
Optimization of Object-Oriented Queries
by Inverse Methods

Johann Eder, Heinz Frank, Walter Liebhart
Institut für Informatik, Universität Klagenfurt

Klagenfurt, Austria
e-mail: {eder, heinz, walter}@ifi.uni-klu.ac.at

Abstract

For object-oriented databases we propose a new technique for optimizing queries
containing method invocations. This technique is based on the definition of inverse
methods and query rewriting. It can be viewed as providing computed inverted
access structures like (secondary) indexes provide stored inverted access structures.
This technique can be applied to methods which can be fully specified as functions
and to the usual comparison operations in queries. We introduce an extension to
ODMG-93 [1] to define inverse methods and present the optimization algorithm for
homogeneous as well as for heterogeneous collections. The application of this
technique can reduce the cost of query-evaluation by orders of magnitude.

1 Introduction

Automatic optimization of queries is crucial for the applicability of declarative
database query languages. The development of powerful query optimizers using
efficient physical access structures was essential for the success of the relational data
model. Therefore, also the optimization of queries for object-oriented databases is
intensively researched [2,3,4]. However, most of the approaches proposed so far
concentrate on the structural dimension of object-oriented databases while
optimization of queries involving method calls has attracted comparatively little
attention. Our work on schema integration [5] and view definition for object-oriented
databases [6,7] made us aware of the great demand for effective optimization of
such queries.

Optimization techniques reported recently include to estimate the cost of method
invocation for cost-based query optimizers[2,8] and the precomputation of method
calls [9,10,11] following the lines of view-materialization. The essence of the latter
approach is to convert computed data (i.e. the result of method calls) to stored data
so that all access structures and optimization techniques for stored data can be
employed. Obviously, this technique requires considerable overhead for update
operations and can only be applied to a very restricted class of methods. In
particular, methods with parameters can hardly be materialized.

katja
published in: Eder J., Kalinichenko L. (eds.): Proceedings of the 2nd Int. East/West Database Workshop, 1994, Springer Verlag, pp. 108-120

The approach presented here introduces computed inverted access to computed data
through inverse methods. Let us introduce this technique with a small example taken
from an usual schema integration problem where the scaling conflict between
temperature values in degree Fahrenheit and Celsius are solved by conversion
functions.

Suppose an object-oriented database to handle materials with their melting point for
European and American users. During the schema integration process you decided
to store the melting point of a material as degree Celsius and provide a conversion
function, temp_fahrenheit, to get the temperature in Fahrenheit. If an user would
like to know the names of all materials with a melting point less than 100 degree
Fahrenheit, he would write the following statement (according to ODMG-93):

SELECT m.name
FROM m in Materials
WHERE m→temp_fahrenheit () < 100

Traditionally, this query requires a full scan of the Materials class and an invocation
of the method temp_fahrenheit for each object. With the introduction of the inverse
method1 temp_celsius, which transfers Fahrenheit to Celsius, we are able to rewrite
the above query as:

SELECT m.name
FROM m in Materials
WHERE m.melting_point < Material→temp_celsius (100)

This has the following advantages which can reduce the cost of query evaluation by
orders of magnitude:

The inverse method has to be computed only once, while the original method
would have to be evaluated for each object.
Access structures (indexes) can be used to avoid loading all objects from the
disc into the main memory.

Obviously it is not possible to define inverse methods for all methods in the
database - it is up to the database designer or tuner to decide whether it is possible
and worthwhile to introduce an inverse method, like he decides for indexes. Until
now the user or application programmer would have to rewrite the query instead of
a query optimizer. For this purpose he needs detailed information about the internals
of the objects. However, this would jeopardize view concepts and sacrifice
encapsulation for performance. Using our optimization strategy protects
encapsulation and view concepts and relieves the users of knowledge about internal
data representation. In particular, in the case of multi-database systems, the user

1 In section 2 we will argue why inverse methods have to be type methods.

even might not have access to the necessary information. In the example the users
has to know whether the temperature is stored as degree Celsius or as degree
Fahrenheit.

2 Definition of Inverse Methods

2.1 Optimizable Methods

Not every kind of method is appropriate for our optimization process. Most
important, optimizable methods have to be side-effect free functions. Such methods
can formally be defined as a family of functions:

For the following discussion let m be a method of the object-type C with
parameter(s) P and return type Z. The method m is optimizable with an inverse
method, if it can be fully specified as the following family of functions:

∀ P: mP: C → Z

A special subclass of these optimizable methods are those which use exactly one
(distinguished) attribute for the computation. This class of methods are further
characterized by the following condition:

Let a be an attribute of type A, o and o’ be objects of type C, then:
∀ P ∀ o, o’: o.a = o’.a o→mP = o’→mP

Such methods can be described as the following family of functions:
∀ P: mP: A → Z

2.2 Inverse Methods

For deciding which queries containing invocations of such methods can be optimized
and for choosing the appropriate rewriting rules we need further information about
properties of the methods, in particular about injectiveness and monotonicity.

