz, M., 1987, "Software Bases for
the Flexible Composition of Application Systems", IEEE
Transactions on Software Engineering, Vol. 13, No. 4, pp. 440-
460.

Norman, R.J., and Chen, M., 1992, "Working together to
integrate CASE", Guest Editor’s Introduction to IEEE Software,
Vol. 9, No. 2, pp. 12-16.

Prieto-Diaz, R., 1991, "Making Software Reuse Work: An
Implementation Model", ACM SIGSOFT, Software Engineering
Notes, Vol. 16, No. 3, pp. 61-68.

Tracz, W., 1990, "Where Does Reuse Start?", ACM SIGSOFT,
Software Engineering Notes, Vol. 15, No. 2, pp. 42-46.


