
AUGUSTA

A reuse-oriented Software Engineering Environment

for the Development of Ada-Applications

Elke Hochmüller, Roland T. Mittermeir
Institut für Informatik
Universität Klagenfurt

Universitätsstr. 65
A-9020 Klagenfurt

AUSTRIA
e-mail: elke@ifi.uni-klu.ac.at

Abstract

Increasingly complex demands on functionality and quality of software systems
along with the lack of qualified staff require a fundamental change in the software
development process. A shift from personnel intensive individual software
development to capital intensive industrial software production must take place.
This could only be achieved by utilizing tools supporting the development process
and by planned design and production of generally applicable and reusable
components.

The AUGUSTA system (Ada Units Generalization Utility and Systems Tailoring
Assistant) concentrates on the aspect of reusability. It allows the instantiation of
programs from generic components and the compostion of complete application
systems based on an equally generic application structure. Furthermore, the
AUGUSTA approach postulates a special process model including a particular
concept for user roles according to their experience and tasks in the software
construction process.

1. Motivation

The way software is developed has undergone substantial changes within the

last decades. Increased size and complexity of software needed and the long

lifetime of software systems, with myrads of modifications made to such large

systems led to systems which are almost impossible to maintain on the level of

undocumented code only. New programming techniques (e.g. stuctured program-

ming, module concept, information hiding), new design methods (e.g. Jackson

System Development, Structured Design), new management methods (e.g.

partitioning the development process in life cycle phases), and tools came into use

- the integration of these techniques, methods and tools directed to a new

paradigm, software engineering.



2

But in spite of the improvements made, a set of crucial problems is still

plaguing todays software development. Examples thereof are:

- The cost of software is constantly increasing.

- The demand for complex software systems exceeds the supply of well

educated software engineers.

- Software is too often delivered too late.

- Software maintenance is tedious and error prone, and its cost is very high.

- Only modest increases in software productivity could be materialized in

recent years.

Software engineering methods and tools improved this situation far less than

expected. Furthermore, case studies at a large software developer have

demonstrated that within their originally created code, only 40 to 60 per cent

where inherently original and specific. The rest existed in more or less the same

form in more than one application [Horo89]. Hence, an improvement in software

productivity by means of software reuse in combination with adequate automation

of the software development process seems to be achievable and desirable.

The concept of software bases [Mitt87] presents a proposal how to achieve

reusability on the components level in taking benefit from (exploiting) similarity

between components and between applications. This concept has been refined and

tailored to a particular language domain in AUGUSTA (Ada Units Generalization

Utility and Systems Tailoring Assistant) [Hoch92]. AUGUSTA was designed to

be a reuse-oriented software engineering environment for Ada-programming. Our

work thus focusses on a symbiosis between the concept of software reuse and the

utilization of a particular software engineering environment.

This paper shows, how the software base concept has been refined and

extended in developing the AUGUSTA-environment. The next section gives a short

overview of the AUGUSTA approach. Afterwards, the architecture of the

AUGUSTA environment will be described. We finally conclude with a summary

and an outline of the state of the project.



3

2. Concept behind AUGUSTA

2.1. Introduction

Before introducing AUGUSTA, we present a brief introduction to the ideas

behind the concept of a software base [Mitt87]. Its main aim is to reduce software

development costs by speeding up the processes of development and maintenance

in benefitting from reuse and by involving end-users in the development and

maintenance of software systems.

Database Analogy

As end-users cannot be expected to dispose of professional programming skills,

they should be supported in their software development effort by a powerful tool,

the so-called Software Base Management System (SBMS). The term SBMS

expresses an analogy to the area of databases; programs should be collected in a

software base like data in a data base, the SBMS is intended to fulfil the same

function as a DBMS fulfils in the database field. From this point of view, an

application system can be regarded as a combination of programs stored in a

software base.

Program Classification

In order to store and retrieve the programs administered by the SBMS a

classification of these software components must be possible. For this purpose, two

dimensions of classification are proposed: On one hand programs can be classified

according the function (task) they fulfil (e.g. input, calculation, output), on the

other hand programs can be related to a particular application (e.g. health

insurance, liability insurance, comprehensive insurance). Similar tasks can be

summarized within a special task category, while similar applications form a

particular application category. The representation of this classification strategy

for programs within a software base can be achieved by a so-called program

classification matrix (Fig. 1). In this matrix, Pij represents a program which fulfils

the function j within application i. Since an individual application will consist only

of few particular functions, usually the program classification matrix will be a

sparse matrix.



4

TASK-CATEGORY

TC1 TC2 TC3 .. TCm
A
P A1 P11 P12 P13 .. P1m
P
L A2 P21 P22 P23 .. P2m
I
C A3 P31 P32 P33 .. P3m
A
T .. .. .. .. Pij ..
I
O An Pn1 Pn2 Pn3 .. Pnm
N

Fig. 1: Program Classification Matrix

2.2. Generalization and Program Development

For reuse purposes one of the following two conditions should be valid for as

many programs as possible:

(1) ∃ s,t: Psj=Ptj

(2) ∃ PGj: ∀ s: Psj IS-A PGj

Condition (1) implies that the same program can be used in more than one

application. This is the ideal case, but not necessarily the most usual one, as many

applications may use functions of the same task category requiring a specific

adaption of the program to the particular application purpose. Condition (2) states

that there exists a code skeleton which is a program generalization (PG) of all

programs within a task category.

The AUGUSTA Software Base aims at this last condition where each task

category has it’s own program skeleton (the so-called program generic). This

skeleton is not yet executable and has to be refined according to application-

specific requirements in order to receive the programs of the program classification

matrix. Each task category is provided with a set of specialization rules which play

a twofold role. First of all they have to be obeyed during the refinement process,

secondly they represent stubs to be refined by specializations concerning

algorithm, data and interfaces. A schematic view of the task refinement is

represented in Fig. 2.



5

TASK-CATEGORIES

TC1 TC2 ... TCm

PG1 SR1 {IT1.} PG2 SR2 {IT2.} ... PGm SRm {ITm.}
---------------------------------------------------------

A A1 S11 S12 ... S1m
P A2 S21 S22 ... S2m
P .. ... ... ... ...
L An Sn1 Sn2 ... Snm
.

Fig.2: Program Classification Matrix with Task Refinement

Types of Specialization

The concept of software bases [Mitt87] proposes three main types of

specializations: algorithm, data and interfaces. AUGUSTA [Hoch92] gives each of

these types of specialization a set of specific interpretations and extends it even

to specializations on the level of types.

For specializations concerning the algorithm the AUGUSTA approach suggests

the substitution of the so-called procedure-stubs by complete procedures. Formal

parameters can either be completely defined during the development of the

program generic or instantiated during the refinement process. In the latter case,

specialization rules have to be defined at the task category level. Furthermore,

stubs for procedure or function calls and the appropriate actual parameters are

possible, too.

In extension to the software base concept, AUGUSTA is not limited to constant

values when dealing with data specializations, since specializations of type

definitions, type identifiers and variable identifiers are also supported. Identifier

specializations should help programmers to place appropriate names within the

application context.

Interface specializations concern the execution order of programs as well as the

description of data to be exchanged by the programs concerned. This type of

specialization is of special nature as programs of different task categories have to

be regarded jointly. Programs may consist of several procedures and functions

which could be called by other programs. Provided this general case, one could

imagine that the administration of interface information, including refinement

guidelines, represents a complex problem. As this is not intended to be the central



6

point of our work we propose that each task category communicates with the

external world only through one particular procedure, the so-called interface

procedure. The formal parameters of this special procedure grant the data

exchange between programs of different task categories. Additional to the essential

declarations, the interface procedure is the main element of the program generic.

Further procedures are either available in their code representation or as stubs.

For better administration of interface information, the software base concept

distinguishes two levels of integrity constraints - task category and program - and

proposes a matrix structure at each level: the task interface matrix (TIM) at the

task category (TC) level and the program interface matrix (PIM) at the program

level. The entries of these structures represent information whether direct

connections between pairs of task categories (TIM) and pairs of programs (PIM)

have to, might, or must not be provided. While these two structures are the only

interface representations suggested by the software base concept, we learned

during our work on AUGUSTA that they are not sufficient. Hence, we propose at

each level of integrity constraints an additional list structure: the task interface

attention list (TIAL) at TC level and the program interface attention list (PIAL) at

program level. These structures represent strong constraints, while TIM and PIM

are regarded as week constraints which have to be obeyed by TIAL and PIAL. The

latter two lists contain for each task category and program the identifiers of task

categories and programs to be necessarily executed before; hence these list

structures guarantee that the input data is available before calling any particular

task or program.

2.3. Generalization and Application Development

As enterprises will usually need several similar applications, the

generalization concept can be applied at the level of application, too. Hence the

software base approach postulates for each application category a so-called

application lattice which can be completed to similar applications by replacing

composition stubs with programs according to particular composition rules. These

composition rules refer to programs to be candidates for composition stub

substitution. Fig. 3 shows in a simple manner a possible application lattice with

some stubs. The shape of the stubs depends on the connected compositon rule, e.g.



7

CS1 and CS4 are examples for stubs with the same composition rules and therefore

the same choice of possible programs to be plugged in, whereas the different

shapes of stub CS2 and CS3 indicate that they need to be instantiated with

programs drawn from different task categories. The AUGUSTA approach

distinguishes two different kinds of composition stubs - mandatory and optional

stubs.

Fig.3: Application Lattice with Composition Stubs

Mandatory stubs have to be refined by choosing one particular program

meeting the requirements of the appropriate composition rule which can be of one

of the following three types:

(a) The composition rule contains all possible programs gained from the

interface specialization rules at program level (PIM, PIAL).

(b) Selection List: The composition rule contains only some programs out of

those which would in principle be possible according to (a).

(c) Exclusion List: This list contains some programs which meet the interface

specialization rules at program level (a) but must not be used in the

particular case. The actual composition rule containing the candidate

programs will be generated automatically using the exclusion list as input.

Optional stubs may be refined but don’t have to. It can be decided at

composition time whether it is necessary to plug in an appropriate program or

whether the stub can be simply removed without any substitution. This kind of

stubs can occur within a sequence as well as connected with selections.

Furthermore, optional stubs provide the possibility to determine the flow of control

during application composition by choosing alternative ways of generation.

2.4. Role Concept



8

Similar to databases, both the software base and the AUGUSTA approach

provide for different user roles. Hence, the following five classes of users are

supported by the SBMS in developing software systems (Fig. 4):

- Software Base Administrator (SBA) at task category (TC) level: All task

categories are characterized by the same meta-structure, the so-called task

category type. Completely defined task categories are called task category

instances. The Software Base Administrator is responsible for the definition

of these task category instances. He must specify one program generic and

the appropriate specialization rules concerning data, algorithm and

interfaces (TIM, TIAL) for each TC instance. A special language - Task

Definition Language (TDL) - consisting of Ada constructs and additional

elements for the representation of specialization stubs supports the SBA in

defining the TC instances.

- Programmer: At the program level, the programmer integrates a given task

category instance to one or more programs by refining the given program

generic according to the given specialization rules. During interface

specialization he defines entries for PIM and PIAL obeying the information

contained in TIM and TIAL. The usage of the Specialization Definition

Language (SDL) assures that the program generic cannot be changed by the

programmer at this level any more.

- Software Base Administrator at the application category (AC) level: The SBA

defines the application lattice consisting of particular symbols representing

programs, stubs and control stucture elements (sequence, selection,

iteration). The language provided at this level is called Application

Definition Language (ADL).

- Application Expert: At application level the application expert composes the

application system using a particular Application Manipulation Language

(AML). On one hand he influences the system structure by his decisions in

case of optional stubs, on the other hand he determines the contents of the

application system by replacing stubs with special programs.

- Application User: The application user processes his data by the composed

system during the performance of his duty.



9

Fig. 4: Schematic View of User Roles and their Activities

2.5. Integrity Constraints

The software base concept as well as the AUGUSTA approach provide a lot of

integrity constraints defined either within the SBMS itself or by different types

of users. The model of integrity constraints suggested by AUGUSTA introduces

various layers of constraints according to the role concept previously explained. A

schematic view of this model is represented in Fig. 5 expressing the principle that

constraints specified in an inner layer have to be obeyed in outer ones.

Fig. 5: Layers of Integrity Constraints



10

The following list contains examples for the most important constraints

provided by AUGUSTA:

- Constraints implemented within the AUGUSTA-SBMS:

* for SBA at TC level:

- Each task category instance consists of one and only one program generic

(but two files for definition and body package respectively are possible)

and associated specialization rules.

- Each program generic has one and only one interface procedure; interface

rules refer to this special procedure only.

- Only types of specialization rules provided by the AUGUSTA-SBMS can

be used.

- For each stub a default specialization must be defined.

- Only completely defined TC instances can be released for refinement.

* for program level:

- Each program must be a specialization of an existing program generic.

- Only completely specified programs can be released for application

composition.

* for SBA at AC level:

- Only types of composition stubs provided by the AUGUSTA-SBMS can

be used.

- Mandatory stubs must contain the identification of a task category.

- Composition stubs can only contain those task categories which have

their input data already generated by tasks located at earlier positions

in the application lattice (sequence of task categories is important).

- Only completely defined application lattices can be released for

application composition.

* for application level:

- The given composition rules must be obeyed during application

composition.

- The sequence of programs must correspond to the interface constraints.

- Only completely defined application systems can be released for final

usage.



11

- Constraints defined by SBA at TC level:

* for program level:

- During the refinement of each program the specialization rules defined

by SBA must be obeyed (TIM, TIAL).

* for SBA at AC level:

- Interface specialization rules must be obeyed during application lattice

development (TIM, TIAL).

- Constraints defined by programmer at program level:

* for SBA at AC level:

- Interface specializations must be obeyed by the SBA during the

development of the application lattice and the associated composition

rules (PIM, PIAL).

* for application level:

- If neither selection lists nor exclusion lists exist, the application expert

can choose programs according the interface specializations (PIM,PIAL).

- Constraints defined by SBA at AC level:

* for application level:

- In case of mandatory stubs one out of the candidate programs has to be

selected for substitution.

- In case of optional stubs the flow of control of the application can be

influenced.

* for usage level:

- The frame of functionality for all possible applications is determined by

the structure of the application lattice.

- Constraints defined by application expert at application level:

* for usage level:

- Access constraints on data for specific applications have to be obeyed

during application execution.

3. System Architecture of AUGUSTA

This section deals with the architecture of AUGUSTA as a software

engineering environment. First of all a global view of the architecture will be

presented and after a short outline regarding the concrete architecture the



12

components of AUGUSTA will be described.

3.1. Global System Architecture

The overall architecture of AUGUSTA is represented in Fig. 6. It corresponds

in principle to the structure of the ECMA/NIST-"toaster"-model for integrated

CASE environments ([Norm92], [Chen92]). The fundamental three layers of the

AUGUSTA environment are the AUGUSTA-User-Interface, the AUGUSTA-

Software-Base and the set of specific AUGUSTA-tools. The latter serve for base

administration, TC management, program management, AC management, and

application management. A brief description of these tools is given in section 3.3.

Fig. 6: Global System Architecture

The AUGUSTA-User-Interface provides as a homogeneous look-and-feel by

using uniform graphical elements in order to ease handling and to have only very

tiny differences between the individual tools in user interaction. This can be

achieved by the same menu structure for all user groups as well as by using

standard elements provided by OSF/Motif. The only difference exists in the various

selection possibilities according to special user roles.

The AUGUSTA-Software-Base serves as a uniform repository for all

documents generated and manipulated using the five AUGUSTA-Tools. According

to various user roles and integrity constraints the tools have only restricted access

to different software components.

3.2. Concrete System Architecture

The data exchange within the AUGUSTA environment is realized using a

client-server model (Fig. 7). The environment is partitioned into two main

components - the server for the administration of persistent data and the clients

for user communication.



13

Fig. 7: Client-Server Architecture of AUGUSTA

In our case the AUGUSTA-SBMS performs the function of the server by

administrating the AUGUSTA-Software-Base. Each access to the contents of the

software base can only take place using the AUGUSTA-SBMS.

The clients are implemented as window-based environments provided by

particular tools according to the different user roles.

The communicational components (CC in Fig. 7) are necessary to bridge

differences between different languages (and platforms) used for the server

(implemented in Ada) and the clients (implemented in C). They serve for

conversion of data structures from one language into a particular standard data

format before data transmission and vice versa after data transmission.

The clients communicate with the server via request-response-channels. The

requests of the clients are atomic and independent of each other. They are serially

sent to the server via a uniform communication interface. The server processes the

requests according to the order of arrival.

3.3. AUGUSTA-Tools

The AUGUSTA environment consists of five tools supporting three different

users - the SBA (base administration, TC-, and AC-management), the programmer

(program management), and the application expert (application management). It

will be described in this section. Each particular component of these tools can be

assigned either to the AUGUSTA-User-Interface or to the AUGUSTA-SBMS.



14

Base Administration Support Tool

The SBA is supported in those administrative tasks which would conform to

analog tasks to be performed by a data base administrator by the Base

Administration Support Tool (Fig. 8). The functionality of this tool comprises the

administration of user privileges, the conducting of various statistics, and the

global deleting of special contents of the AUGUSTA-Software-Base. The only

component of the AUGUSTA-User-Interface is the Base Administration Editor,

while the AUGUSTA-SBMS consists of the Base Administration Storage Unit.

Fig. 8: Base Administration Support Tool

Task Category Management Tool

The Task Category Management Tool (Fig. 9) supports software base specific

functions. It helps the SBA on the task category level. The AUGUSTA-User-

Interface consists of four editors (TC, program, specialization rule, task interface);

the corresponding storage units, the specialization rule filter (checks for each stub

whether a specialization rule and a default specialization were defined), and the

default specialization integrator (generates a default program) belong to the

AUGUSTA-SBMS.

Fig. 9: Task Category Management Tool



15

Program Management Tool

The Program Management Tool (Fig. 10) supports the programmers in

program specialization. The AUGUSTA-User-Interface is represented by the

program refinement editor and the program interface editor, respectively. The task

category viewer (provides the program interface editor with informations about the

task category), the specialization storage unit, the specialization integrator

(generates the refined program), and the task/program interface management

(administrates interface information according to given constraints) form the

AUGUSTA-SBMS.

Fig. 10: Program Management Tool

Application Category Management Tool

At the AC level the SBA will be supported by the Application Category

Management Tool (Fig. 11). The AUGUSTA-User-Interface consists of three editors

(application category, application lattice, composition rule), while the AUGUSTA-

SBMS is formed by the corresponding storage units (application category,

application lattice), a task-category/program viewer, and a sophisticated

composition rule management (is not only a storage unit, but also a checker of

stubs with respect to TIM and TIAL as well as a generator of selection lists

according to PIM and PIAL).

Fig. 11: Application Category Management Tool



16

Application Management Tool

The Application Management Tool supports the application expert in

composing systems. The only component of the AUGUSTA-User-Interface is the

composition editor which allows as input a textual description of the application,

selection of programs, specification of names for parameters and literals, and path

decisions in case of alternative ways of generation. Furthermore, the

representation of the application using a special script language [Buch91] is

possible. The AUGUSTA-SBMS consists of the composition storage unit, two

viewers (task-category/program, application-category/application) providing infor-

mation about the contents of the software base, the application integrator

(generates the application execution control script to be stored in the software

base), and the software integration platform (generates the final application

system) [Buch91].

Fig. 12: Application Management Tool

4. Summary

This paper presented an environment (AUGUSTA) for supporting reuse of

Ada-code. It organizes program components in a database like manner and allows

for composing application systems via special queries against this base. Without

demanding object-orientedness, it takes advantage from generalization hierarchies

among program-components and among applications.

The current implementation of AUGUSTA runs in a UNIX-workstation

environment. It comprises the functionality as described in this paper, except for

the base administration support tool and parts of the graphical user interface.



17

5. References

[Buch91] F. Buchhäusl: "Die Realisierung eines Software-Integrationssystemes

für ein Software Base Management System", Technical Report,

Institut f. Informatik, Universität Klagenfurt, Klagenfurt, Sept. 1991

[Chen92] M. Chen, R.J. Norman: "A Framework for Integrated CASE", IEEE

Software, Vol. 9, No. 2, March 1992, pp. 18-22

[Hoch92] E. Hochmüller: "AUGUSTA - eine reuse-orientierte Software-Ent-

wicklungsumgebung für die Erstellung von Ada-Applikationen",

Ph.D.-Thesis, Vienna, May 1992

[Horo89] E. Horowitz, J.B. Munson: "An Expansive View of Reusable

Software", in T.J. Biggerstaff, A.J. Perlis (eds.): "Software

Reusability", Vol. 1, 1989, pp. 19-41

[Mitt87] R.T. Mittermeir, M. Oppitz: "Software Bases for the Flexible

Composition of Application Systems", IEEE Transactions on Software

Engineering, Vol. 13, No. 4, April 1987, pp. 440-460

[Norm92] R.J. Norman, M. Chen: "Working together to integrate CASE", Guest

Editor’s Introduction to IEEE Software, Vol. 9, No. 2, March 1992,

pp. 12-16