2.2.1 Injective Functions
Injective functions have an inverse function. According to the above

classification the inverse functions m-1 can be specified more precisely as:

with distinguished attribute:
m-1

P: Z → A, with ∀ a, P: m-1
P(mP(a)) = a

without distinguished attribute:
m-1

P: Z → C, with ∀ o, P: m-1
P(mP(o)) = o

To optimize inequality comparisons, we are interested in strict monotonous
functions, a subclass of injective functions. The definition of the inverse of strict
monotonous functions is the same as for injective functions.

2.2.2 Non Injective Functions
Non injective functions have no one-to-one inverse functions. Nevertheless, we

are able to optimize non injective functions by the definition of an inverse method
which maps its results into power set . According to the above classification we
again specify such methods more formally as:

with distinguished attribute:
m-1

P: Z → (A), with ∀ a, P: m-1
P(mP(a)) = { a’ | mP(a) = mP(a’)}

without distinguished attribute:
m-1

P: Z → (C), with ∀ o, P: m-1
P(mP(o)) = { o’ | mP(o) = mP(o’)}

2.3 Integration in ODMG-93

According to the above considerations we extend ODMG-93 with a special
language construct to create an inverse method (similar to an index definition):

inverse operation <return_type> <operation_name> (<argument_list>)
on <type_name>
for <operation_name> [injective | increasing | decreasing]
[based on <attribute_name>] [<raises_expr>] <context_expr>

The definition of an inverse method starts with the keyword inverse operation
followed by the return type, the name of the inverse method and its argument list,
similar to the construct for defining a method in ODMG-93. The type, where the
inverse method is attached is specified with the poperty on. The name of the
corresponding original method is stated after the keyword for. To characterize the
kind of the method (injective, strict monotonous increasing or strict monotonous
decrasing) the optional keywords injective, increasing and decreasing are used. If the
inverse method refers to a non injective method none of these parameters are
allowed, but the return type of the inverse must be a set of the return type of the
original method. The existence of a distinguished attribute is specified with the
keyword based on followed by the name of the attribute. The parameter raises_expr
is necessary for the treatment of exceptions raised by methods. According to
ODMG-93 the definition of an inverse method ends with the method body, indicated
with context_expr [1] in our language construct.

The definition of an inverse method underlies several constraints which can be
checked automatically:

The return type of the inverse method must be of the same type as the type of
the corresponding attribute defined with the keyword based on or a set of this
type. Without an distinguished attribute the return type of the inverse must be
equal with the type specified with the on property (or a set of this type).

The arguments of the inverse method must be equivalent to the argument list of
the original method. Additionally, a further parameter is needed for the
comparison operand. This parameter has to be the first in the argument list and
its type must be the same as the result type of the original method.
If the result type of the inverse method is a set of the type , or a set of the type
of the distinguished attribute, respectively, then none of the optional parameters
injective, increasing or decreasing is allowed.

Inverse methods are realized as type methods rather than as object methods.What are
the reasons for this decision? Inverse methods could be invoked on elements of the
codomain of the original method. We do not place it as (normal) method in the type
of this codomain, because this type is frequently a value type (e.g. numbers) such
that we cannot define methods there. Moreover, the semantic context of the inverse
method is the original type. If the type of the codomain already has a suitable
method, then the body of the inverse method can simply consist of a call of that
method. Furthermore, the inverse method is not invoked on on an object of the type
but rather results in an object (or a distuinguished attribute) such that we cannot
define it as object method of the type.

Consider the small example from the introduction. The extended ODMG-93
definition of the inverse method temp_fahrenheit would be:

inverse operation real temp_fahrenheit (in real)
on Material
for temp_celsius increasing
based on melting_point <context_expr>

We consider inverse methods as access structures belonging to the internal level of
a database as they are used for optimization purpose only. Like indexes they can be
added and dropped at runtime affecting the performance of the system only. Queries
do not have to be reformulated when inverse methods are defined or deleted
(physical data independence).

3 The Optimization Process

3.1 Rewriting Rules

We first present the rewriting rules for the optimizing queries for homogeneous
collections. In the following sections we will extend this algorithm to heterogeneous
collections and discuss all aspects of inheritance.

