
A Work�ow System Based on Active Databases

Johann Eder� Herbert Groiss� Harald Nekvasil

Institut f�ur Informatik

Universit�at Klagenfurt

Universit�atsstr� ��

A����� Klagenfurt� AUSTRIA
e�mail� feder�herb�nekvasilg�i��uni�klu�ac�at

Abstract

We present the architecture of a work�ow system based on active databases� Busi�

ness processes can be de�ned in an easy�to�use graphical work�ow description language�

Process descriptions written in this language are compiled to rules and executed in a

system based on an active database� Thus the work�ow system can take full advantage

of the capabilities of a database system such as reliability� recovery� concurrency control�

transactions� and authorization� We describe the general architecture of such a system

and the implementation of a �rst prototype and discuss the advantages of this approach

for building as well as applying work�ow machines�

Keywords� work�ow management� active database� trigger� dynamic modeling

� Introduction

The aim of work�ow systems is to support business processes� From an abstract perspective
a business process consists of a sequence of tasks� The process speci�es

� which tasks have to be performed

� in which sequence �probably depending on decisions which are part of the process��

� by whom

� under which constraints �time� quality�

Such business processes can be found in businesses� industries� and administration� The
tasks can be performed automatically� by humans or by interaction of humans with infor�
mation technology �IT�� Traditionally� business processes are mainly managed using paper�
forms� and other communication media� Traditional IT supports business processes only in
a rather limited way� It is restricted to standard processes and is conceived as very in�ex�
ible� But current economic changes �ashlighted by buzzwords such as lean management�
just in time production� and computer integrated manufacturing� require enterprises as well

�

katja
published in: Chroust G., Benczùr A. (eds.); Proc. Connectivity-94: Workflow Management - Challenges, Paradigms and Products CON 1994, Oldenbourg Verlag, 1994, pp. 249-265



as administrations to be highly reactive to external and internal events� to participate in
tightly integrated processes and to be able to �exibly adjust these processes�
Advantages of applying work�ow systems to business processes comprise the following�

� Speci�cation� The application of work�ow systems leads to a better speci�cation
of business processes� of regular �standard� processes and even more of special ad�
hoc processes� Even if this is not a technical matter� experience shows that the
organizational analysis and design needed to employ work�ow systems increases the
quality of business processes�

� Documentation� The application of work�ow systems leads directly to an exact docu�
mentation of business processes� It should be noted that process documentation is an
inherent necessary feature for quality management� This integrated documentation
also yields better traceability of processes� built�in status accounting� and improved
responsiveness�

� Turn�around� A primary goal for employing work�ow systems is to reduce turn�around
times and therefore to improve reactiveness�

� Flexibility� In comparison to traditional software solutions� work�ow systems are much
easier to adapt� They allow a very dynamic and �exible redesign of business processes
to adapt to business needs� Furthermore� standard cases 	 processes as well as non�
standard ones can be dealt within the range of one system�

� Integration� Work�ow systems can act as 
glue
 between di�erent ITs allowing also
the integration of legacy systems in new business processes�

The aim of our work is the automation of such business processes� also called work�ows�
This requires in a �rst step the storage of the documents handled by the agents in a database�
and electronic forwarding of the documents from one agent to the next�
This is the conventional way using tools like text�processors� spreadsheets� databases and
electronic mail� When only these tools are used the knowledge about and the responsibility
for the process remains with the agents� who process the documents and decide then to
which successor these documents have to be delivered�
An automation of this task requires�

a� a model �schema� of the process�

b� an automatic delivery mechanism for documents according to the process information�

c� a mechanism for automatic invocation of programs

We call the latter two items a work�ow machine� This work�ow machine is data and event
driven and uses the process information to decide about the delivery of a document �nished
by an agent and the invocation of automatic agents�
In the last years systems for automating business processes have been studied in the area
of o�ce automation or o�ce information systems 
HEA���� 
ML���� 
TLF��� 
EKTW����

�




MS����
CB����
LCS����
Zlo��� � Only recently the term work�ow was coined for such types
of systems and interest in such systems exploded� More than �� work�ow management
systems with quite di�erent capabilities� are on the market today and most of them went
to the marked in the past two years� There seem to be commercial as well as technological
reasons for this rush� The commercial reasons for stimulating the demand for work�ow
management systems have been outlined above� The technological reasons are seen in the
high availability of fast communication infrastructures� client server solutions� powerful
client workstation� and the need to integrate legacy information systems�
The main contribution of our approach is the usage of active databases to implement the
work�ow machine� Active databases are well suited for applications which are inherently
data driven or event driven �for an introduction into the �eld of active databases refer to

Day���� 
Cha����� These systems extend conventional �passive� databases with production
rules� They allow the speci�cation of actions which are executed automatically whenever
certain events occur and certain conditions are satis�ed� The speci�cation of Event� Con�
dition and Actions is done declaratively with so�called ECA�rules�
Each database access from a user or an application program �insert� update� delete� select�
is seen as an event� which can trigger the application of a rule� If a rule is triggered� the
conditions of the rule are evaluated� If they are satis�ed� the actions of rule are applied�
Conditions are descriptions of database states� actions are operations� which can modify
the database or start external procedures� In this paper we use the syntax of SQL� 
IA����
where the basic structure of a rule is�

create trigger name on table

after event

when condition

then action

With create trigger a rule is de�ned� which reacts on changes of the table table� The event�
which triggers the rule is speci�ed next and the conditions � a SQL query � follow the
keyword when� Actions are database actions formulated in SQL�
Because the description of the processes in terms of triggers is on a very low level� such
programs are hard to read and to debug� Therefore� we describe the work�ows in an easy�
to�use graphical high level language designed speci�cally for this purpose and translate the
speci�cations of work�ows into triggers of an active database system� This has also the
advantage of independence of the descriptions from a speci�c product or trigger language�

What are the advantages of using active databases as base technology for implementing
work�ow systems�

� All dynamic information like the �dynamic� status of processes� documents� etc� are
mapped to the database and maintained within a database system� Thus the capa�
bilities of database systems like safety� authorizations� and most important recovery
are immediately available� In particular� in the case of system crashes� the recovery
mechanism of the database also recovers the dynamic state of all processes�

�



� Work�ow processes should provide a high degree of concurrent execution to decrease
turn�around times� The transaction mechanism permits to increase concurrency in a
safe way� The concurrency control system of the database can directly be used and it
is not necessary to reimplement an additional one for the work�ow machine�

� If active databases are employed� the database is not only the blackboard for the
work�ow scheduler and the work�ow processes� but it is rather the work�ow machine
itself� In particular� the scheduler and the agents no longer have to poll the database
whether the preconditions of some process are ful�lled� creating an unnecessary high
workload or reducing responsiveness� Previous work has shown that a central sched�
uler has advantages over sending or polling strategies 
EKW����

In the next section we introduce the language designed for specifying the processes� in section
� the translation process of a work�ow description to the rules of the active database and
in section � the system architecture of our prototype implementation is described�

� The work�ow description language � WDL

The main design criteria of WDL were� easy to use for an end user to design simple
work�ows� �exibility in describing a wide variety of business processes� direct compilation
to an executable work�ow� Note that WDL describes only the communication between
tasks� i�e� the data �ow and control structure between tasks� but does not specity the
internal structure of a task or which modi�cations a task performs�
The basic modelling concepts are�

� users and roles�
� forms� and
� processes� consisting of tasks and �ows�

At �rst a brief description of these concepts is given�

user� describes an agent� who can perform tasks �some data manipulation�

role� de�nes a set of users with common properties �e�g� clerk� or as members of an
organizational unit

form� data container holding the information that �ows between the di�erent agents�
Forms are used for representing and manipulation of information

process� describes the structure of a complex� distributed job� i�e� which tasks and �ows
it is composed of

task� de�nes an elementary activity �i�e�� done by one agent�

�ow� de�nes the transmission of information �a form� between two agents

work�ow� aggregation of processes

�



submit
application

Approval
HD

Approval
Dean

suggestion
Confirmation request

for money

paying out

[system]

[applicant] [HD] [Dean] [pers. dept.]

[applicant][applicant]

Figure � WDL process diagram for a business trip

Many concepts of the modelling language can be expressed in a comprehensive WDL process
diagram�

��� Description of the graphical notation

A process diagram speci�es the structure of one speci�c process involving the tasks� the
data �ows between them and users respectively the roles performing these tasks�
Fig� � shows such a diagram for the process of an application for a business trip� This
process requires interaction of di�erent persons and departments� An applicant who plans
to make a trip needs a permission from the head of the department and the dean� After
the trip he gets the money from the personal department�
The main elements of the graphic representation are tasks and �ows�
A task is an elementary activity done by one person or one computer program� What
exactly happens when a task is executed is not in the focus of the description� typically a
task changes the contents of some forms�
A task is represented by an rectangle� Inside the rectangle the name of the task and the
agent �the user or role performing the task� is written �the name of the agent is enclosed
between brackets�� If the task is processed automatically the pseudo�user SYSTEM is
speci�ed� This allows the de�nition of arbitrary programs for manipulation of the data and
therefore the integration of other application programs into the work�ow� Sometimes it is
useful to de�ne the user dynamically� i�e� send it to the task as content of a �eld in a form�
In this case we write DYNAMIC into the user �eld� It is also possible to specify a task

�



timeout� That means after the speci�ed duration a timeout is signalled�

Task
[Agent]INPUT

FLOWS
OUTPUT
FLOWS

A �ow connects two tasks and is denoted by an arrow� Considering one task you can group
the �ows into input �ows and output �ows� Input �ows are the incoming �ows of a task
delivering the necessary forms to the task� Output �ows specify the outgoing forms after
completion of the task� The delay for a �ow can be de�ned similar to tasks� The form is
then transmitted after the speci�ed delay�

Flow [Form]Task
[Agent]

Task
[Agent]

Usually a task will have more than one input and output �ow� Therefore we introduce the
following concepts for specifying constraints on the input and output side of a task�

�� Input side�

We can de�ne some preconditions which must be ful�lled before activating the task�
Possible preconditions are�

a� no precondition� That means the task is activated if one of the input forms arrives�

b� a boolean expression together with an optional predicate� We de�ne explicitly the
valid combinations of the input forms �e�g�� f� AND f�� that means forms f� and f�
must be available before activating the task� and a predicate for synchronizing the
forms �e�g�� f� AND f� 
f��name � f��name�� that means forms f� and f� must be
available and reference the same name��

c� a synchronization point� A form can be sent to more than one successor task for
parallel manipulation� At the end of such a parallel processing the synchronization
point is only passed if each of these parallel tasks are �nished�

�



�� Output side�

After completing the task each output �ow transports its forms to the speci�ed suc�
cessor task �if an optional condition is valid�� Consider the following special concepts�

a� disjunction� The actual form is either sent to task A or task B depending on the
condition speci�ed by the �ows� Using this concept we can model conditional �ows�

b� a form is sent to task A and task B for parallel manipulation� This is the counterpart
of the synchronization point introduced in the above paragraph� For modelling parallel
manipulation a form 
splitting
 at the begin and a synchronization point at the end
has to be de�ned�

Note that the concept of dynamic users is very powerful� for example e�mail can be modelled
if the user can write the �eld of a form where the agent of the next task is read from� The
process diagram of e�mail is a task with a �ow starting and ending at this task�

��� Extensions to the graphical notation

Though the process diagrams are very illustrative in showing what is going on� some addi�
tional information have to be expressed for compilation of the description to an executable
work�ow� For example the types of the �elds in the forms have to be speci�ed�

�� General information for the work�ow�

a� associated users and roles�
The process diagram just shows the participating users and roles� In addition you
have to de�ne all the users participating in a work�ow and the association of roles to
users�

b� structure of the involved forms�
Again the process diagram just shows the �ow of the forms without de�ning the
structure of the form� A form consists of �elds each having a type� We allow atomic
types �string� number� boolean and character�� the type table �a collection of tuples
of atomic types�� as well as references to external �les� Moreover� the appearance of
a form in the user interface has to be de�ned�

�� Additional information for tasks�

a� postconditions�
You can explicitly de�ne some postconditions to enforce a valid state� The task can
only be successful completed if the postconditions are ful�lled�

�



b� procedure�
A before�procedure and an after�procedure can be speci�ed for execution before acti�
vating or after completing a task respectively�

The procedures and the post�condition are optional�

c� selection criterion�
Specifying a role as task performer requires the de�nition of a selection criterion� This
criterion is used for the assignment of the task to a concrete user during the execution�
Possible criteria are� choose user with minimal workload� choose user randomly� etc�

d� access structure� It is possible to specify which �elds of a form a task can read or
change�

We have not de�ned an exact syntax� how the preconditions� postconditions and the pro�
cedures are speci�ed� This is left unspeci�ed� because it depends on the concrete imple�
mentation� i�e� in our case on the data manipulation language of the database management
system�
In section � we describe a graphical design tool facilitating the speci�cation of work�ows�

��� Execution model

A WDL process description de�nes when and under which conditions a form is transported
from one task to a successor task� What is done within a task is not speci�ed� After such a
form manipulation in a task A is �nished� the work�ow system executes the following steps�

�� the optional after�procedure of task A is processed�

�� The postconditions of task A are evaluated� If the postconditions are ful�lled� the
forms manipulated by this task are marked as processed and the task is �nished� in
the other case the task gets an error message�

�� Every output �ow of task A is checked and if the �ow condition is met� the form is
sent to the successor task and gets the status pending�

�� The preconditions of every successor task are evaluated� If all preconditions of a task
are met the task is ready�

�� If there is a task ready� the next step is the assignment of a user to the task if the
speci�ed agent of the task is a role� The selection criterion is evaluated and a concrete
user is assigned to the task�

�� Next the �optional� before�procedure is started�

�� The user interface of the user assigned to the successor task gets now a signal that
the task can be started�

�



� Translating a work�ow description into rules

In this section we describe the principles of the implementation of a work�ow system based
on WDL with active databases� The whole description of a process in WDL is stored in the
rules and tables of the database�
The structure and content of the forms as well as the information about users and roles are
maintained in database tables� Additional �elds are needed for administrative and dynamic
information� the holder of the form� the task which currently has access to it� and the
status �pending� active� etc��� The rules are automatically generated from the declarative
descriptions of the tasks and �ows by the WDL compiler� Therefore� the active database
management system is the work�ow server and has the functionality described in the process
speci�cation�
Mainly� the rules react on changes of the status �elds of the forms� For example� when a
task is �nished it changes the status of the processed forms from active to processed� This
event �res a rule which runs the post�procedure and changes the status of the forms again�
In this way a chain of rule applications is initiated� whenever a task is completed� In analogy
to the steps described above� the description of a work�ow is translated into several groups
of rules�
For each �ow one rule is generated �called �ow�rule�� triggering when a task is completed�
i�e� after the satisfaction of the postcondition� This corresponds to the third step of the
above execution model� The following rule speci�es a �ow of a form of type form i from
task A to task B� where the form is sent if the condition �ow�condition is met�

create trigger �ow n step� on form i

after update status

when new�status��finished�

and form�type�form j and form�task � task A and �ow�condition

then update new set task � task B�

The rule �res on changes of the status �eld in the table form i� The condition is met if
the new value of the status is 
�nished
� In this case the task �eld of the form is set to the
successor task�
Like in the above example� the rules are built from �xed templates into which the in�
formation from the process speci�cation is �lled in� e�g� from�task� to�task� form� and
�ow�condition�
The following types of rules are generated for each task�

post�task rule� This rule triggers when the task is �nished and executes the postprocedure
�step � of the execution model��

postcondition rule� The rule tests the postconditions of the task �step ���

precondition rule� This rule tests the precondition of a tasks� This is necessary if the
task has more than one input �ow� On each arrival of a form at the task this rule

�



is triggered and checks whether all forms necessary for the execution of the task are
available �step ���

dispatch rule� The rule exists� whenever the performer of the task is speci�ed as a role
together with a selection criterion �step ��� The non�empty user �eld of the task after
the execution triggers the next rule�

pre�task rule� This rule applies the before procedure� After completion this rule sends
a signal to the client program �either the standard client or an application program
performing the task��

We want to emphasize that the whole work�ow manager simply consists of all the rules
resulting from the compilation of WDL work�ow speci�cations� All other necessary features
are already provided by the database management system�

� System Architecture

To evaluate our approach we implemented a prototype work�ow manager using the OR�
ACLE database management system version �� which provides a simple rule system� As
hardware platform we use a cluster of SUN workstations with SUNOS ����� and OpenWin�
dows�
The system consists of four components�

� the server�

� the user interface client�

� the work�ow design tool and the WDL compiler�

� the monitoring client�

The server is the active database management system with the rules� forms� tasks and users
speci�ed in the database� No additional code is necessary� because the communication of
the other components is done exclusively via database accesses�

��� user client

This component is the interface of the normal user to the work�ow system� Fig� � shows
the appearance on the screen� The typical process of handling is similar to the processing
of mail�
The user interface noti�es the reception of a task� When the user selects a task� he gets a
task description with some general information �sender� corresponding process� description
of the task� etc�� and a list of forms� He can now view and edit the received forms� In this
step the user can only see the forms and �elds which are marked as visible or editable in the
task description and can only edit the �elds declared as editable� During �lling in the forms

��



Figure � user client interface

Figure � designer interface

��



the user can rollback the modi�cations of each form� The work with a task is concluded with
a commit� which results in communication with the server for running the post�procedure�
checking the post�condition� and removing the task from the users active�task list�
The explicit archivation of the forms is not necessary� as the history mechanism of the server
keeps the whole history of each form� Every user can view all forms he handled in the past�
Moreover the user can send copies of the forms to other users like ordinary mail� This allows
informal communication in addition to prede�ned work�ows�

��� work�ow designer interface

The purpose of this component is to allow an interactive graphic design of work�ow processes
and forms� The user interface of the process designer is shown in Fig� �� The second part
of this tool is the compiler which translates the WDL work�ow description into the rules
of the active database� The maintenance of the processes and work�ows is done by the
database� The designer can use previously de�ned forms and tasks� After a newly de�ned
process is stored in the database� it is possible for the users responsible for the initial task
to initiate the process�

��� monitoring client

An important task in work�ow systems is monitoring� e�g� inspecting which forms are
pending� how long are the active task lists of the di�erent users� etc�
The structure of this component is very similar to the ordinary user interface� The main
di�erence is� that all forms currently in the system are visible� With di�erent views all
forms of a type or all forms belonging to a process can be viewed� The contents of the
forms can be edited�
In addition� the monitoring client is used for maintenance tasks like installing users�
The implementation of this component was very simple due to the availability of all needed
data in the database� The information about the stati of the tasks� the location of forms or
the workload of users can be retrieved with simple SQL�queries�

� Conclusions

In this paper we proposed a new approach for the development of work�ow management
systems� We presented a work�ow description language for the graphically assisted speci��
cation of work�ow processes� The goals for the design of the language were to make it as
easy as possible such that also �skilled� endusers may use it to de�ne work�ows in an ad�hoc
manner and on the other hand that it scales up to be able to be used for all processes� To
make the language simple we use well known metaphors like business forms and support
the speci�cation of work�ows with a graphic work�ow designer tool� Since the language
supports the speci�cation of arbitrary conditions and features higher order constructs such
as the speci�cation of a receiver as part of a task� it scales up to represent work�ows of any
complexity�

��



The most important contribution of our approach is to show how active databases can be
used to facilitate the development of work�ow management systems and the application of
such systems� Modern database management system are capable of storing and manipu�
lating any kind of data� so it is quite natural to use database systems to maintain all data
relevant for business processes� The advantages of our approach can be summarized as
follows�

e�ciency� This approach showed to be very e�cient for the development of a work�ow
management system since it can use directly all the features of a database management
system like transaction management� concurrency control� access authorization and
recovery� So the necessary code for a work�ow management system can be minimized�
This approach is also very e�cient for the actual processing of work�ows� since the
trigger concept of active databases is a very e�cient way to schedule tasks� transport
data between tasks and launch processes�

reliability� All relevant dynamic information about processes is mapped into the database�
So the recovery mechanism of the database management system is used for storing
the data as well as the state information of all work�ow processes in a reliable way�
In the case of system failures not only the data but also all the information about
processes are recovered� A further aspect of this approach is that no user or program
can circumvent the work�ow manager � be it intensionally or by accident� All changes
to data relevant for a work�ow are monitored by the active database and� therefore�
by the work�ow manager�

extendability� The work�ow description language allows an easy extension of work�ows�
Furthermore� since all changes to data are monitored by the work�ow manager� ar�
bitrary existing application programs can be used within work�ows without chang�
ing them� They can be automatically launched from the work�ow manager and the
changes they perform on data can immediately trigger work�ow processes� So the tight
integration of work�ow manager and database system facilitates the development of
work�ows as integration platform for existing isolated applications�

traceability� Since all changes to relevant data are managed or monitored by the work�ow
system� all such changes can be automatically documented� All business processes
under control of the work�ow manager are documented and can be traced � meeting
an important requirement of quality assurance procedures without additional e�ort�

We have successfully applied this approach in the developement of a prototype work�ow
management system� Active databases have proven to be a powerful technology for imple�
menting such a system� The software engineering problems arising in programming with
rules have been avoided through the usage of a higher level language for describing business
processes� The usage of a standard commercial database brought the bene�ts of a stable�
system available on di�erent platforms� but had the drawbacks of a limited trigger mecha�
nism� In Oracle it is not possible to use triggers for changing the table which initiated the
trigger application� Moreover� triggers reacting on temporal events are not supported�

��



In the future we plan to extend our system in several directions� We will integrate an
extended transaction concept� allowing long running activities accompanied with a com�
pensation mechanism for handling exceptions �e�g� cancellations� requiring the description
of inverse tasks and inverse activities� We will work on a characterization of well�formed
processes and check processes for well�de�nedness� e�g� two parallel tasks should not alter
the same attribute� or� reading a value requires earlier writing� Finally we will port the
prototype system to other database management systems following the object�oriented or
the object�relational paradigm�

Acknowledgements� The authors thank Werner Liegl� J�urgen Modre� and Michael Stark
for their e�orts implementing the work�ow designer interface�

References


CB��� C�A�Ellis and M� Bernal� O�ce�Talk�D� An Experimental O�ce Information
System� In Proc� First ACM�SIGOAConference on O�ce Information Systems�
�����


Cha��� S� Chakravarthy� editor� Data Engineering Bulletin� Special Issue on Active

Databases� volume ��� December �����


Day��� Umeshar Dayal� Active Database Management Systems� Proc� of the Third In�

ternational Conference on Data and Knowledge Engineering� Jerusalem� �����


EKTW��� J� Eder� G� Kappel� A� M� Tjoa� and R�R� Wagner� A Behaviour Design Method�
ology for Form Flow Systems� Technical report� Universit�at Klagenfurt� Institut
f�ur Informatik� �����


EKW��� J� Eder� G� Kappel� and H� Werthner� Evaluation of Scheduling Mechanisms
of a Dynamic Data Model by Simulation� In Prof� of Int� Conference on Mea�

surement and Control� pages ������ �����


GE��� H� Groiss and J� Eder� Active Databases and CIM �in German�� In Tagungs�

band des ADV�Kongresses Informations� und Kommunikationstechnologie f�ur

das neue Europa� pages �������� �����


HEA��� Heikki H�amm�ainen� Eero Eloranta� and Jari Alasuvanto� Distributed Form
Management� ACM Transactions on Information Systems� ����������� January
�����


IA��� ISO and ANSI� Working Draft Database Language SQL �SQL��� Digital Equip�
ment Corp� Maynard� MA� August �����


LCS��� V�Y� Lum� D�M� Choy� and N�C� Shu� OPAS� An O�ce Procedure Automation
System� IBM Systems Journal� ������ �����

��




ML��� Clarence Martens and Frederick H� Lochovsky� OASIS� A Programming
Environment for Implementing Distributed Organizational Support Systems�
SIGOIS Bulletin� ������������ �����


MS��� D� R� McCarthy and S� K� Sarim� Work�ow and Transactions in InConcert�
Data Engineering Bulletin� ������ June �����


TLF��� Michel Tueni� Jianzhong Li� and Pascal Fares� AMS� A Knowledge�based Ap�
proach to Task Representation� Organization and Coordiantion� SIGOIS Bul�

letin� ����������� April �����


Zlo��� M�M� Zloof� O�ce�By�Example� A Business Language that Uni�es Data and
Word Processing and Electronic Mail� IBM Systems Journal� ������ �����

��




