
Adding View Support to
ODMG��� �

M� Dobrovnik� J� Eder

Institut f�ur Informatik
Universit�at Klagenfurt
Universit�atsstr� ��

A���	� Klagenfurt
 Austria
e�mail� fmichi
ederg�i�uni�klu�ac�at

Abstract

A concept to introduce external models in
object oriented databases is presented
 such
that application programs do no longer inter�
face directly the whole conceptual schema

but work against external schemas speci�
cally designed for the applications require�
ments� There are virtually no restrictions
for such applications
 since the interaction
with the database takes place via updateable
views�
The data model is a somewhat simplied

form of ODMG��� ���
 where we incorpo�
rated the additional constructs we need for
the external schema denition� The approach
makes a clear distinction between types and
classes
 and also separates the type and class
hierarchies of the conceptual schema from the
external type and class hierarchies� With
type derivation
 we provide a powerful type
restructuring mechanism
 which allows to de�
ne an external type which is based on a con�
ceptual type� In the derivation process
 one
can omit conceptual components and meth�
ods or redene their types� Additional meth�
ods can be dened for external types as well�

�To appear in� �Advances in Databases and In�

formation Systems� ADBIS ���� � Proc	 of the Intl	

Workshop of the Moscow ACM SIGMOD Chapter

By dening well formed external schemas
via constraints and schema invariants
 we
are able to guarantee unambiguous method
resolution
 steadiness of method resolution
and compliance with the covariant subtyp�
ing principle� The full semantics of the
conceptual schema are preserved� The de�
signer of the external schema can make use
of all information contained in the concep�
tual schema
 in particular conceptual meth�
ods can be called from externally dened
ones�
In this paper
 we concentrate on the area

of type derivation and method resolution�

� Introduction

External models ���� in database systems are
used for a number of di�erent purposes� One
key aspect of such a model is the representa�
tion of a specic view of a user or an ap�
plication on the conceptual schema of the
database whereas the external model has to
provide the mechanisms to map terms and
concepts of the conceptual model to those of
a user or application system� Another im�
portant feature of external models is their
interface character� They are the interface
specication between the conceptual schema
and the external clients� Such external mod�
els can also serve as a security mechanism
by restricting certain operations on the con�
ceptual schema� Yet another aspect is the
possibility to predene queries which can be
used later on�
This external layer results in logical data

independence and reduces the amount of nec�
essary maintenance in case of changes of the
conceptual schema or changes in the appli�
cations� Except for the explicitly desired re�
strictions of the external schema
 the appli�
cation should not be restricted in any further

�

way by the system� So the external schema
should be as tight as needed
 but also as
transparent as permissible and possible for
the application� Updateability of the views
is a crucial point in this context�
In the recent past
 there have been quite

a lot of proposals for view systems in
OODBMS� These approaches di�er with re�
spect to paradigms and aims�
Some of the approaches �	
 �
 �
 ��
 �	� see

views mainly as named query expressions and
are primarily concerned with the integration
of the type of query results into the type lat�
tice of the conceptual schema�
Others treat the derived types as separate

entities ���
 or attach them directly to a root
class �����
In ���
 an approach similar to that pre�

sented here is proposed
 but it is less powerful
and discussed at a rather informal level�
We do not intend to determine the be�

havior �the set of applicable methods� of a
type automatically
 as it is proposed in �	�

we rather want the designer of the external
schema to explicitly specify the desired be�
havioral aspects of the derived types�

��� General Ideas

Our approach is based on the following
points�

� Intensional and extensional informa�
tion are treated di�erently �types and
classes��

� Provide updateable views by object pre�
serving queries�

� No explicit mapping between conceptual
and external object�

� No introduction of new external object
types that are not based on correspond�

ing conceptual types
 as the specic ap�
plication type should not be in the scope
of the view in order to keep good cohe�
sion and low coupling�

� Decouple the external and conceptual
level by introduction of separate type
and class hierarchies for each external
schema�

� Let the view designer specify the desired
behavior of the objects�

� Preserve type incompatibilities of the
conceptual schema �objects that are not
compatible at the conceptual level
 are
also incompatible at the external level��

� Provide di�erent external �possible in�
compatible� perspectives of one concep�
tual type in the external schema�

� Provide well formed and closed concep�
tual and external schemas�

� Incorporation of new behavior into ex�
ternal objects�

� Possibility to make use of existing con�
ceptual methods�

� Generate new conceptual object in�
stances from the external model�

��� First Sketch of the Data

Model

As already outlined in ��
 ��
 the data model
will be closely tied to a schema denition
language
 a procedural language to write the
method bodies and a declarative query lan�
guage� In this paper we will not elaborate
on these languages but concentrate on key
aspects of the type system�

	