We optimize the following generic kind of queries:

SELECT
FROM objectVar in Type_Extent
WHERE objectVar→Method(Parameter) RelOp ComparisonOperand

RelOp are the usual comparison operators, such as equal, greater, less and in.
ComparisonOperand can be, for instance, a constant, a set or a subquery.

The condition part of the query is rewritten into:

WHERE FirstPart RelOp’ SecondPart

The FirstPart of the rewritten query depends on the existence of a distinguished
attribute, specified with the based on property. If there is one, then the FirstPart is
rewritten to objectVar.Attributename otherwise only to objectVar.

The rewriting rules for RelOp’ and SecondPart depend on the original relational
operator RelOp and the kind of the method, as specified in table 1.

Method Kind RelOp RelOp’ SecondPart

injective = = T→m-1 (CO, P)

IN IN FOR x IN (CO) {T→m-1 (x,P)}2

strict monotonous
increasing

,
,

, ,
,

T→m-1 (CO, P)

strict monotonous
decreasing3

,
,

,
,

T→m-1 (CO, P)

non injective = IN FOR x IN (CO) {T→m-1 (x,P)}

IN IN FLATTEN4 (
FOR x IN (CO) {T→m-1 (x,P)})

T type where the inverse method m-1 is defined, stated by the on property
CO ComparisonOperand, e.g. a constant, a subquery, an object
P parameters of the original method

Table 1: Rewriting Rules

2 As the inverse method must be performed on all members of the set it is
necessary to use an iteration operator, which until now is not defined in
ODMG-93 but for instance in O2 [12].

3 Strict monotonous decreasing methods require to switch the relational
operators.

4 As the result of the iterator operation is a set of sets, it is necessary to flatten
the result. For this purpose we use the flatten operator defined in ODMG-93.

There may exist comparison operands, which are not valid for the inverse method,
although they can be used in the original query (e.g. non surjective functions). For
such operands the inverse method has to raise the special exception
inverse_exception, which must be known by the query optimizer. If the optimizer
recognizes such an exception the original statement has to be executed. The efficient
treatment of such queries is subject of ongoing research.

3.3 Examples

Person

WorkerClerk

gross_income()

gross_income() net_income()

unskilled
 Worker

gross_income()

name: String
p_no: Integer
salary: Float

manages()

works_in() all_workers()
managed_by()

Department

d_no: Integer
location: String

name: String

Resource

Project

available()is_free()

Technical
Project

Computer

res: Resource

res: Computer

start: Date

duration()past_date()

net_salary()

main_project() responsible_person()

inverse

inverse

inverse

no inverse

Figure 1: A Small Database Schema

Figure 1 shows an example of a small database schema in OMT-like syntax [13].
You can see a type Person with its subtypes Clerk, Worker and unskilled Worker.
Each type has some attributes and methods. The inverse methods are shown with an
arrow. There are also some other types, Project with the subtype Technical Project,
Department and Resource with the subtype Computer.

All further query examples are based on this small schema. An informal description
of each method is given in the query examples. We are aware that essential parts
(such as relationships) are missing in our example. Moreover we do not consider
implementation aspects of methods but concentrate only on the necessary parts to
present our optimization strategy.

In the following examples we concentrate only on the condition part of the queries
because of space limits.

Injective methods: We want to know the manager of the department 27 using the
method manages. The inverse method is called managed_by and is based on the
attribute p_no:

p→manages () = 27 p.p_no = Person→managed_by (27)

Non injective methods: We want a list of all persons working in the department 27.
The method works_in in the example of figure 1 is based on the attribute p_no and
returns for each person the corresponding department. However, the inverse method
all_workers produces a set of values, exactly all persons being engaged in that
department.

p→works_in () = 27 p.p_no IN Person→all_workers (27)

Strict monotonous decreasing methods: Compute a list of all projects running longer
than 30 days. The method duration computes the duration time of a project, which
is based on the attribute start. The inverse method past_date computes the date
minus n days.

p→duration () > 30 p.start < Project→past_date (30)

Usage of the IN operator in a non injective method: We want to know all persons
working in a department which is located in Austria.

p→works_in () IN
(SELECT d.d_no
FROM d in Departments
WHERE d.location = "Austria")

p.p_no IN FLATTEN (FOR x IN
(SELECT d.d_no
FROM d in Departments
WHERE d.location ="Austria")
{Person→all_workers (x)})

