
in: L.Gün, R.Onvural, E.Gelenbe (eds.): Proc. 8th International Symposium on Computer and Information Systems, Istanbul, 1993

A Concept of Type Derivation
for Object-Oriented Database Systems

Michael Dobrovnik and Johann Eder

Institut für Informatik,
Universität Klagenfurt

Universitätsstr. 65
A-9020 Klagenfurt / Austria

email:{michi,eder}@ifi.uni-klu.ac.at

Abstract - We present a concept of type derivation in order to introduce external models in
object oriented database systems. This leads to the traditional three level DBMS architecture,
consisting of an internal, a conceptual and several external models. In contrast to other
approaches, our concept takes into account all traditional features of external models - such as
submodeling, interfacing application programs and databases, logical data independence, canned
queries, and individualized access and security management. We provide a clear separation of
the type and class hierarchies of the external schema from those of the conceptual schema. This
approach allows for better and cleaner modularization of information systems built on top of
object-oriented databases. In this paper, we concentrate on the mechanisms to separate and
connect the external and conceptual type hierarchies.

1. INTRODUCTION

External models in database systems are used for a number for varying purposes. An external
model represents the view of a user or an application program on the database, i.e. on the
conceptual schema. The external model is a submodel of the conceptual model and can be
deduced from it. A view is a mapping from terms and concepts of the conceptual model to
those of the respective user. External models are also the interface specification between
database systems and application programs providing logical data independence and thus
reducing the maintenance effort in case of changes to the conceptual schema. In particular, the
introduction of this additional layer permits the flexible and modular architecture of application
systems built upon a database. Furthermore, views are the basis for specifying, managing and
enforcing access control by stating which user may apply which operations on which data. In
most database systems the notion of views stands also for derived database objects, where the
view is a named query expression, facilitating the formulation of queries. So we can conclude,
that external models are an important feature of database systems.



The introduction of the concept of external models in object oriented database systems has long
been considered as a major problem, in particular, because of the lack of declarative query
languages, because views may confuse the type or class hierarchy, and views seemingly did not
integrate well with the object-oriented concepts developed for programming languages.
Nevertheless, the concept of views is important to build large application systems on top of an
OODBMS.

In embedded systems were an OODBMS is used for a system serving a single, relatively
narrow task, the problems introduced by the intermix between application and objects may be
negligible. But consider the OODBMS to be the main building block of an enterprise wide
information system consisting of a large number of relatively independent application systems,
each one of these systems having different and diverse needs. The spectrum of the dynamic
behavioral requirements is much wider and richer than merely the variation in the object
structures (which nevertheless may be complex too).

Recently, several approaches to integrate views in OODBMS have been reported (e.g.
[1,4,7,9]). However, none of these addresses all the features outlined above. We propose a
concept for the separation and integration of external and conceptual schema information in
OODBMS which serves all of the above mentioned purposes. In this paper, we put the focus
on the type lattices of the schemes.

The rest of the paper is organized as follows: In section 2 we give an overview of the data
model we use for presenting our ideas. In section 3 a concept for the derivation of external
types in OODBMS is introduced. Finally, in section 4 we discuss this approach and draw some
conclusions. In general we assume that the reader is familiar with the basic concepts of object
oriented databases as described for example in [2].

2. A BRIEF TOUR OF THE DATA MODEL

In this section we sketch our data model just to the extent necessary for elaborating our ideas.
The data model is closely tied to a schema definition language and a query language. While we
provide some examples of the schema definition language, the query language is beyond the
scope of this paper.

A schema in our data model consists of definitions of types and classes. Types represent
intensional information, they describe the structure of objects and values, in particular, which
components they consist of, and the signature and implementation of the methods that can be
applied to them. Types are defined in the context of an inheritance lattice for structural
inheritance. If we define a type t to be a subtype of type s, we mean that the type t inherits all
the structural information from its supertype. In the definition of the subtype, we can define
additional components and additional methods. Components inherited from the supertype can
also be overridden in the subtype, whereby we assume that the inheritance lattice forms a
subtype hierarchy in the sense of covariant subtyping. This implies, that wherever an object of
a certain type can be used, we can also use an object of one of its subtypes.



The class concept has been introduced in the oo-technology in the very beginning [6].
However, types and classes usually have not been distinguished resulting in a mix of structural
and extensional information. In our model, we see classes from a different perspective than the
more traditional approaches. For us, classes are object containers, which can include objects
compatible with a ground type. The instance of a class is the object set of the class. For each
object type, there may be any number of classes, including none. There is no class
automatically generated when a type is defined. Operators for insertion and removal of objects,
for membership tests and iteration over the object set of a class are provided.

Classes are arranged in a class hierarchy. Since subclassing means subsetting the object set of
a class, an object in a certain class C is also in all superclasses of C. An object may be in any
number of unrelated classes, if the ground type of the classes are compatible with the object
type. The object set of a class can be defined explicitely or by a predicate. Classes are closely
connected to persistence in our model. An object is persistent, if it is a member in (at least)
one class or if it is referenced by a persistent object.

The language for the implementation of the methods is a Turing complete procedural
programming language which also can contain expressions of the query language like in O2 [3].
The query language offers generic operations for projection, selection extension, join and set
operations, similar to [8]. Query expressions may be object preserving, i.e. the objects of the
result set have the same object identifiers as the original objects. They may be object
generating, where the objects in the result set have new object identifiers, or value generating,
i.e. the result set does not consist of objects but of (maybe complex) values.

We distinguish between the conceptual schema, which described the database from a global,
uniform point of view and external schemes, which have a perspective on the database that is
specific to a group of users or applications [10]. An external schema is based on a conceptual
schema and explicitly states which parts of the global schema are needed. External schemes
serve as a logical buffer to minimize impacts of schema changes, be it in the conceptual or
external level [5].

3. DERIVATION OF EXTERNAL TYPES

3.1 Elements of the External Schema

An external schema consists of definitions of types and of views, which are derived classes.
The views are constructed from elements in the conceptual schema and from components
defined in the external schema themselves. Types of the conceptual schema can be used as the
basis for the definition of derived types in the external schema. The views are the derivation
of classes in the conceptual schema based on a query expression which specifies how the
extent of a class can be computed. In the sequel we will concentrate on the aspects concerning
the type derivation.

Types in the external schema are specified with an extended version of the schema definition
language used to construct the types of the conceptual schema. A definition of an external type



can refer to components of the conceptual schema and use them as the basis of the definitions
in the external schema.

There are basically two forms of type derivation, which can be combined to construct an
external type. Restriction projects on some components of a conceptual type, extension adds
new components to an external type. An external type definition which was constructed using
both restriction and extension can’t be easily inserted in the type lattice of the conceptual
schema. It is a kind of restricted subtype or extended supertype of the conceptual type it is
based on. This two approaches have annoying disadvantages. The incorporation of the external
type as a restricted subtype of the conceptual type would result in a loss of the subtyping
property of the lattice; in this case, it is no longer possible to use an object of a subtype where
an object of a supertype is expected. The notion of an extended supertype brings with it the
cumbersome upward inheritance, where a supertype (the external type) inherits attributes and
methods from a subtype (the original type). This problem has been discussed in the context
of types of query results, e.g. in [9].

In our approach, the solution to this problematic situation is to introduce different type lattices,
one for the conceptual schema and one for each external schema. The user, an application
programmer or applications themselves just see the external schema and have no possibility to
gain access to the conceptual schema. A suitable representation of the external schema, where
references to conceptual types are resolved and the textual definitions are integrated in the
external type definitions will be provided through a schema tool. The external schema
description is the complete specification of the database from a users or applications point of
view. The user can query the external schema, which is also a kind of interface definition of
the database. The type lattice of the external schema is part of the type lattice of the
application program.

3.2 Type Restriction

Restriction is the first form of constructing an external type from a conceptual one. The
restriction is twofold, it concerns attributes as well as methods. Attributes can be virtually
removed by means of projection, and the set of applicable methods can be confined, too. In the
definition of the external type, we also declare its external supertypes, from which it inherits
in the usual manner. But also, we can reference to a type in the conceptual schema, on which
the external type is based.

EXTERNAL TYPE et
SUPER est1,est2
BASED ON ct (aa, ab, ma())

END et.

In the example, the external type et inherits from external types est1 and est2. It is a restriction
of conceptual type ct, where just attributes aa and ab as well as method ma() are taken from
ct and all other components of ct got projected away.



Note, that the instances of ct and et have exactly the same representation in the memory and
that an instance of et is an instance of ct as well, because it is based on exactly one conceptual
object. Transferring objects between the two type lattices does not alter their object identifier,
so type derivation is completely transparent to object identity. Therefore, updates can be easily
mapped to the conceptual level. Attributes which were projected away in the external type must
be given an appropriate default value. This can be accomplished by the type constructor
method (New()). So we can assure, that no object with an incomplete value can be inserted in
the DB. As a consequence of type restriction, the components which were projected away
cannot be used further on. Newly defined or redefined methods cannot access restricted
attributes or call restricted methods. Such components are completely hidden from the user,
they cannot be referenced in applications or queries. Furthermore, in the case object generating
queries, an external type is used to specify the result type of the query.

3.3. Type Extension

The second form of type derivation, type extension., allows one to add new aspects to a type.
These can be the definition of new methods or the redefinition (overriding) of existing
methods. This is a powerful but also simple way of information restructuring. However, no
additional stored attributes can be defined.

Additional methods can serve different purposes, they can simply be used to calculate the
values of computed attributes but they can also implement arbitrarily complex behavioral
aspects of the object type which do not fit well in the conceptual schema, but are essential for
certain applications. The redefinition of methods is the usual way of behavioral specialization.

EXTERNAL TYPE eet
SUPER est1,est2
BASED ON ct (aa, ab, ma(), md())
mb(): some_type;
mc(a: this_type) : eet;
md();

END et.

In the example above, methods mb() and mc() are new methods not already present in the type
definitions of est1, est2 and ct, or redefine methods attached to those types. Method md() is
derived from ct, but also overriden by the external md(). In the external method, we can call
methods which were defined in the conceptual type the external type is based on. Such method
calls must qualify the method name with the keyword base. This allows for external methods
to be a behavioral extension of conceptual methods, as one can use super to refer to methods
of supertypes for the same purpose.

Here again, one instance of type eet is based on exactly one instance of the conceptual type ct.
Since it is not allowed to extend a type definition with stored attributes, the representation of
the instances of an external extended type exactly corresponds with the representation of the
objects of the conceptual type. Preservation of object identity also allows updates of instances



of extended types to be propagated to the conceptual ones.

It is allowed to combine the mechanisms of restriction and extension in an arbitrary way,
which opens the possibility to omit information from the conceptual schema, as well as to
enrich the external schema with aspects not covered by the global conceptual schema.

3.4. Type References in the External Schema

When types are declared to be supertypes of an external type or to be the base type of an
external type, it is quite clear, that the former types themselves are external types, while the
latter one must be a conceptual type.

But when references to types appear in the external schema in the definition of attributes or
methods of the external types, they can either be external ones, or conceptual ones. Referencing
conceptual types requires some care. For instance, if we have an external type et based on a
conceptual type ct, it will be the common case that ct is referenced in other external type
definitions. But in the external schema, we generally prefer to reference et and to use ct not at
all, because do not want to "open up" the conceptual schema to the user, and want to be able
to make use of the aspects of the types which were defined in the external schema only.

We provide two means to substitute an external type definition for a conceptual one. The first
form allows us to cover the conceptual type in the whole external schema. Whenever a globally
covered conceptual type is referenced by components in the external schema, a specified
external type is used implicitly. This is a convenient way to propagate the external type
definitions to all referencing types.

The second possibility to reference to external types is the individual redefinition of attributes
and methods. Here, just some components make use of external types, other components refer
to conceptual types.

EXTERNAL TYPE et
SUPER ...
COVERS ct (aa,ab,ma())
ac : et2;
mc(a: that_type) : eet;

END et.

In this example, we specify et to cover ct, redefining ct in every place it occurs in a type
definition in this external schema. Attribute ac is defined to be of type et2, thereby overriding
the original (conceptual) type of ac.

3.5. Abstracting Inheritance

With derivation, we introduced a third kind of object structuring dimension. The concept of
aggregation describes that the domain of an attribute of a type is another type. (Structural)



inheritance allows a type to be a specialization of other types, using additions and substitutions
of components to allow reuse of existing structural and behavioral information.

Derivation of types is orthogonal to the aggregation hierarchy, and differs notably from the
inheritance hierarchy. It allows to define new types by restriction, extension and redefinition
of conceptual types. So it is more powerful than structural inheritance, since it unveils greater
flexibility in the referencing process. In particular, it is possible to use just parts of the
definition of a conceptual type, or to define multiple different external types for one conceptual
type.

The main difference between structural inheritance and derivation is the aim and purpose of the
two concepts. Inheritance is a way to facilitate reuse, derivation is a means to achieve the
layered model and schema architecture.

3.6. Method Resolution

A type specifies which attributes and methods are defined in an object, and what piece of code
gets executed when a method is invoked. In the conceptual schema a method mc is defined in
conceptual type ct if it is directly defined in ct, or if there is at least one (conceptual) supertype
of ct, where mc is defined (in the case of multiple inheritance, the programmer must explicitly
resolve the ambiguities by redefining the methods).

The external schema introduces another possible path to acquire components. Besides direct
definition and inheritance, the derivation path can be used to search for methods. To find the
code for a method me in the external type et, the search procedure first looks if me is directly
defined in et, then it follows the derivation through the projection list in the bases on clause
of et. If me could neither be found directly in et nor in this clause, the search process looks for
it in the external inheritance hierarchy of et.

We define two different execution contexts, an external one and a conceptual one. As the flow
of control switches between the two contexts, different visibility rules are valid. Initially, the
flow of control is in the external context. When we call a method which was defined in the
conceptual schema, we change to the conceptual context, returning to the external context when
the method returns.

In the conceptual context, methods cannot access any information from the external schema,
but all attributes and methods defined in the conceptual schema can potentially be used. In the
external context, only attributes and methods of the conceptual schema which were not
restricted in the external schema can be used in addition to the extended components of the
external schema itself. So a call of a conceptually defined method is a controlled way to "open
up" the whole conceptual schema and to "close" it again.



4. CONCLUSION

We presented a concept for object oriented database systems, which serves as an interface
between application programs and the conceptual model implemented in the OODBMS. This
additional level of abstraction introduces a new dimension of modularity of information
systems built on top of object oriented databases. The conceptual enterprise-wide level and the
narrower application level can be better separated and there is no need to intermix conceptual
and application specific information in one single object (class).

The conceptual model is decoupled from the applications and vice versa. The external model
specifies which part of the conceptual model is used by an application or an application class,
thereby documenting dependencies. Furthermore, (some) implications of schema changes for
application systems can easily be deduced from the external schema specification.

In this paper we could only sketch the basic ideas of this view concept. More advanced and
detailed topics like view updates, schema consistency, etc. had to be skipped. We are working
on an exact definition of the schema definition language together with a formalization of the
semantics of the referencing mechanism, and the consistency of external schema.

REFERENCES

[1] S. Abiteboul, A. Bonner: "Objects and Views." In: Proc. ACM SIGMOD, Denver, 1991, pages 238-247.

[2] M. Atkinson, F. Bancilhon, D. DeWitt, K. Dittrich, D. Maier and S. Zdonik: "The object-oriented database
systems Manifesto." In: W.Kim, J.-M. Nicholas, S. Nishio (eds.): Proc. 1st Intl. Conf. on Deductive and Object-
Oriented Databases - DOOD ’89, Elsevier, Kyoto, 1989, pages 40-57

[3] F. Bancilhon, C.Delobel, P. Kanellakis (eds.): Building an Object-Oriented Database System - The Story of 02.
Morgan-Kaufmann, San Mateo, 1992.

[4] E. Bertino: "A View Mechanism for Object-Oriented Databases." In: A. Pirotte, C. Delobel, G. Gottlob (eds.):
Advances in Database Technology, - EDBT’92, Springer Verlag, 1992, pages 136-151.

[5] M.Dobrovnik, J.Eder: "View Concepts for Object-Oriented Databases." To appear in: G. Lasker (ed.): Proc. 4th
Intl. Symposium on Systems Research, Informatics and Cybernetics, Baden-Baden, 1993

[6] A. Goldberg, D. Robson: SMALLTALK-80 - The Language and its Implementation. Addison-Wesley, Reading,
1983.

[7] S. Heiler, S. Zdonik: "Object Views: Extending the Vision." In: Proc. IEEE Int. Conf. on Database Engineering,
Los Angeles, 1990, pages 86-93.

[8] C. Laasch, M. Scholl: "Generic Update Operations Keeping Object-Oriented Databases Consistent." In: R. Studer
(ed.): Proc. 2nd GI-Workshop on Information Systems and Artificial Intelligence (IS/KI), Springer, Ulm, 1992.

[9] M. Scholl, C. Laasch, M. Tresch: "Updateable Views in Object-Oriented Databases." In: C. Delobel, M. Kifer, Y.
Masunaga (eds.): Proc. 2nd Intl. Conf. on Deductive and Object Oriented Databases- DOOD ’91, Springer-Verlag,
Munich, 1991, pages 190-207.

[10] D. Tsichritzis, A. Klug (eds.): "The ANSI/X3/SPARC DBMS Framework: Report of the Study Group on Database
Management Systems." Information Systems 3 (1978).