A schema consists of type and class deni�
tions� Types represent the intensional infor�
mation and describe the structure of objects
and values together with the behavior of ob�
jects� Types are dened in a covariant inher�
itance lattice for structural �top�down� spec�
ication inheritance� In the future
 we want
to consider multiple inheritance
 but for now
we settle with single inheritance�
Classes are object containers structured in

a inheritance lattice for �bottom�up� instance
inheritance� Whenever an object is member
of a class
 it is also member of all its super�
classes� Classes can contain objects which
are compatible with a ground type
 but there
can be any number of classes for a given ob�
ject type
 including none� An object may be
member in several �unrelated� classes which
are compatible with the objects type�
Methods can be implemented in a Turing

complete programming language which may
also contain expressions of the query lan�
guage� The declarative query language o�ers
generic operations for projection
 selection

extension and set operations on classes� It is
beyond the scope of this paper but presented
in somewhat more detail in ����
An external schema provides the deni�

tion context and name scope for the derived
types and classes� In an external schema we
can construct derived types by a type deriva�
tion operator which allows to dene an ex�
ternal type based on a conceptual type� In
the derivation
 we can apply type restric�
tion
 where we can virtually remove proper�
ties �components and methods� from the type
denition
 and type extension where we can
add new methods to a type�
A derived type that is as well a projection

as an extension of a conceptual type
 can�t be
inserted into the conceptual type hierarchy
in a straightforward manner
 without either
loosing the covariant subtyping property or

coming up with a form of cumbersome up�
ward schema inheritance�
So we provide for a di�erent type lattice

for each external schema� Also
 a separate
external class lattice is constructed out of
derived classes �views�� Views are based on
the conceptual classes and can be built us�
ing the generic query operations mentioned
above� To provide updateable views
 the
queries must be object preserving� As al�
ready mentioned
 classes are not discussed
in detail in this paper
 where we will con�
centrate on the types and type derivation
and on properties of conceptual and external
schemas�

� Conceptual Schema

Our denition of types and schemas does not
take into account the full richness of ODMG�s
ODL
 because for the time being
 we st�
rived for a more formal discussion
 which
is founded on the essential aspects of the
ODMG data model� So
 let us dene a
schema�

De�nition � �Conceptual Schema�
A conceptual schema S � schema�O�A�C�
consists of a set of named object types O� a
set of anonymous non�object types A� and a
set of class de�nitions C�

Types are used to describe the structure of
objects and values� They dene the compo�
nents of objects and the methods which can
be applied to them� We provide several pre�
dened types �e�g� int
 bool
 string
 obj
 � � � �
which we call atomic types� Other types can
be constructed by application of type con�
struction operators �complex types��

De�nition � �Types� Can be de�ned as
follows

�

� Atomic types are types�

� If T is a type� then set�T � is a set type�
the domain of which is the sets of values
of type T �

� If T�� � � � � Tn are types� then tuple�c��
� � � �cn� is a tuple type� the domain of
which is the tuples of n components�
where each component ci � li�Ti has a
name name�ci� � li and has a domain
of Ti�

� If N is a Name� S is the name of an ob�
ject type or type obj� C is a set of com�
ponents �name�type pairs�� M is a set
of method signatures mi�pi�� � � � � pini ��Ti
and wfo�S�C�M� holds� then TO �
object�N�S�C�M� is an object type� S
may be obj� which means that TO in�
herits directly from the root object type�
N � name�TO� is the name of the newly
created object type TO� S � super�TO�
is the supertype from which TO inherits�
Please note� that in the sequel we will not
explicitly distinguish between the name
and the de�nition of a type� except where
necessary�

The function wfo�� �well formed object� in
the object type denition asserts that only
valid object types can be in the schema� It
will be dened later on�

De�nition � �Signature� A signature
s�l��T� � � � � � ln�Tn��T is the description of
the interface of a method named s� which is
also the name of the signature� The method
takes n input parameters and has a result type
of T �

Two signatures s� t are covariantly signa�
ture compatible if they have the same name

have the same arity �number of parameters�

all their parameters have the same name
 the
type of each parameter of s is a subtype of
the type of the corresponding parameter of t

and the result type of s also is a subtype of
the result type of t� formally�

De�nition � �Covariant Signature�
covar�s� t��

s � fs�ls��Ts�� � � � � lsn�Tsn��Ts �
t � ft�lt��Tt�� � � � � ltm�Ttm��Tt �
fs � ft � n � m�
��lsi�Tsi� lti�Tti� lsi � lti � Tsi � Tti �

Ts � Tt

The following theorem states that the co�
var predicate is transitive which follows di�
rectly from the denition�

Theorem � �Transitivity of Covariance�
covar�S� T � � covar�T�U��

covar�S�U��

We dene the subtype relationship in the
usual way�

De�nition 	 �Subtype Relationship�
Let S� T be Types then S is a subtype of T
�S � T � and T is a supertype of S �T � S�
if�

� S � T � or

� S � set�SE�� T � set�TE�� SE � TE� or

� S � tuple�lS��TS� � � � � � lSn�TSn��

T � tuple�lT��TT�� � � � � lTn�TTm��

n 	 m���i � �� � � � �m�TSi � TTi�

lSi � lTi� or

�
S�jS � object�N�S�� C�M� � S� � T

�

Since all object types inherit either directly
or transitively from type obj
 there is a sin�
gle object type hierarchy in the conceptual
schema�
Let S � object�N�T�C�M� where

wfo�T�C�M� holds
 then meth�S� and
meth�T � are the set of method signatures
which are dened for S and T respectively�
The dened method set of an object type
consists of the directly dened method set
and of the methods which are inherited from
the supertype� The set of inherited meth�
ods of S is noted as imeth�S� � fmi �
meth�T �jname�mi� �� names�M�g� The set
of dened methods for an object type is de�
ned as meth�S� � M � imeth�S�� M is the
set of explicit methods of S
 also denoted by
emeth�S��
Similar denitions apply for the compo�

nents� comp�S� and comp�C� are the sets of
dened components for S and T respectively�
The set of inherited components of S is noted
as icomp�S� � fci � comp�T �jname�ci� ��
names�C�g� The set of dened components
for an object type is dened as comp�S� �
C � icomp�S�� C is the set of explicit com�
ponents of S
 also denoted by ecomp�S��
For S � object�N�T�C�M� to be a valid

object type denition
 wfo�T�C�M� must
hold� We require ��� that each component
in C that has the same name as one of the
components of the supertype T has a type
which is a subtype of the type of the inher�
ited component �redened components types
must be subtypes of the original components
types�� The second requirement is �	� that
that the method redenitions in M are co�
variantly signature compatible with the cor�
responding methods of T �

De�nition
 �Well Formed Object�
wfo�T�C�M��

	� ��cT � comp�T ����cS � C�

name�cS� � name�cT � � TS � TT �

� ��mT � meth�T ����mS �M�

name�mS� � name�mT � �

covar�mS�mT �

If all object denitions in a schema are well
formed then the schema obeys the covariant
subtyping principle�
Let us note
 that the method object gen�

erating method new�� is treated somewhat
special� The execution of T�new�� on a type
T results in the creation of a new object with
type T� The actual parameters supplied in
the call are used to initialize the new object
properly� Since it is permitted to dene new
components on an object type
 it should be
possible to initialize those new components�
This implies that the length of the parame�
ter list of new�� is variable� The denition of
covariance required the length of a methods
parameter list to remain constant in the in�
heritance hierarchy� To resolve this con�ict

we allow new�� to have a variable parameter
list
 thereby exempting it from the covariance
rule� This poses no problem
 since there is
another aspect in which new�� di�ers from
the other methods dened for an object type�
new�� is a method executed on a type
 rather
than on an object� It is not allowed to send
new�� to an object� When one writes down a
call of an ordinary method
 the most specic
type of the object it will be executed on is not
known� At each call of new��
 one exactly
knows the type on which it is applied
 so the
parameters can be statically type checked�
For type equivalence and type compatibil�

ity
 we use the same rules as in ODMG� Two
types S� T are equivalent
 i� S is a subtype of
T and vice versa� More explicitly
 two types
are equivalent
 if they

� are named types �predened types or ob�
ject types� and have the same name
 or

�

� they are anonymous types �set or tuple
types� and if their structure is identical�
For set types
 the element type must be
identical
 and for record types
 compo�
nents must be identical in numer
 name
and type�

So basically
 we use name equivalence for
object types and structural equivalence for
anonymous types� We do not use structural
object equivalence
 since we do not want to
introduce additional type equivalences in the
external schema which do not have any cor�
respondence in the conceptual schema�
Such an unwanted equivalence would arise

externally
 if two external types have the
same externally visible structure
 but could
be based on incompatible conceptual types�
As an example
 let Song and Book be two

conceptual types with di�erent structure and
let us dene two external types ESong and
EBook via a projection on just the compo�
nents Title and Authors� The application
systems perception of the external types is
just their external structure
 there are no vis�
ible connections to the conceptual schema�
For the application it is not possible to make
a decision
 whether the two types are equiva�
lent
 based on the externally available struc�
tural type information� Using name equiva�
lence
 we address and avoid this problem�
An assignment a��b is dened
 if the type

of a is a supertype of the type of the expres�
sion b� The type of an actual parameter must
be a subtype of the formal parameter it sub�
stitutes�
The following example is a small and

simple part of the conceptual schema of a
database� The conceptual schema consists
of three type denitions �interfaces�
 where
Advisor and Student inherit from Person�

An Example

conceptual schema university �

interface Person �

attribute string name�

attribute date birthdate�

int age���

boolean older�p�Person��

	

interface Advisor�Person �

attribute set�Student�

candidates�

void add
candidate�s�Student��

Advisor new�aname�string�

cands�set�Student���

	

interface Student�Person �

attribute Advisor the
advisor�

attribute date advised
since�

	

	

int Person��age�� �

return years�birthdate�today����

	

boolean Person��older�p�Person� �

return self�age�� � p�age���

	

Advisor��new�aname�string�

cands�set�Student�� �

name�aname� candidates�cands�

	

void Advisor��

add
candidate�s�Student�

�

candidates��s�

s�advised
since�today�

s�the
advisor�self�

	

�

The conceptual schema presented here is
not complete
 since no class denitions are
given� As we already mentioned
 this paper
concentrates on types
 we do not elaborate
on classes here� Some preliminary ideas can
be found in ��
 �
 ���

� External Schema

An external schema dened on top of a con�
ceptual schema consists of external type and
view denitions�

De�nition � �External Schema� An ex�
ternal schema E � eschema�S�O�A� V � is
based on one conceptual schema S and con�
sists of a set of derived object type de�nitions
O� a set of anonymous non�object type de�ni�
tions A� and a set of derived class de�nitions
�views� V �

As we did for the conceptual schema
 we
will concentrate on the area of types
 in the
external schema
 in particular on type deriva�
tion� In an external schema we construct de�
rived types by the type derivation operator
derive���
An external derived type is based on ex�

actly one conceptual object type� The ex�
ternal appearance of the object �the exter�
nal type� can be changed from the conceptual
denition�

� Properties �components and methods� of
the conceptual type can be virtually re�
moved from the external type denition�
Since the external type is conned in
narrower bounds
 we call this aspect type
restriction�

� Via type extension is also possible to add
new methods �but no new components�

to an external type� So arbitrarily com�
plex additions to the behavior of an ob�
ject can be constructed�

� It is allowed to change the denition of
the types of components and method sig�
natures �type rede�nition��

One of the basic ideas of our concept is
the separation of the type and class hierar�
chy of the conceptual schema from the type
and class hierarchies of the external schema�
Therefore
 type derivation must also take into
account the placement of the external types
in the external type hierarchies�
Now let us dene the derive�� operator�

De�nition � �Derived Type� With

� N is a Name�

� TS is an optional external type� called the
external supertype of TE

� TB is a conceptual object type on which
TE is based� it is called the base type of
TE�

� CP is a set of component de�nitions�
called the projected components of TE�

� MP is a set of method signatures� it
is called the method projection set and
states how the signature of the methods
of the base type should be interpreted in
the external schema�

� M is the set of direct methods of TE

then TE � derive�N� �TS�� TB� CP �MP �M�
is
a derived type� if wfexo�TS� TB� CP �MP �M�
holds� For convenience� we further de�ne
pmeth�TE� � MP � emeth�TE� � M �
pcomp�TE� � CP � name�TE� � N �
base�TE� � TB� super�TE� � TS�

�

The well formed external object predicate
wfexo�� ensures the the validity of the deriva�
tion operation� We will dene it later on�
Note
 that the external supertype TS is op�
tional� If no supertype is given
 then the
new type TE will have no external supertype�
By allowing this omission
 we facilitate the
denition of multiple unrelated type hierar�
chies in a single external schema� It is also
allowed to derive several di�erent external
types from one conceptual type� By com�
bining this multiple external denitions with
the unrelated type hierarchies
 the view de�
signer can restrict type compatibility in the
external schema� But there is no way to
loosen up the type incompatibilities of the
conceptual schema� Conceptually incompat�
ible types cannot be made compatible in the
external schema�
Before we dene the wfexo�� �well formed

external object� predicate
 we need some
auxiliary denitions�
The subtype relationship in the external

schema is dened similar to the conceptual
subtype relationship� the object�� construc�
tor is substituted by the type derivation
derive���

De�nition �External Subtyping�
Let S� T be external types� then S is a sub�
type of T �S � T � and T is a supertype of S
�T � S� if�

� S � T � or

� S � set�SE�� T � set�TE�� SE � TE� or

� S � tuple�lS��TS�� � � � � lSn�TSn��

T � tuple�lT��TT�� � � � � lTn�TTm��

n 	 m���i � �� � � � �m�TSi � TTi�

lSi � lTi� or

�
S�jS � derive�N�S�� TB� CP �MP �M� �
S� � T

Similar to a conceptual object type de�
nition
 we compute the dened components
and methods of an external type�

De�nition �� �Derived Properties� Let
TE � derive�N�TS� TB� CP �MP �M� where
wfexo�TS� TB� CP �MP �M� holds� then the set
of de�ned methods for the external type
meth�TE� is de�ned as�
meth�TE� � emeth�TE� � pmeth�TE��
fm � meth�TS�jname�m� ��

names�femeth�TE� � pmeth�TE�g�g
The set of components comp�TE� of the ex�

ternal type is�

comp�TE� � pcomp�TE��
fc � comp�TS�jname�c� ��

names�pcomp�TE��g

An external or conceptual signature s is
externally signature compatible with an ex�
ternal signature t if they have the same name

have the same arity �number of parameters�
and all types of t are subtypes or derived from
the types of the corresponding parameter of
s� This external covariance is also dened
for comparing method signatures from con�
ceptual and external schema�

De�nition �� �External Covariance�
excovar�s� t� ��

s � fs�ls��Ts�� � � � � lsn�Tsn��Ts �
t � ft�lt��Tt�� � � � � ltm�Ttm��Tt �
fs � ft � n � m�
�Ts � Tt Ts � base�Tt���
��lsi�Tsi� lti�Tti� lsi � lti �

�Tsi � Tti Tsi � base�Tti��

The motivation for this denition is that
the �real type� of an object with external
type T is a subtype of base�T �
 i�e� it holds

that each instance of T is also an instance of
base�T ��

�

The excovar�� predicate is dened for sig�
natures of methods from external and con�
ceptual types� Theorem 	 follows immedi�
ately from the denitions� Furthermore
 it is
easy to show
 that the covar predicate is also
transitive
 which is stated in the theorem ��

Theorem � covar�s� t�� excovar�s� t��

Theorem � �Transitivity of excovar���
excovar�s� t� � excovar�t� u��

excovar�s� u��

Now we dene a well formed object deriva�
tion�

We require that the set of projected com�
ponent names is a subset of the names of the
components of the conceptual base type����

The type of a component can be rede�
ned to a derived type based on the origi�
nal type
 but subtype compatibility with the
corresponding components of the external su�
pertype must still hold �	��
The set of projected method names must

be a subset of the names of the dened meth�
ods of the conceptual base type ����

Methods from the projection list can�t be
redened ����

Methods that are explicitly dened for the
external supertype or that are projected from
the conceptual type
 must be covariantly sig�
nature compatible with the corresponding
methods in the external supertype ����

Methods that are projected from the con�
ceptual base type
 must be externally co�
variant signature compatible with the corre�
sponding methods in the base type ����

If an external supertype was dened in the
type derivation
 then the base type of the
newly dened external type must be a sub�
type of the base type of the external super�
type ����

De�nition �� �Well Formed Object�
For TE � derive�N� �TS�� TB� CP �MP �M�
to be a valid derived type de�nition�
wfexo�TS� TB� CP �MP �M� must hold�
wfexo�TS� TB� CP �MP �M��
�

	� names�CP � � names�comp�TB��

� ��c � ecomp�TE��� c � lc�Tc

��d � comp�TB��� d � ld�Td� lc � ld

� Td � base�Tc�

���le�Te � comp�TS�� � le � lc

� Tc � Te

�� names�MP � � names�meth�TB��

� names�MP � � names�M� � �

�� ��m �M �MP ��

��mS � meth�TS���

name�m� � name�mS�

� covar�m�mS�

�� ��m �MP �

��m � meth�TB���

name�m� � name�m�

� excovar�m�m�

�� if
TS � TB � base�TS�

Requirement ��� in the well formed ob�
ject denition asserts
 that when there is an
external subtype relationship between two
types
 then the base types of the external
types are in a conceptual subtype relation�
ship� So
 there are no possibilities to exter�
nally reverse a conceptually dened inheri�
tance relationship� This property is formu�
lated in the following theorem�

�

Theorem � �Subtype Morphism� Let
S� T be external types� then
S � T � base�S� � base�T ��

An important consequence of this theorem
is that all assignments and all substitutions
of formal parameters in the methods of the
external schema and in the application pro�
grams do not violate the type compatibility
rules of the conceptual schema�
The following theorem formulates
 that in

a path of the external type hierarchy all
methods with the same name are external
covariant compatible
 independent
 whether
they are projected from the conceptual model
or newly dened in the external model� The
theorem follows from the denitions and the
transitivity of covar���

Theorem 	 Let S� T be external types� then
S � T�mS � meth�S��mT � meth�T ��

name�mS� � name�mT ��
excovar�mS�mT ��
covar�mS�mT ��

External schemas are imported into ap�
plication programs in a similar way as e�g
schemas can be imported in O�� The applica�
tion programmer can use only the types and
methods of the external schema but not the
types and classes of the conceptual schema�
The type compatibility for application pro�

grams is dened in the usual way� An assign�
ment a �� b is valid
 if the �external� type of
a is a supertype of the �external� type of b �b
can be a variable or an expression�� In anal�
ogy
 for passing parameters in method calls

the type of the formal parameter is a super�
type of the type of an actual parameter�
For new dened methods in external types

�m � emeth�T �� method bodies have to be
dened� These methods can use external
as well as conceptual types and their meth�
ods� Thus
 programming external methods

can be seen as programming of the inter�
face between application programs and the
database� As types in the conceptual and the
external schemamay have the same name
 we
establish the rule that external goes before
conceptual� If C is both the name of a con�
ceptual type and of an external type
 then C
refers to the external type and conceptual�C�
to the type C in the conceptual schema� The
call of methods of conceptual types can be
performed in a similar way using the � no�
tation� For external methods we require the
following type compatibility rule� Let Ta be
the type of variable a
 and let Tb be the type
of the expression b� An assignment a �� b is
valid
 if base�Tb� � base�Ta�� Substitution of
parameters is treated in analogy� This means
that the type compatibility of the concep�
tual schema is relevant for the programmer of
methods in the external schemas� So restric�
tions dened for application programs do not
apply for methods in the external schemas�
With this design choice we provide great

power and �exibility for external schemas�
For example it is possible to dene a method
new�� for the external schema
 calling the
conceptual method new���

Method Resolution We have several pos�
sible ways to dene method resolution in the
external schema� Here
 we will present just
one of them� Let us rst describe how a
method is found in the conceptual schema�
If a conceptual method is explicitly dened

for a type
 then its origin is the type
 else
the origin is the origin of the method of the
supertype�

De�nition �� �Conceptual Resolution�
Let T be a valid object type de�nition and
m � meth�T � be a method de�ned for T � then
origin�m�T � � T� if m � emeth�T �

��

origin�m� super�T ��� else�

One approach to dene external method
resolution for a method m
 is to stay in
the external schema
 and only to extend the
search to the conceptual schema
 whenever
an explicit reference to a conceptual method
is made
 i�e� when the method is included in
the projection list�

�� If m is dened directly in E
 then E is
the origin of m�

	� If m is in the projection list of E
 then
the origin of m is the conceptual origin
of m with the base type of the object as
a starting point�

�� If m is neither in emeth�E�
 nor in
pmeth�E�
 then the origin is the origin
of the method in the external supertype�

De�nition �� �External Resolution�
Let derive�E�S�B�CP �MP �M� be a valid ob�
ject type de�nition� and m � meth�E� be a
method de�ned for E� then
exorigin�m�E� �

E� if m � emeth�E��
origin�m� base�E��� if m � pmeth�E�
exorigin�m�S�� else�

Schema Invariants The possibility to de�
rive several external types from one concep�
tual type poses some problems with respect
to proper method resolution� Let two exter�
nal types T and T � be derived from the same
base type B
 and the external type S be a
common supertype of T and T �� Then a vari�
able o of type S can also contain references
to objects whose external type is T or T ��
When one sends a message m to o
 it is not
clear which method body has to be executed�
In order to achieve an unambiguous

method resolution and method�steadiness

we dene the following schema invariants�

�� If the external type S is a common su�
pertype of T and T � that are derived
from the same conceptual type
 then all
the methods which are dened for S
must have an unambiguous origin with
respect to T and T ��

��T� T ���base�T � � base�T ��

��S�T � S� T � � �S�

��m � names�meth�S�� �

exorigin�m�T � � exorigin�m�T ��

	� If the external type S is a common su�
pertype of T and S�
 where T is derived
from a subtype of the base type of S�

then there must exist a subtype T � of S�

which was derived from the same type
as T �

��S� T� S ��� T � S � S� � S �

base�T � � base�S���

�T ��� T � � S��base�T � � base�T ��

As one can see immediately
 schema invari�
ant � holds for all external schemas
 where
there are no two di�erent external types that
are based on the same conceptual type� We
assume that this class of schemas will be a
fairly large one�
Schema invariant 	 holds
 if all or none

of the subtypes of a conceptual type get
mapped into corresponding derived subtypes
of its external types�
In the sequel
 all schemas adhere to the

schema invariants�
Now we can draw some conclusions from

schema invariant � and summarize them in
the following theorem� The theorem could
immediatly be used to derive algorithms for
a stricter version of the schema invariants�
Again
 let two external types T and T � be

derived from the same base type B
 and the
external type S be a common supertype of T

��

and T �� Then a variable o of type S can also
contain references to objects whose external
type is T or T �� We distinguish between two
di�erent cases according to the origin of m in
T �

�� If exorigin�m�T � is in the conceptual
schema �so there was an external super�
type in which m was projected�
 then
also exorigin�m�T �� must be in the con�
ceptual schema according to schema in�
variant �� So there must be a super�
type D of T �
 where m was projected
in D
 and in no type D� between T � and
D
 the method m was redened or pro�
jected� D is the lowest supertype of T �

where m was projected
 and no rede�
nitions occur below D� From the def�
inition of exorigin�� we see
 that then
exorigin�m�T �� � exorigin�m�D� �
origin�m�base�D��� From schema in�
variant � follows origin�m�base�D�� �
exorigin�m�T ��

	� If exorigin�m�T � � D is in the external
schema �so there is an external super�
type D of T in which m was redened�

then also exorigin�m�T �� � D must hold
according to schema invariant �� So
 D
must also be a supertype of T �
 and in no
type D� between T � and D
 the method
m was redened or projected�

Theorem
 �Common Based Types�
��T� T �� with base�T � � base�T �� � B�

��S� with S � T� S � T �� T �� T �

��m � names�meth�S�� �

	� exorigin�m�T � in the conceptual
schema �

D�D � T � �

m � names�pmeth�D���

�D�� T � � D� � D �

m �� emeth�D���

m �� pmeth�D���

exorigin�m�T �� �

origin�m� base�D�� �

exorigin�m�T ��

� exorigin�m�T � in the external schema
�

D�D � T ��

m � names�emeth�D���

D � T ��

�D�� T � � D� � D �

m �� emeth�D���

m �� pmeth�D��

The following special cases of the theorem
are worth noting�

�� If method m is projected immediately
in T
 so D � T then T � � T or m �
names�pmeth�T ����

	� If method m is explicitly dened imme�
diately in T
 so again
 D � T
 then
T � � T must hold� Also
 m must not
be redened or projected in T ��

Now we dene the method resolution for
the following situation� Let o be a variable
of type E
 and o contains an object of the
conceptual type C� This is only permitted
by the type compatibility rule
 if C is a sub�
type of base�E�� We now resolve the method
invocation o�m with the function fetch� The
result of fetch�m�C�E� is a type
 where m is
directly dened and this method will be exe�
cuted� We intend to nd the most special ap�
plicable method
 therefore the searches start
at an external type T under E
 which was
derived from the most special type between
C and base�E��

�	

De�nition �	 �Fetch� Let D�T be such
that C � D � base�E� and base�T � � D
and �C � D� � D�D� �� D � �
T � with
base�T �� � D�� T � � E�
fetch�m�C�E� � origin�m�C�� if
exorigin�m�T � in the conceptual schema
exorigin�m�T �� else�

In the denition of fetch
 T is the external
type under E which was derived from the
most special conceptual type above C� For
convenience we provide the function pfetch
which is dened in a more procedural way
and can be implemented in a straight for�
ward manner� It is easy to see
 that pfetch
and fetch are equivalent�

De�nition �
 �Pfetch�
m � names�meth�E��� C � base�E��
fetch�m�C�E� �

fetch	�m�C�C�E�
fetch	�m�C�D�E� �

origin�m�C�� if
T � E with
base�T � � D�m � pmeth�T �

T� if
T � E with
base�T � � D�
m � names�emeth�T ��

fetch	�m�C� super�D�� E�� if
D � base�E�

fetch	�m�C� super�D�� super�E���else�

Furthermore
 we dene the origin of meth�
ods for the � notation� The expression
o�m�C has the following semantics� Let E
be the type of the variable o
 o�m�T is well
dened
 i� T and E are both external or con�
ceptual types and E � T
 or T is a con�
ceptual type and E is an external type and
base�E� � T �

De�nition �� �Fetch at a type�
fetch�m�� C�E� � origin�m�C��
Let H be an external type�

fetch�m�H�C�E� �
exorigin�m�H��

if exorigin�m�H� is an external type�
origin�m�C�� otherwise�

Let H be a conceptual type�
fetch�m�H�C�E� � origin�m�H��

Theorem � Fetch is well de�ned�

Proof� Fetch is well dened means� a�
�m�C�E
 with m � meth�E�
 and C �
base�E� � fetch�m�C�E� is dened
 and b�
it is unique�
For a� it is easy to see that there is a

nonempty sequence of Di with C � D� �
Di � Dn � base�E�
 and Ti � E
 such that
base�Ti� � Di
 and for all D� � Di � �
T

�

with base�T �� � D�� T � � E�
For b� let D be as in a�� Let T� T � � E

with base�T � � base�T �� � D� Schema
invariant � requires that exorigin�m�T � �
exorigin�m�T ��
 therefore fetch�m�C�E� is
unique independently which T is chosen� �

Theorem � m � emeth�fetch�m�C�E���

This theorem states that the resolved
method is directly dened in fetch�m�C�E��
It follows immediately from the denition of
fetch� origin� and exorigin�
In the following theoremwe claim
 that the

methodm in fetch�m�C�E� is covariant com�
patible with the method m of E
 irrespective
whether it is a method from a conceptual
type or from an external type�

Theorem �Covariant Resolution�
�E���m � meth�E��

�C � base�E��
�m� � meth�fetch�m�C�E���
name�m� � name�m��
� excovar�m��m�

Proof�

��

�� fetch�m�C�E� is an external type T �
If T � E
 then the theorem follows
from Theorem �
 or E � T
 then
exorigin�m�E� � T �

	� fetch�m�C�E� is a conceptual type
 say
A
 and m � emeth�A��

�a� If base�E� � A
 then the theorem
follows from Denition �	���

�b� With B � base�E�
 suppose A �
B� Let us further denote the
method denitions mE � meth�E�

mB � meth�B�
 and mA �
meth�A�
 where all the methods mi

have the same name� With Theo�
rem ��� we know that
D and T
with base�T � � D
 C � D
 with
mT � pmeth�T �
 mD � meth�D�

where excovar�mD�mT ��

Now we have to show that
excovar�mA�mE�� Since A � B

covar�mA�mB� holds�

We can distinguish three cases
 de�
pending on the position of T and A
in relation to E and D respectively�

i� Let E � T
 then E inher�
its mT from T �mE � mT ��
Also
 B � D according to
the subtype morphism� From
covar�mA�mB� and the transi�
tivity of covar��
 we see that
covar�mA�mD�� Now with
excovar�mD�mT � we conclude
that excovar�mA�mT �� Since
mE � mT
 the theorem fol�
lows�

ii� Let T � E
 and A �
D� Then covar�mA�mD� and
excovar�mT �mE� holds� Now

with excovar�mD�mT �
 the
theorem follows�

iii� Let T � E
 and A � D�
Then D inherits mA from A
�mD � mA� and trivially

excovar�mT �mE� holds� From
excovar�mD�mT � we conclude
that excovar�mD�mE�� Since
mD � mA
 the theorem fol�
lows� �

Theorem �� �Method Steadiness�
��E�E��� E � E��

��C � base�E���

�m � meth�E��

� fetch�m�C�E� � fetch�m�C�E��

Proof� Let m�C�E and E� be as above�
Suppose that fetch�m�C�E� � A� Let D

and T be as in the denition of fetch� Since
D � E � E�
 fetch�m�C�E�� � A�

Now suppose fetch�m�C�E�� � A� Let
D� and T � be as in the denition of fetch�
Since C � base�E�
 D� � base�E�� With
schema invariant 	 we know
T � E with
base�T � � D
 and the theorem follows from
schema invariant �� �

The theorem has an important conse�
quence which we call method�steadiness
 i�e�
if we assign an object to a variable of a super�
type
 the executed methods remain the same�
To give an example�

Let e be a variable of external type E and
e� a variable with type E� which is a super�
type of E� Then for e�m and e��m the same
method body is executed
 given they contain
the same object� Therefore
 an assignment
e� �� e does not in�uence which method bod�
ies are processed� Due to the type compat�
ibility requirement this holds for all assign�
ments which can be made on such variables
in application programs�

However
 for the methods dened in
the external models
 method�steadiness can

��

only be guaranteed
 if the programmer re�
mains within the strict type compatibility�
The looser type compatibility requirement
for these methods may lead to method�
unsteadiness
 and the view programmer has
to take care of the e�ects� Nevertheless
 this
looser type compatibility requirement is well
founded and leads to greater �exibility for the
denition of views�

The following example illustrates the prin�
ciples and constructs presented above�

An Example� Part � We derive three ex�
ternal types in the external schema E de�
rived from the conceptual university schema�
EPerson is derived from Person
 EAdvisor
is derived from Advisor and inherits from
EPerson and AnonStudent is derived from
Student� Note
 that there is no external in�
heritance from EPerson to AnonStudent
 the
conceptual inheritance relationship is not vis�
ible in the external schema� From Person

only the name is in the projection list
 all
other properties are hidden from the ap�
plications using the external schema� In
type EAdvisor
 two additional methods are
dened
 the new�� method allows to cre�
ate new conceptual objects at the exter�
nal level� Derived type AnonStudent does
not have any attributes dened for its base
type Student
 but redenes the concep�
tual method older
 which Student inherited
from Person� In the redenition
 the param�
eters type is redened� The external method
set advisor�� of AnonStudent allows one
to dene the advisor for an anonymous stu�
dent� In the conceptual schema
 we had no
corresponding method
 but there we dened
Advisor��add candidate��� This method
is called in AnonStudent��set advisor��

via the � notation�

In the example
 we dened an external

inheritance hierarchy
 which was di�erent
from the conceptual one� We left out some
attributes and methods of the conceptual
schema and dened new external methods

which make use of conceptual methods�

external schema E

of

university �

derived interface EPerson

of

Person �

project �

attribute string name�

	

	

derived interface EAdvisor�EPerson

of

Advisor �

project �

attribute date birthdate�

	

int more
than�e�EAdvisor��

EAdvisor new�aname�string��

	

derived interface AnonStudent

of

Student �

project �

boolean older�s�AnonStudent��

	

void set
advisor�a�EAdvisor��

	

	

int EAdvisor��more
than�e�EAdvisor� �

return card�candidates� �

card�e�candidates��

	

��

EAdvisor��new�aname�string� �

return new�aname� �	���

	

void AnonStudent��

set
advisor�a�EAdvisor� �

a�add
candidate�self���

	

� Conclusion

We presented a concept to integrate external
schemas in object oriented databases� This
additional level of abstraction o�ers logical
data independence and a greeter degree of
modularity in information systems�

A clean separation of the conceptual
schema and the external schemas was
achieved by type derivation in combination
with updateable views�
The covariant subtyping of the concep�

tual schema is fully preserved in the exter�
nal schema� The external schema adheres to
the principal type compatibility that the con�
ceptual schema denes� It is not possible to
make conceptual incompatible things exter�
nally compatible� On the other hand
 the ex�
ternal level can introduce additional compati�
bility constraints
 making conceptually com�
patible things incompatible in the external
context�

Through the introduction of schema in�
variants
 we were able to provide covariant
method resolution and method steadiness�
Since we allow to dene methods in the

external schema
 which can call other exter�
nal as well as conceptual methods
 the de�
signer of the external model can implement
methods which overlap the schemas� Such
inter schema methods can be used to im�
plement additional powerful mappings and

thereby provide better schema derivation and
integration facilities�
In particular
 object creation at an ex�

ternal level is perfectly feasible� The ex�
ternal schema just has to provide a new��
method
 which takes care of the necessary
mapping �calls the corresponding conceptual
new�� method� and provides default values
for components that are not visible to the
application program�
A crucial point of a schema is that it is

closed
 which means for types
 that all types
that are needed in the schema are also dened
there� As an aid for the schema designer
 we
will provide a type covering operator which
will dene a derived type for an external type
similar as the derive�� operator does� But
the covering type will have the same name
as the covered type� A covered conceptual
type will automatically be substituted by the
external covering type in the whole schema at
all places where no explicit type substitution
occurs�
Presently we excluded multiple inheritance

on the conceptual level as well as on the ex�
ternal level from our considerations for the
sake of simplicity� But since multiple inheri�
tance is supported in ODMG and also widely
o�ered by almost all of the current object sys�
tems
 we are planning to incorporate it into
the model� Since renaming is an adequately
con�ict resolution strategy
 we will use it
 and
as a byproduct we will be able to do general
renaming between the conceptual and exter�
nal schema�
So far
 we concentrated on the intensional

mechanisms for type derivation� Further on

we will investigate class construction and
derivation concepts� A suitable approach for
this seems to be to dene a derived class
�view� by means of a query over conceptual
classes �extents�� Besides updateable views
via object preserving queries
 we will provide

��

non�updateable views via object generating
and value generating queries� Restructuring
mechanisms for the class hierarchy will be in�
corporated in the approach along with cor�
responding schema invariants to ensure well
formed external schemas�

References

��� R� Agrawal and L� DeMichiel� Type
derivation using the projection opera�
tion� Extended Version of �	�
 by per�
sonal communication with R� Agrawal

�����

�	� R� Agrawal and L�G� DeMichiel� Type
derivation using the projection opera�
tion� In M� Jarke
 J� Bubenko
 and
K� Je�ery
 editors
 Advances in Database
Technology � EDBT��
 pages �����
Springer
 �����

��� A� Borgida� Modeling class hierarchies
with contradictions� Technical report

Rutgers University
 New Brunswick

�����

��� R� Cattell
 T� Atwood
 J� Duhl
 G� Fer�
ran
 M� Loomis
 and D� Wade� The
Object Database Standard ODMG����
Morgan�Kaufmann
 �����

��� M� Dobrovnik and J� Eder� A concept
of type derivation for object oriented
database systems� In L� G�un
 R� Onur�
val
 and E� Gelenbe
 editors
 �th Intl�
Symposium on Computer and Informa�
tion Sciences �ISCIS VIII�
 �����

��� M� Dobrovnik and J� Eder� View
concepts for object�oriented databases�
In Proc� Intl� Symposium on System
Sciences� Informatics and Cybernetics�
Baden�Baden
 �����

��� M� Dobrovnik
 K��H� Eder
 L� B�osz�or
m�en yi
 and J� Eder� An updateable view
system for oodbms� Technical report

Institut f�ur Informatik
 Universit�at Kla�
genfurt
 May �����

��� C� S� dos Santos
 S� Abiteboul
 and
C� Delobel� Virtual schemas and bases�
In M� Jarke
 J� Bubenko
 and K� Je�ery

editors
 Advances in Database Technol�
ogy � EDBT��
 pages �����
 Cam�
bridge
 ����� Springer�

��� S� Heiler and S� Zdonik� Object views�
Extending the vision� In �th Interna�
tional Conference on Data Engineering

pages �����
 �����

���� W� Kim� A model of queries in ob�
ject oriented databases� In Proc� of 	�th
VLDB Conference
 pages �	����	
 Am�
sterdam
 August �����

���� E� Rundensteiner� Multiview� A
methodology for supporting multiple
views in object�oriented databases� In
Proc� 	�th VLDB Conference� Vancou�
ver
 ���	�

��	� M� Scholl
 C� Laasch
 C� Rich
 H��J�
Schek
 and M� Tresch� The cocoon ob�
ject model� Technical Report TR ��	

Institut f�ur Informatik
 ETH Z�urich

���	�

���� D� Tsichritzis and A� Klug� The
ANSI�X��SPARC DBMS framework�
Report of the Study Group on Database
Management Systems
 Information Sys�
tems �
 �����

��

