
A Transaction-Oriented Workflow Activity Model

Johann Eder, Walter Liebhart
Institut für Informatik, Universität Klagenfurt

A-9020 Klagenfurt, Austria
email:{eder,walter}@ifi.uni-klu.ac.at

Abstract
The combination of workflow systems and database management systems significantly facilitates the design and
reliable management of complex business processes. In this paper we present a high-level workflow activity
description language and an advanced transaction mechanism to design long running activities. The strength of
our model is the simplicity of the language and the application independent transaction facility which supports
highly concurrent and reliable execution of workflow activities.

1 Introduction

Workflow technology is becoming more and more important for organizations to improve
their productivity and competitive position through support, automation and reengineering of
business processes (e.g. order processing, manufacturing, etc.). A Workflow Management
System provides procedural automation of a business process by management of the sequence
of work activities and the invocation of appropriate human and/or information technology
(IT) resources. The Workflow Management Reference Model [1], defined by the Workflow
Management Coalition Group, describes a common model, with three typical functional areas,
for the construction of workflow systems:

The Build-time functions, concerned with defining the workflow process and activities.
They are necessary to transform a real world business process into a more formal and
computer processable format. Such transformation methods are for example Petri Nets.
The Run-time control functions concerned with interpreting and executing the modelled
process description as well as coordinating and scheduling the execution of the various
activities of each process. These functions are available through the Workflow
Enactment Service (WF-Engine). Today there exist many types of workflow enactment
environments like mail-based, database-centered or document-centered systems.
The Run-time interactions with human users and IT application tools for processing the
various activity steps. Individual activities within a workflow process are typically
concerned with human operations and information processing operations requiring
particular software systems (e.g., a mailer, an application program, a DBMS).

Most of the current available workflow systems offer interesting possibilities to manage
complex business processes but in general they do not very well support automatic operation
execution, monitoring the status of activities, enforcement of consistency and concurrency
control, or recovery from failure. But especially these features are necessary to control and

katja
published in: Kuru S./Calglayan M. U./Gelebe E./Akin H.L./Ersoy C. (eds.): Proceedings of The Ninth Int. Symposium on Computer and Information Systems, ISCIS IX, 1994, pp. 9-16

manage the concurrent execution of interdependent activities in complex business processes.
In this paper we want to focus on Transactional Workflows which can be seen as a

combination of workflow systems and database management systems (DBMSs) with the
intention to incorporate the advantages of both technologies [2]. One of the main goals is to
provide mechanisms for defining and controlling long-lived activities, complex and con-
current computations, just like transactions in traditional DBMSs control short computations.

During the last years several new interesting transactional workflow models and
concepts [3, 4, 5] (see also subsection 2.1) have been introduced and some basic features of
these models have also been integrated into our model. However, the main difference to this
related work is that our model is much easier to work with as it does not require skilled
programmers and it is more flexible because of the possibility to use selectively easy but
expressive control structures and intuitive simple transactional characteristics during the
specification of business processes. Additionally, our model does not assume the existence
of a database system with an advanced transaction mechanism (e.g. nested transactions)
although this could improve the capabilities of our model.

The remainder of this paper is organized as follows: In section 2 we illustrate the
necessity of advanced transaction concepts, especially for reliable workflow activity
management. In section 3 we present a high level description language for the static and the
dynamic description of workflows with an integrated and application independent advanced
transaction model. A small example visualizes our concepts. Section 4 concludes this paper
and presents a short overview of future work.

2 Advanced Transaction Concepts for Workflow Activity Management

2.1 The Evolution of Transaction- and Workflow Models

The traditional transaction model is defined by the ACID properties (Atomicity, Consistency,
Isolation and Durability) and the notion of (conflict) serializability as correctness criterion for
schedules (histories). Advanced transaction models can be classified according to various
characteristics including transaction structure, intra-transaction concurrency, execution
dependencies, visibility, durability, isolation, failure atomicity, and correctness criteria for
concurrent execution[4]. Extended transactions permit grouping of their operations into
hierarchical structures and relaxed transactions indicate that a given transaction model
relaxes (some of) the ACID properties and the rigid serializability constraint.

A first important step in the evolution of traditional (flat) transactions was the
development of Nested Transactions [6]. A nested transaction may recursively contain any
number of subtransactions, forming a transaction tree. The root of this tree is called top-level
transaction which satisfies the ACID properties. The main advantages of the nested
transaction model are the support of modularity (decomposition of transactions), failure
handling at the granularity of subtransactions and intra-transaction parallelism because
subtransactions can be executed concurrently. Open Nested Transactions [7] relax the
isolation requirements of nested transactions and make the results of committed
subtransactions visible to other concurrently executing nested transaction. The concept of
compensation opened a new dimension in the evolution of transaction models. If a
subtransaction is compensatable then it can commit and release the resources before the
parent transaction successfully completes and commits. If the parent transaction later aborts,
the effects of the already committed subtransactions can be (semantically) undone by
executing the corresponding compensation transactions. Saga [8] is an example of a

transaction model with this feature. A lot of work is also done in the area of distributed
transaction management as for example the development of the DOM Transaction Model [9]
which allows closed nested and/or open nested transactions. The Flexible Transactions Model
[10] is based on the nested transaction model and has been proposed as a transaction model
suitable for a multi-database environment.

Important issues related to transactional workflow models besides [8, 9, 10], for
example, were addressed in the work of Long-Running Activities [3], On Transactional
Workflows [4] or The ConTract Model [5]. In [3] a Long-Running Activity consists
recursively of multiple application steps each of which is either an activity or a (nested)
transaction. Control flow and data flow of an activity may be specified statically in the
activity’s script or dynamically by ECA-rules. The model includes compensation,
communication between steps and exception handling. In [4] a precise overview of
transactional workflows, including a description of an abstract model of a task (by a state
machine) is introduced. The ConTract-model [5] tries to provide the formal basis for defining
and controlling long-lived, complex computations. ConTracts can be seen as a mechanism for
grouping transactions into a multi-transaction activity. A ConTract consists of a set of
predefined actions (with ACID properties) called steps, and a corresponding execution plan
called a script.

A comprehensive common framework to specify and reason about the nature of
interactions between transactions in a particular model is the ACTA Metamodel [11], which
is also very helpful to "invent" new transaction models.

2.2 Transaction Requirements for Workflow Activities

One of the most fundamental drawbacks of traditional database transaction systems in the
context of long-running activity management is the fact that transactions are seen as
concurrent and completely unrelated units of work which means that there are no application
independent system services for specifying intertransaction dependencies - like control flow
or semantic connections - except for putting all this control features into the application code.
Besides the former mentioned aspect there are a lot of other arguments why the ACID-
properties and the rigid serializability correctness criterium of the traditional transaction
model are too restrictive for activities and activity management in workflows, as for example:

Long-Lived-Activities: Traditional transactions were invented for very short transactions
but workflow activities normally have a longer duration, touch many objects and have
a complex control flow. Executing a long-running activity as a single ACID-transaction
can significantly delay the execution of other high-priority short transactions.
More cooperation and concurrency through semantic serializability: Workflow
activities typically are more of a cooperative nature (e.g. working on a common
document) where different subactivities concurrently access shared, persistent data and,
therefore, some kind of synchronization is necessary. In this case, serializability as
correctness criterion for concurrent access is too restrictive. One possibility to achieve
acceptable performance without compromising consistency is to exploit the semantics
of the application activities (by a human expert). Such semantic serializability [12] can,
for example, be realized through compatibility specifications between activities.
Compatibility between two activities means that the ordering of the two activities in the
schedule is insignificant from an application point of view [7].
More cooperation and concurrency through relaxed isolation: If subactivities
(subtransactions) externalize uncommitted results or make them visible to other

subactivities then there is a higher level of concurrency and cooperation possible (in
this case the isolation granularity is reduced to subactivities). But if the parent activity
later on aborts it is necessary to compensate all committed activities which have used
the uncommitted results. If compensation activities are available then the relaxation of
the isolation property increases concurrency. But at this point it should be mentioned
that compensation activities are not always available (eg. drilling a hole cannot be
undone later on), such activities often are called critical activities, and that a
compensation activity has to terminate successfully in any case to guarantee
consistency.
Application dependent (user-defined) failure atomicity: All-or-nothing in its original
meaning is too restrictive and expensive for workflow activities. For example, it is not
tolerable to rollback the whole workflow activity, and maybe the work of a day, if one,
non very important (non vital) subactivity aborts. This can be avoided by introducing
alternative (contingency) activities which are only executed if a non vital activity fails,
by re-executing the activity or even by tolerating the failure so that the whole workflow
can continue to make forward progress. Additionally, in case of a system failure a
forward recovery of already committed activities has to be supported and compensat-
able activities are needed to handle the abortion of vital activities (backward recovery).

3 The Model

Our model enables the workflow designer to easily model complex business processes in a
simple and straightforward manner. The basic idea is to decompose a complex business
process into smaller work units (activities) which themselves consist of - ideally preexisting -
tasks and to guarantee reliable flow control (including exception handling) by using control
structures and other transaction specific constructs which are input to the transaction facility.

3.1 Activity and Task Specification

The basic constructs of our model are activities and tasks. Activities may recursively consist
of other activities. Nested activities form an activity tree. The edges between activities
represent different control structures and the leaves of the activity tree are tasks which are the
elementary units of work (e.g. ACID-transactions, an application program or a human
interaction). Every task and every activity has a parent activity except for the root activity.
Tasks may not consist of other tasks or activities.

Control structures are structuring mechanisms to support the decomposition of
business processes into smaller work units and to define the flow of control between this
work units in the activity tree. There are four simple but powerful control structures:

Sequence: In a sequence activities are executed strictly sequential. This means that
activity Ai cannot begin execution until activity Ai-1 has terminated.
Ranked Choice: This construct enables the modelling of alternative (contingency)
activities which are activated when the previous activity terminates negatively.
Free Choice: Similar to ranked choice but the activation order of the alternative
activities in a free choice list is computed dynamically (at run time).
Parallel: A parallel control structure enables activities and tasks to run concurrently.

3.2 Execution of Activities and Tasks

At run time activities are associated with unique identifiers and the modelled activity tree
defines the execution order of activities and tasks in the activity execution tree (AET).
Activities and tasks have different execution states during execution, as for example: active,
not active, committed, aborted or compensated. Additionally, activities and tasks are able to
react on events like: start, abort or commit. All activities and tasks in the AET are executed
under the control of an advanced transaction manager. Main characteristics of the underlying
transaction model are:

Relaxed Atomicity: Each application may have its own application dependent failure
atomicity (see section 2.2). A workflow may survive and make forward progress
although some of its tasks do not terminate successfully.
Relaxed Serializability: It is not possible to execute an entire workflow as a single
isolated transaction to achieve (data) consistency. In our approach consistency is
guaranteed by user defined semantic serializability between concurrent and interleaving
workflows (inter-workflow dependencies) and correct execution of each individual
workflow (intra-workflow dependencies). Nevertheless, the traditional serializability
criterion will be necessary in many situations.
Relaxed Isolation: Isolation will be relaxed if there are compensatable activities (see
section 2.2). In this case activities may externalize uncommitted results and release
resources to achieve a higher level of concurrency.

Many of the advanced transaction features are very easy to use and control by the workflow
designer during construction of the AET, as for example:

By the use of control structures: Control structures are simple but expressive
mechanisms to handle task coordination requirements (intra-workflow dependencies).
By the use of transaction specific features: Tasks can be specified more detailed by the
STORNO-TYPE and FORCE parameter. Additionally, subactivities which are not
essential for a successful termination of the parent activity can be defined by the NON
VITAL parameter.

The STORNO-TYPE and FORCE parameter of a task are necessary for eventual
compensation transactions. With the STORNO-TYPE the workflow designer may specify
how a specific task behaves in case of compensation. There are four possibilities:

none: The committed task does not need to be compensated because it is not relevant
from an application point of view.
undoable: The committed task can be undone by the corresponding compensation task
without any side-effects. Let S be the database state at some time t, T the original task
and TC the compensation task. Then the database state S’ after executing T and TC in
sequence equals the previous state S if in the between time no other operation was
executed. (e.g. a client makes a flight reservation - later he cancels the reservation
without paying a cancellation fee).
compensatable: The committed task can be semantically undone by the corresponding
compensation task but there are side-effects. Let again S, S’ be database states, T the
original task and TC the compensation task. Then the database state S’ after executing
T and TC in sequence may not be equal to the previous state S regardless whether in
the between time other operations have been executed or not. (e.g. a client makes a

flight reservation - later he cancels the reservation but now he has to pay a cancellation
fee).
critical: The task cannot be undone or compensated in case of failure because there
exists no compensation task to undo the already committed effects (e.g. drilling a hole,
mailing a sensitive information, etc.). As we want to be compatible to existing database
transaction systems we do not assume a visible two-phase commitment protocol which
would simplify the handling of critical components.

Some tasks in real world situations are always expected to terminate successfully. This
natural feature may also be demanded from tasks in our model by using the parameter
FORCE during the specification of a task (e.g. open an account should always be possible).
Such tasks are repeated and re-executed in case of failure (e.g. deadlock, unavailable
resource, etc.) until a positive acknowledgement is achieved.

There also may exist activities within a workflow AET which are not essential for the
parent activity to terminate successfully. For such parent-child relations we have introduced
the transaction specific parameter NON VITAL. If a non vital activity fails the workflow can
continue and make forward progress without any compensation actions. Normally, all (sub)
activities within a workflow AET are essential for the parent activity to terminate
successfully. If a vital activity fails then the compensation mechanism is activated. For
example: if a vital activity in a sequence fails then the whole sequence fails which means
that all previous committed activities and tasks in the sequence have to be compensated.

The workflow coordination requirements (control- and data flow) between work units
can be described formally by dependency rules based on valid state transitions between nodes
in the AET. The possible state transitions mainly depend on states and output values of other
activities or tasks. We have formally defined these dependencies on basis of the ACTA
Transaction Metamodel [11] in [13] and we will implement our model by the use of rules in
an active database system.

3.3 Definition of the Workflow Activity Description Language

For the formalization of a complex business process we have developed a simple to use high-
level Workflow Activity Description Language (WADL). As already explained, the basic
constructs of our language are activities, tasks, control structures and transaction specific
parameters. We now introduce WADL with the following syntactic sketch:

DEFINITION ACTIVITY A_ID

SEQUENCE [non vital] A {[non vital] A} END-SEQUENCE OR

RANKED CHOICE A {A} END-RANKED-CHOICE OR

FREE CHOICE A {A} END-FREE-CHOICE OR

PARALLEL [non vital] A [non vital] A {[non vital] A} END-PARALLEL OR

TASK

END-ACTIVITY-DEFINITION

DEFINITION TASK [STORNO-TYPE] [FORCE]

ACID-Transaction | ApplicationProgram | HumanInteraction

INVERSE_TASK % INVERSE_TASK is necessary if STORNO-TYPE = (COMPENSATABLE or UNDOABLE)

END-TASK-DEFINITION

3.4 A Small Example

In this subsection we present a simplified workflow example which emphasizes the most
important features of our model. The example is illustrated graphically and also more formal
by the Workflow Activity Description language:

ACTIVITY Trip_Reservation

SEQUENCE

DB HI

Sheraton

Comp.

Private

R-Res

R-Res

Reservation

Room-Res Car-Res

ReservationReservation

F-Res

Comp.
F-Res

F-Res

Flight

Trip

Car-Room
Payment

Notification

Credit Card

SignFill-Out

Cheque

Cash

V

V V

V V

V

Hilton

Figure 1: Trip Reservation

Flight_Reservation

NON VITAL Car_Room_Reservation

Payment

END SEQUENCE

ACTIVITY Flight_Reservation

SEQUENCE

F_Res

NON VITAL Notification

END SEQUENCE

END ACTIVITY Flight_Reservation

ACTIVITY F_Res

TASK F_Res

END ACTIVITY F_Res

ACTIVITY Car_Room_Reservation

PARALLEL

Room_Res

NON VITAL Car_Res

END PARALLEL

END ACTIVITY Car_Room_Reservation

ACTIVITY Payment

FREE CHOICE

Cash

Credit_Card

Cheque

END FREE CHOICE

END ACTIVITY Payment

END ACTIVITY Trip_Reservation

TASK F_Res (COMPENSATABLE)

F_Res

INVERSE_TASK Comp_F_Res

END TASK F_Res

...

A Trip Reservation consists of the activity sequence Flight Reservation - Car-Room
Reservation and Payment. Car-Room Res. is not vital for the parent-activity Trip Res.,
whereas Flight Res. and Payment are vital activities. This means if, for example, Payment
terminates negatively then Car-Room Res. and Flight Res. have to be undone (compensated).
The Car-Room Res. consists of two parallel executable activities: Room-Res and Car-Res.
The vital Room-Res is modelled as a ranked choice (if there is no room at Hilton then a
reservation at Sheraton is tried, etc.). If the non vital Car-Res fails, Car-Room Reservation
still may terminate successfully. The Payment is modelled as a free choice which means that
at execution time it is decided which kind of payment is wished. If the Payment is done by
cheque then the two tasks Fill-Out and Sign are activated which are vital human interactions
(HI). In addition, Sign is a critical task and cannot be undone later. The two tasks F-Res and
R-Res can be compensated by the corresponding tasks Comp-F-Res and Comp-R-Res.

4 Conclusion

Transactional workflows can be seen as a combination of workflow management systems and
database management systems with the aim to produce reliable control flow management for
long running workflow activities.

Our model allows the design of complex business processes by combining (preexisting)
tasks and activities which will be executed and coordinated under the control of an advanced
transaction management facility. In particular, we have presented a high-level Workflow
Activity Description Language (WADL) to model such transactional workflows. The strength
of the language mainly is based on simple structuring mechanisms to design complex
business processes and the possibility to express application specific transactional
requirements. Typically, workflow activities are of a long duration, highly concurrent and of
a cooperative nature. Therefore, our transaction facility supports the relaxation of atomicity,
serializability and isolation as well as, for example, the possibility to compensate activities.

Currently we are defining formally the static safety of activities and tasks in the activity
tree and additionally, we are evaluating techniques for increasing concurrency and co-
operation. The proposed transaction-oriented workflow activity model will be integrated in
our prototype system based on an active database management system [14]. We will also
develop a graphical application development interface to design such workflows with the
possibility to generate WADL-code automatically.

References

[1] The Workflow Reference Model. Workflow Management Coalition Specification Document, Version 0.6,
June 1993.

[2] McCarthy D.R., Sarin S.K.: Workflow and Transactions in InConcert. Bulletin of the Technical
Committee on Data Engineering, Vol. 16, No. 2, June 1993.

[3] Dayal U., Hsu H., Ladin R.: A Transactional Model for Long-Running Activities. Proc. of the 17th Int.
Conf. on VLDBs, Barcelona, Sept. 1991.

[4] Rusinkiewicz M., Shet A.: On Transactional Workflows. Bulletin of the Technical Committee on Data
Engineering, Vol. 16, No. 2, 1993.

[5] Wächter H., Reuter A.: The Contract Model. In [15].

[6] Moss J.E.B.: Nested Transactions: An Approach to Reliable Distributed Computing. MIT Press,
Cambridge, MA, 1985.

[7] Weikum G., Scheck H.-J.: Concepts and Applications of Multilevel Transactions and Open Nested
Transactions. In: [15].

[8] Garcia-Molina H., Salem K.: SAGAS. Proc. of ACM SIGMOD Conf. on Management of Data, 1987.

[9] Buchmann A., Özsu M.T., et al.: A Transaction Model for Active Distributed Object Systems. In: [15].

[10] Elmagarmid A.K., Leu Y., Litwin W. Rusinkiewicz M.: A Multidatabase Transaction Model for
InterBase. Proc. of the 16th VLDB Conf. Brisbane, Australia 1990.

[11] Chrysanthis P. K., Ramamritham K.: ACTA: The Saga Continues. In: [15].

[12] Breitbart Y., Deacon A., et al.: Merging Application-centric and Data-centric Approaches to Support
Transaction-oriented Multi-system Workflows. SIGMOD RECORD, Vol. 22, No. 3, Sept. 1993.

[13] Eder J., Liebhart W.: A Formal Description of the Workflow Activity Description Language WADL.
Technical Report, University of Klagenfurt, Austria, 1994.

[14] Eder J., Groiss H., Nekvasil H.: A Workflow System Based on Active Databases. 9th Austrian-Hungarian
Informatics Conference, Austria, Oct. 1994.

[15] Elmagarmid A. K.: Database Transaction Models for Advanced Applications. Morgan Kaufmann, 1992.