Method without distinguished attribute: Compute a list of all persons, who have their
main project located in Austria. The method main_project returns the main project
of a person. The inverse method responsible_person computes the responsible person
of a project.

p→main_project () IN
(SELECT pro
FROM pro in Projects
WHERE pro.location = "Austria")

p IN (FOR x IN
(SELECT pro
FROM pro in Projects
WHERE pro.location = "Austria")
{Person→responsible_person(x)})

3.3 Advantages

The difference in the evaluation costs between the original and the rewritten query
depends on the following:

evaluation cost of the original method and its inverse
the number of objects in the collection
the existence of indexes
the selectivity of the distinguished attribute
whether the method is injective
the cardinality of the result of the inverse method for non injective methods
the cardinality of the comparison operand for IN comparisons
whether the parameter of the method is independent of the object variable
whether the comparison object depends on the object variable (correlated
subquery)

A quantitative model is beyond the scope of this paper. For applying this technique
the rewriting rules of a cost-based query optimizer should be extended. The
advantage of this optimization technique, however, can be several orders of

magnitude. For an example take an injective method (without distinguished
attribute), equality comparison, and a non-correlated comparison operand. For a
collection of cardinality N it would be necessary to retrieve N objects and invoke the
method N times, while the inverse method is evaluated only once and a single object
is fetched from secondary memory. If the execution costs of the methods are about
the same this results in a reduction of the evaluation costs of the queries by the
factor N. For such methods and queries our optimization technique can even be
integrated in rule based optimizers. On the other hand, if the comparison object is
a correlated subquery the evaluation costs of the rewritten query might be higher,
since the inverse method then has to be executed for each object of the collection.
Such queries should only be optimized with a cost-based optimizer.

4 Aspects of Inheritance

4.1 Inheritance of Inverse Methods

Inverse methods are inherited, too. However, the scope of an inverse is tied to the
scope of its method. If a method is overridden, neither the overridden method nor its
inverse method are inherited, irrespective whether an inverse of the overriding
method has been defined or not. However, it is possible to override inverse methods
without overriding the original method, although this will rarely be necessary.

This general concept of inheritance is very useful for our optimization process. It
may be necessary to optimize queries, whose target type is a subtype of the type
where the inverse method has been defined, for instance consider a query which
computes a list of clerks with a gross income greater than 30000. We can optimize
this query by using the inverse method net_income defined within the type Person.
To handle such queries, the optimizer needs to collect the necessary information
about the inverse method, e.g. by searching the type hierarchy backwards.

4.2 Method Overriding

Our optimization technique can also be applied to heterogeneous collections, i.e.
collections of objects of different types. If neither the method to be optimized nor
the inverse method are overridden, then the optimization process presented in section
3 can be applied without change. Overriding of methods and inverses leads to a
more complex optimization process dealing with overridden methods and therefore,
with the existence of different inverse methods. Additionally, an overridden method
may have no corresponding inverse method.

In our example we have three subtypes of Person, the types Clerk, Worker, and
unskilled Worker (with the corresponding extents Clerks, Workers and unskilled
Workers). Each of these types inherits an attribute salary, where the net income of
a person is stored and a method gross_income, which computes the gross income

based on the salary. As the computation of the gross salary differs between clerks
and workers the method gross_income is overridden in Workers. Obviously there
exist different inverse methods called net_income and net_salary. Additionally, the
gross income is overridden in unskilled Worker without defining an inverse method.

To rewrite queries over heterogeneous collections we have to distinguish the objects
according to their types. Depending on the existence and the kind of inverse
methods it is not always possible to fully optimize the whole query. To produce an
optimized query, the condition is rewritten with a disjunction of clauses - one clause
for each pivot type, i.e. the type T of the extent defined in the query and all (direct
and indirect) subtypes of T, where either the method or its inverse is overridden.
Let ST be the set consisting of the name of a pivot type T and all its (direct and
indirect) subtypes which neither override the method m nor its inverse. For each
pivot type we create the following clause:

ObjectVar.Type.Name IN ST AND
<optimized statement>

The <optimized statement> is the rewritten query based on the kind of the inverse
method as explained in section 3. If an optimization is not possible, because of an
inadequate relational operator or the overridden method has no inverse method, the
original condition is used.

Consider the following condition part of a query based on our small example:

p→gross_income () >
10000

(p.Type.Name IN {Person, Clerk} AND
p.salary > Person→net_income (10000)) OR

(p.Type.Name IN {Worker} AND
p.salary > Worker→net_salary (10000)) OR

(p.Type.Name IN {unskilled_Worker} AND
p→gross_income () > 10000)

As you can see method overriding decreases the advantages of our optimization
strategy. Now it is necessary again to scan the whole collection, as the type of each
object is necessary within the optimized query. But still the number of method calls
is significant smaller than with the origin query. Obviously the advantage of our
approach decreases the more methods are redefined within the type hierarchy.

4.3 Attribute Overriding

In the object-oriented paradigm the overriding of attributes is possible as the
redefinition of methods within the type hierarchy. However, the overridding of
attributes is restricted by the concept of covariance which is supported by ODMG-

93. The type of an attribute’s redefinition must be a subtype of its original inherited
definition. In the case of overridding the distinguished attribute we have to analyze
possible constraints to our approach.

Suppose the following query, which computes all projects, whose resource is
available on the 1st of October. The method available returns the date when the
resource of the corresponding project is not any more used.

p→available () = "1.Oct. 1994" p.res IN Project→is_free ("1.Oct. 1994")

The inverse method is_free returns a set of resources. As technical projects also
belongs to the extent projects (by instance inheritance) and the attribute resource is
overridden in type technical project we have to deal with the comparison of different
types (in our example we have to compare objects of type Computer with objects of
type Resource).

Although ODMG-93 does not consider that problem explicitly, such a query can be
written in O2. Regarding to our approach, we are able to optimize queries with an
overridden distinguished attribute without any restrictions.

5 Conclusions

We presented a novel technique for the optimization of queries against object-
oriented databases with method calls in the condition part of the query. Our
approach introduces inverse methods as computed inverted access structures. We
consider these inverse methods to somehow belong to the physical level of database
systems. They can be added and dropped like stored access structures (indexes).

These inverse methods can then be used to rewrite the condition part of queries. For
a significantly large class of queries our approach reduces the cost of query
evaluation by orders of magnitude and our approach can be directly integrated into
rule based optimizers. For other classes the cost of the original and the rewritten
query have to be estimated, such that we recommend the integration only into cost-
based optimizers.

Best results are obtained, when our technique is applied to queries against
homogeneous collections or to heterogeneous collections, where the method used in
the condition part is not overridden. Our approach has been extended to all
heterogeneous collections with overridden methods too. However, the necessary type
case distinction reduces some of the advantages.

References

1. Cattell R. The Object Database Standard: ODMG-93. Morgan Kaufmann
Publishers, San Mateo, 1993

2. Mitchell G., Zdonik S., Dayal U. Optimization of Object-Oriented Queries:
Problems and Approaches In: Dogac A., Özsu T., Biliris A., Sellis T. (ed)
Proceedings of the NATO ASI Object-Oriented Database Systems, Kusadasi,
Turkey, 1993, pp 30-66

3. Graefe G. Query Evaluation Techniques. ACM Computing Surveys, Vol. 25,
No. 2, June 1993, pp 73-170

4. Freytag J., Maier D., Vossen G. Query Processing for Advanced Database
Systems. Morgan Kaufmann Publishers, San Mateo, 1994

5. Eder J., Frank H. Schema Integration For Object Oriented Database Systems.
In: Tanik M., Rossak W., Cooke D. (ed) Proceedings of Software Systems in
Engineering, New Orleans, USA, 1994, pp 275-284

6. Dobrovnik M., Eder J. View Concepts for Object-Oriented Databases In:
Proceedings of the 4th International Symposium on System Research,
Informatics and Cybernetics, Baden, 1993

7. Dobrovnik M., Eder J. A Concept of Type Derivation for Object-Oriented
Database Systems, In: Gün, Onvural R. Gelenbe E. (ed) Proceedings of the
Eight International Symposium on Computer and Information Sciences (ISCIS
VIII), Istanbul, 1993

8. Graefe G., Ward, K. Dynamic Query Evaluation Plans. SIGMOD Proceedings,
ACM, 1989, pp 358-366

9. Bertino E. Method Precomputation in Object-Oriented Databases. SIGOIS
Bulletin, 12(2,3), 1991, pp 199-212

10. Kemper A., Kilger C., Moerkotte G. Function Materialization in Object Bases.
SIGMOD Proceedings, ACM, 1991, pp 258-267

11 Kemper A., Kliger C., Moerkotte G. Function Materialization in Object Bases:
Design, Realization and Evaluation. IEEE Transaction on Knowledge and Data
Engineering, Vol. 6, No. 4, August 1994, pp 587-608

12. The O2 User Manual, Version 4.2, January 1993
13. Rumbaugh J. et al. Object-Oriented Modeling And Design. Prentice Hall,

Englewood Cliffs, New Jersey, 1991

