
SCHEMA INTEGRATION FOR OBJECT ORIENTED DATABASE SYSTEMS
ETCE, January 1994

SCHEMA INTEGRATION FOR OBJECT ORIENTED DATABASE SYSTEMS

Johann Eder and Heinz Frank
Institut für Informatik
Universität Klagenfurt

Klagenfurt
Austria / Europe

email: {eder, heinz}@ifi.uni-klu.ac.at

ABSTRACT

View integration is an important technique for developing
software systems built upon large databases - independent which
paradigm is used for realizing the database. We analyzed to
which extent traditional view integration methods cover all
aspects of object-oriented datamodels and found, in particular,
that the integration of methods is hardly supported. We present
a methodology for integrating schemas taking into account the
statics as well as the dynamics of object oriented databases.

1. INTRODUCTION

The design of databases plays a crucial role in the
development of large software systems. The ANSI/SPARC three
level architecture (Tsichritzis and Kluge, 1978) supports a
flexible and modular design of large application systems by
providing mappings between the individual views of application
programs or users on the data space (external models), the
conceptual model representing the whole universe of discourse,
and the internal model containing the physical data structures.

When we design databases for large software systems it is
typically not possible to design the conceptual model at once,
but it is much more feasible to first describe the universe of
discourse from the viewpoint of parts of the system or of user
groups resulting in a set of external models. In a second step,
these different models are then integrated into one conceptual
model. As people may have quite different - even eccentric -
viewpoints, and the usage of the data in different parts of the
system may suggest very different structures for the same data,
this integration process is far from trivial.

For software systems which are built on several already
existing databases (legacy systems) we face a similar problem -
the conceptual models of the participating, maybe partly

redundant, databases have to be integrated into one coherent
conceptual framework, upon which the software system is then
designed. Therefore, methods for assisting the view integration
process are also helpful for the design of multidatabase systems
or federated database systems (Kim et al., 1993 and Sheth and
Larson, 1990).

Schema integration is not a new problem. It was subject of
intensive research in the 80’s, resulting in several well
applicable integration methodologies mainly for the relational
model and the Entity Relationship model (Chen, 1976), e. g.
Ahmed et al., 1991, Batini and Lenzerini, 1984, Batini et al.,
1986, Breitbart et al., 1986, Gotthard et al., 1992, Geller et al.,
1992, Kim and Seo, 1991, Navathe et al., 1986, Schrefl, 1987,
Sheth and Larson, 1990, Wiederhold, 1992, and Wiederhold et
al., 1992. With the advent of object oriented databases with their
richer set of modelling primitives we face the view integration
problem again, although the notion of external models is poorly
supported in current object oriented database systems. However,
several approaches to reintroduce the three level architecture
have already been proposed, e. g. Ahmed et al., 1991,
Dobrovnik and Eder 1993a and Dobrovnik and Eder, 1993b.

The object oriented data models (Wegner, 1992) offer a
richer set of concepts for representing the statics of the universe
of discourse (types, classes, inheritance, etc.) than the relational
model and, furthermore, also support the modelling of the
dynamics (operation on the objects - methods). Therefore, they
introduce several additional problems to the view integration
process in the static domain as well as in the dynamic domain
and the static - dynamic domain, as it is possible to design the
same information as static property in one view and as dynamic
(computed) property in another view. Because of the similarity
between extended E-R-models and the static part of object
oriented data models, solutions for problems like naming
conflicts, structural conflicts, or data conflicts can easily be

Johann Eder, Heinz Frank1

katja
published in: Tanik M., Rossak W., Cooke D. (eds.): Software Systems in Engineering, ASME, PD-Vol. 59, 1994, pp. 275-284



adapted. Of course, a methodology for integrating object
oriented views depends on the used data model. For defining
our approach we choose the data model presented in Dobrovnik
and Eder (1993a and 1993b). Nevertheless, the main concepts of
our approach are applicable for other data models as well.

2. A CLASSIFICATION SCHEMA FOR VIEW
INTEGRATION METHODS

2.1 Overview
In order to compare and analyze schema integration

methods, we develop a classification schema which is based on
Schrefl (1987) but extended to cover the concepts of object
oriented data models.

The main steps in view integration are conflict analysis,
merging, enrichment, and restructuring of schemas, although the
partition of the whole process into steps and the naming of these
steps are not homogeneous in the literature.

Generally, all view integration methodologies have to deal
with representation conflicts, when the same information is
designed with different features of the used data model, time-
invariant connections between different component schemas,
redundancies, and implicit semantic information between
different component schemas, which have to be captured
explicitly (schema enrichment).

According to that generalized problems we analyzed the
integration methodologies with respect to:

the used data model
the proposed strategies to solve representation conflicts
the approaches to handle redundancy removal
the concepts to deal with schema enrichment

2.2 Representation Conflicts
Representation problems occur when real world information

is designed differently in the component schemas which have to
be integrated. They can be classified as naming conflicts,
scaling conflicts and structural conflicts.

Naming conflicts originate from using equal terms for
different real world concepts (called homonyms) or from
different schema components representing the same real world
concept under a different name (called synonyms). To solve
naming conflicts

the homonyms/synonyms in the component schemas are
renamed

new names in the integrated schema are introduced and
mappings between the corresponding names in the component
schemas are specified

it is assumed that names in different schemas are only
equal, if explicitly stated
Scaling conflicts arise if different scales are used for the same
measure. For integration we use the finest scale and employ
conversion functions to calculate the values for the external
schemas.

Structural conflicts occur when the same information is
represented with different constructs of the data model.
Problems in this area can be found in

aggregation, i.e. missing attributes or methods

generalization, i.e. all other structural conflicts
abstraction, i.e. differences in specialization and

decomposition.
As the object oriented data models handle also dynamic aspects
of the universe of discourse (beyond static aspects)
representation conflicts occur when the same information is
designed as static property in one view and as dynamic
(computed) property in another view (static-dynamic conflicts).
As an example suppose that the age of a person can be stored
within an attribute ’age’ or computed with an method on basis
of the birth date.

2.3 Integration constraints
Integration constraints describe time invariant connections

between component schemas and are necessary for detecting
redundancy. We considered the following integration constraints
in the analysis:

object/class constraint states that extensions of two classes
are the same for all points of time

attribute identity constraint states that two attributes of
different types are semantically equal. According to this also the
values of two semantically equal attributes of two different
objects which represent the same world entity must be the same.

method identity constraints hold when two methods of
different types are semantically equal

subclass constraint states that all extensions of one class
are contained in the extensions of another class. A special form
of subclass constraint is the selection constraint, i.e. an extension
of class B can be derived by a selection of a class A.

subtype constraint is similar to subclass constraint but
refers to types, i.e. a type P is contained in another type T.

mutual exclusion constraint states that two classes have
mutually exclusive sets of instances, although they might have
the same type.

2.4 Redundancy removal
Integration constraints describe situations where information

is stored redundantly in different schemas (with exception of the
mutual exclusion constraint). According to the features of object
oriented data models the following situations have to be
analyzed:

Redundant classes can be removed, if an object/class
constraint or a subclass constraint holds. In that case the classes
and, therefore, also the types of the classes can be merged into
one class and type. If a selection constraint holds, subclassing
and subtyping can be applied.

Redundant types may be dropped, if a mutual exclusion
constraint holds and the types are equivalent, as it is possible
that two different classes have the same type.

Redundant attributes can be dropped, if an attribute
identity constraint holds. In that case the attribute can be
removed from the subtype. If an attribute can be derived from a
composition of other attributes a new method can be introduced.

As object oriented data models propose dynamic aspects as
well, redundant methods should also be removed (respectively
merged). Of course, the process of determining equivalent
methods is far from trivial. If methods are specified with a

Johann Eder, Heinz Frank2



formal specification, equivalent methods can be detected using
a formal approach. More often methods are specified informal.
In that case the designer has to analyze and to decide whether
two methods are equivalent.

2.52.5 SchemaSchema enrichment/Interschemaenrichment/Interschema relationshipsrelationships
This is the process to capture implicit semantic

relationships between different component schemas:
type/class/object relationship: Components of different

user views can be related in various ways:
a) different types (probably partially equivalent type

components) and different classes which are not disjoint.
Example: A class "CAROWNER" and a class "STUDENT", the
types of both classes contain equivalent type components (e.g.
Name or Address). Some extensions of both classes are equal,
as there exist students who own a car. Possible solutions depend
on the features of the used data model:

i) If the data model supports a role concept this feature
should be used to handle such dependencies.

ii) Extract the common type components to a new type (say
"PERSON") with the subtypes of "CAROWNER" and
"STUDENT" (generalization). As some persons are contained
probably in both classes, they can either be stored in both
classes or another type as a subtype from both "CAROWNER"
and "STUDENT" and a corresponding class have to be
established. In the first case, two extensions of the different
classes representing the same real world entity (e.g. the student
Otto who owns a car) have different OID’s (object identifier). In
the second case all objects representing the same real word
entity have the same OID.

b) different types with equivalent type components
describing a common generic concept (e. g. PAPER and BOOK
belong to the generic concept PUBLICATION). Schema
enrichment is done by generalization.

c) equivalent types and disjoint classes, e. g. CUSTOMER
and SELLER have equivalent types but no common extension.
Schema enrichment is done by defining one type for both
classes.

d) history related classes represent the same real world
entity at different world times (e. g. classes APPLICANT and
EMPLOYEE). They can be again organized in a generalization
hierarchy. As none of the analyzed data models supports the
time dimension we ignore this kind of relationship.
component relationships:

a) role-related attributes represent real world properties
which describe probably a common generic property (e.g.
University-Addr and Home-Addr). They are not semantically
equivalent (that means their values may be different for one real
world entity) but role-related. Only the types of the attributes
can be integrated.

b) kind-related attributes represent real world properties
which semantically overlap. They are integrated by first
integrating the domains (e. g. define a generalization of the
object classes) and then by combining the kind-related attributes
to one attribute. For instance, in Austria, the social security
number contains the birthdate of a person.

method relationships:
a) methods with identical semantics, i.e. methods computing

the same result, although differences in the signature are
possible (e.g. scaling)

b) role-related methods are methods which describe
probably a common generic method

c) equivalent methods, which compute similar results but
differ semantically, e.g. the domain or the semantic
interpretation of the results is not the same.

d) overlapping methods: a method A contains (probably
only partially) a method B. If possible the tasks of method A
should be split into different methods.

e) general - special methods: a method A computes a more
special task than a method B.

We present examples and solutions for method relationships
in section 5.4.3.

3. COMPARISON OF SCHEMA INTEGRATION
METHODOLOGIES

In this section we compare and analyze four different
schema integration methods, two for extended E-R-models
(Batini and Lenzerini, 1984 and Navathe et al., 1986) and two
for object oriented models (Gotthard et al., 1992, and Geller et
al., 1992) according to the classification scheme presented in
section 2.

3.1 Navathe et al.: "Integrating User Views in Database
Design"

Navathe’s methodology for user view integration and global
view integration is based on the Entity-Category Relationship
data model (E-C-R) which includes also generalization
hierarchies. Navathe et. al suggest the following integration
phases:

preintegration: In the preintegration process naming
conflicts between entities, attributes and relationships are
resolved as well as scale mappings and the integration of similar
entities (entities which are identical, contained, overlapping and
disjoint). The approach does not cover structural differences
between different user views but assumes that the same world
concept is represented with the same construct in each user
view.

object integration: To integrate two different object-classes
a new superclass is created which contains the common
attributes of the two integrated object-classes.

relationship integration: To integrate two relationships
first the involved object-classes are integrated and then a new
relation between the integrated object-classes is established with
the original relationships as subrelationships.

3.2 Batini and Lenzerini: "A Methodology for Data
Schema Integration in the Entity Relationship Model"

This methodology for view integration in the Entity
Relationship Model provides three main phases: conflict
analysis, merging and final enrichment and restructuring.

Conflict analysis: During this step representation conflicts,
such as naming conflicts and structural conflicts are detected.

Johann Eder, Heinz Frank3



Naming conflicts are solved by renaming in the component
schemas. Structural conflicts are handled by several
restructuring steps where conflicting schema components are
transformed (entity to relationship, relationship to entity and
attribute to relationship). Conflicting integrity constraints are
solved by choosing the more reliable one through the user.

Merging: Merging is done by a simple superimposition of
common concepts. The result of this step is a three colored
schema in order to distinguish concepts common to the two
schemas and concepts inherited from a single schema.

Enrichment and restructuring: During schema enrichment
and restructuring new relationships are used to increase the
clarity and expressiveness of the new schema. Also
redundancies within the integrated schema are removed.

3.3 Gotthard et. al: "System Guided View Integration
for Object-Oriented Databases"

Gotthard et. al classify object oriented data models into two
categories, structural object orientation and behavioral object
orientation. The first paradigm emphasizes the arrangement of
objects into clusters with establishing relationships between the
objects. Behavioral object orientation focuses on objects as
computational agents containing a set of procedures describing
its external behavior and a private memory. Their methodology
consists of the following three steps:

Comparison of schemas: During this phase all conflicts in
representation of the same object in different schemas are
detected (naming conflicts and structural conflicts) .

Conforming of schemas: The aim of this phase is to
prepare different schemas for integration, that means to make
them compatible for integration.

Merging and restructuring: The conforming schemas are
merged by the concept of superimposition of common concepts
and restructuring in order to get a complete, minimal and
understandable global view.

3.4 Geller et. al: "Structural schema integration with
full and partial correspondence using the dual model"

Geller et. al. make a difference between integration of
already existing databases (schema integration) and the
integration of different user (also application) views. They use
the "Dual Model" which distinguishes between classes and their
type (object type). They do not propose a methodology (in the
sense of a high level algorithm) but concentrate on structural
integration of types and classes. For that purpose they define
several functions in order to establish some rules how to
integrate classes and types. Geller et. al. describe:

mappings between types and classes: Conditions to find
mappings between one object type to one class are defined as
well as mappings from one object type to several classes.

formal conditions for structural integration: Structural
integration between two sets of classes is possible, if there
exists a correspondence between the two sets such that for every
corresponding class from the sets a common object type can be
constructed. Two cases of correspondence occur, full structural
correspondence and partial structural correspondence. To
construct a common object type for two corresponding classes

a full structural equivalence between these classes , i.e. between
their sets of properties must exists. In practical integration the
rules for structural integration are also applicable to schemas
differing only in view properties.

3.5 Summary
An overview of our results is given in appendix 1. For

solving structural conflicts appropriate strategies were presented.
However, only Navathe et al. (1986) deals with scaling conflicts
by the introduction of conversion functions and conversion
tables. Several integration conflicts are not covered by the
approaches as none of them distinguishes between class and
type integration explicitly.

We saw that the dynamic aspects of object oriented data
models are not supported. Only Geller et al. (1992) shows an
approach to solve method conflicts at signature level but cannot
handle the semantics of the methods. None of the inspected
methodologies are aware of conflicts in the static - dynamic
domain.

Our methodology is based on the approaches sketched
above. However, we aimed at overcoming the deficiencies of
these methods. So our methodology detects and solves all
conflicts detected and solved by these other methods but
furthermore it distinguishes between class and type integration
explicitly, detects and solves method conflicts at signature level
and in the semantics of the methods as well as conflicts arising
in the static - dynamic domain.

4. A SKETCH OF THE UNDERLYING DATA MODEL

In this section we briefly describe the data model on which
our considerations are based (Dobrovnik and Eder, 1993a and
1993b). A schema in our data model consists of type definitions
and class definitions. Like in other approaches we distinguish
between types and classes. Types represent intensional
information, while classes denote extensional information. So
types describe the structure of objects and values, in particular,
which components (instance variables) they consist of, which
methods can be applied to them, and the signature as well as the
implementation of methods.

Types are defined in the context of an inheritance lattice for
structural inheritance. If we define a type t to be subtype of a
type s, we mean, that the type t inherits all the structural
information (components, signature and implementation of
methods) from its supertype. In the definition of the subtype we
can add additional components and additional methods.
Components and methods inherited from the supertype can be
override whereby we assume that the inheritance lattice forms a
subtype hierarchy in the sense of covariant subtyping, i.e.
wherever we can use an object of a certain type we also can use
an object of one of its subtypes.

We define classes to be object containers, which can
include objects compatible with a ground type. The instance of
a class is the object set of the class. There may be no class,
exactly one class or many classes of a certain type. So, there is
no class automatically generated when a type is defined.
Operators on classes are provided to include an object in a class,

Johann Eder, Heinz Frank4



to remove it from the class, to test if an object is in a class and
to iterate over the object set of the class.

Classes can be arranged in a class hierarchy. Subclassing
means subsetting the object set of a class. An object in a certain
class C is also in all superclasses of C (instance inheritance).
But additionally, an object may be in any number of unrelated
classes if the ground type of the class is compatible with the
object’s type. The membership of an object to a class can be
made explicit by means of the operators mentioned above. The
second possibility to define the object set of a class is a
predicate associated with the class. Predicative subclassing is a
powerful means of automatically (re-)classifying objects.

In Dobrovnik and Eder (1993a and 1993b) a view
definition concept has been developed. The possibility to define
views is important for building large software systems as it
increases modularity and by logical data independence it reduces
maintenance due to schema evolution. An important aspect of
view integration is, therefore, how the component views can be
derived from the conceptual schema after the integration.
However, this aspect is beyond the scope of this paper.

5. INTEGRATING OBJECT ORIENTED VIEWS

5.1 Overview
For our approach we define three main phases for schema

integration, the preintegration phase, the class integration phase
and the type integration phase. Like every other methodology,
we do not present an algorithm in the sense of stepwise actions
rather as a way of thinking, as these phases are overlapping.
Especially the class and type integration are processes
depending on each other, because it is not possible to integrate
classes without integrating their types and vice versa. We
propose to begin at class level as it is easier to find semantic
relationships between classes than detecting structural equivalent
types. Nevertheless, our approach leads a way through the
difficulties of schema integration as we show the main
operations handling such difficulties.

Now we give a brief overview of our approach, divided
into the main phases and the main steps within each phase.
Preintegration: General conflict analysis according to types,
classes, type components and methods in order to detect obvious
conflict situations.
Class Integration: Semantic analysis, beginning at class level
(partially parallel also at type level) in order to find
relationships between classes, which can be classified as:

not disjoint classes: superclass integration, type
integration, class integration, subclass integration

semantically equal but disjoint classes: superclass
integration, type integration

redundant classes: superclass integration, type integration,
class integration, subclass integration

Type Integration: Structural analysis in order to find equivalent
types.

type integration
solve structural conflicts
integrate supertypes -> type integration

integrate type components ->type component
integration

integrate methods -> method integration
integrate static - dynamic domains -> static -

dynamic integration
type merging
integrate subtypes -> type integration

integrate corresponding classes -> class integration
As an example we choose to model two different views of

a car dealer, the view of the selling office and the view of the
service office (figure 1).

In the following sections we refer to this example in figure
1 to show the main steps in object oriented view integration.
Boxes represent types, cycles are classes. Each type (with
exception of AddressT) has at least one class. Type hierarchies
are represented with an arrow whereas class hierarchies are
represented with a dashed arrow line. The basic data types are
defined as I for integer, S for string and D for date. Due to the
lack of space we can only present a small example and had to
skip the methods.

5.2 Preintegration Phase
During the preintegration phase we propose to do a naming,

structural and scaling conflict analysis to solve obvious
problems. In the example, both types, PersonT and AdressT
contain an attribute describing the zip code of a city but named
differently, zip and zipcode. These attributes can be renamed
easily. Also a structural conflict occurs as both have different
types. We have to come to terms about the type of these
attributes in the conceptual model, say defining both as an
integer.

Searching and solving such conflicts should be done very
carefully as a lot of useful information emerges during this
process. This information can be used within the class
integration phase to find relationships between classes of the
different schemas. The types EmployeeT from the service view
and StaffT from the sales view are obvious semantically equal
because they describe both members of the modelled
organization, although their types seem to be very different.
These types and the corresponding classes, therefore, seem to be
good candidates for integration.

The result of the preintegration phases is not only a set of
schemas better prepared for the following integration phases but
also information on how to continue.

5.3 Class Integration
During class integration the classes have to be semantically

analyzed to find relationships between them. Of course, it is
difficult to find such relationships but there are some reference
points to detect them, e. g.

extensions of the classes, EmployeeC and StaffC contain
both members of the organization such as salesmen, secretaries

similar names of the classes are a possible way to find
relationships

the information which was collected during the
preintegration phase

Johann Eder, Heinz Frank5



a domain model of the organization (Eder and Rossak,

PersonT

Attributes: name (S), zipcode(I),
street(S), city(S), birth_date(D)

EmployeeT
Attributes: entry_date(D)
insurance_no (I)

SecretaryC

PersonC

CarT
Attributes: car_no (I), name(S)
p_h (C), kilometer (I) CarC

Attributes: no (I), date(D), price (I)
car (Object Of CarT),
mech (Object Of EmployeeT)

StaffT

SalesmanT SecretaryT
Attributes: turnover (I)

StaffC

SalesmanC SecretaryC

BillT

BillC

PurchaseT
Attributes: no (I), date(D),
car (Object Of CarT), sales−
man (Object Of SalesmanT)

PurchaseC

MechanicianC

Attributes: zip (S), street (S)
city (S)

CarT

CarC

Old_Car_T

Old_Car_C

New_CarT

New_CarC

Attributes: car_no (I), name (S),
h_p (I), price (I), consumption (I)

Attributes: supplier (S), Attributes: km (I), condition (S)
last_owner (S)

Sales View

Service View

Attributes: name(S), age(I)
address(AddressT)

AddressT

EmployeeC

Attributes: insurance_no (I)

Figure 1: Graphical representation of the service view and the sales view

1992)
Relationships between classes can be classified as follows:

semantically equal classes with partial different types
which are not disjoint, e.g. CarC of service view and CarC of
sales view

semantically similar classes which are disjoint, e.g.
MechanicC of service view and SalesmanC of sales view

redundant classes (but probably different in types), e.g.
the secretary classes of both schemas, which contain equal sets
of objects

After having detected a relationship between two classes
naming conflicts must be solved (if this has not yet been done).
According to the above classification different solution strategies
are usable.

semantically equal, not disjoint classes: By this we mean
classes where the intersection of the extensions is not empty. In
our example the classes StaffC of the sales view and
EmployeeC of the service view are candidates for such an
integration. To integrate such classes the following steps are
necessary:

integrate their superclasses. In the example first the
PersonC as superclass from EmployeeC has to be restructured

(as StaffC has no superclass).
integrate the different class types, i.e. the EmployeeT and

the StaffT of our example
integrate the involved classes, by establishing a common

class hierarchy
integrate their subclasses, in our example the classes

MechanicianC and SecretaryC of the service view and
SalesmanC and SecretaryC of the sales view.

semantically similar, but disjoint classes: Semantically
equal classes with an empty intersection of their extensions can
also be integrated. Such classes describe equivalent real world
entities but none of them can be in both classes. We refer to the
classes SalesmanC and MechanicC in our example. Both contain
members of the modeled enterprise but a salesman can not be a
mechanic and vice versa. To integrate such classes first their
types have to be integrated and, second, either two classes of the
adapted type are defined or one class is established, if the
classes can be derived by a selection (see selection constraint in
section 2.3).

redundant classes: Redundant classes are classes
representing the same set of real world entities, in our example
the two classes SecretaryC are candidates for such an
integration. After solving a possible naming conflict (if this has

Johann Eder, Heinz Frank6



not yet been done in the preintegration phase) the following
steps are necessary:

integrate their superclasses. According to our example the
classes PersonC and StaffC have to be integrated. Note that the
superclass integration might just be done during the integration
of semantically equal classes with a common set of extensions.

integrate the different class types, e.g. EmployeeT and
SecretaryT

integrate the two classes, i.e. one class is dropped
integrate the subclasses

As we have seen not all possible steps are necessary to
integrate classes. Because of the strong recursive character of
our approach some of the steps are probably already made (e.g.
superclass integration or naming conflicts).

5.4 Type integration
Within the type integration phase the structure of the

involved types is analyzed in order to find a common type
agreement between the schemas. For a more detailed discussion
of structural integration we refer to Geller et al. (1992), who
show how types with full structural correspondence and with
partial structural correspondence can be integrated. Here we
present only the main approaches to integrate class types.

Suppose two types have to be integrated, e. g. because a
relationship between the corresponding classes exists, then the
following steps are necessary:

handle naming conflicts
integrate the supertypes
solve structural conflicts with respect to type components,

methods and static/dynamics conflicts
merge types to obtain a common type hierarchy
integrate the subtypes
integrate the corresponding classes with the class

integration step
Having found a common type hierarchy also the

corresponding classes must be integrated.

5.4.1 Solving structural conflicts. During the structural
analysis step a common type agreement between the integrated
types must be found. To obtain a common type hierarchy all
parts of the types have to be integrated. Therefore, we
distinguish:

type component integration. By type components we
mean the static part of a type. A type component may be a
(complex) value or a reference to other objects.

method integration. Several conflicts with respect to
methods can occur, such as different, overlapping or redundant
methods. The detection of equivalent methods is far from trivial.
Formal approaches (formal specification methods) are
appropriate as well as a semantic evaluation through the
developer or analyzer.

static/dynamic integration. For a definition of
static/dynamic integration we refer to section 2.2.

5.4.2 Type component integration. For the integration
of values and object references we refer to Geller et al. (1992),
Navathe et al. (1986) and Kim and Seo (1991), where

algorithms and approaches are presented to deal with naming
conflicts, data type conflicts and scaling conflicts.
As an illustration remember the zip code example presented in
the preintegration phase. The attribute address of StaffT and the
attributes zipcode, street and city of the PersonT are equal and
must be integrated, too. One possible solution is to define a type
AdressT for the conceptual model. PurchaseT and BillT are
similar types and should be integrated as they describe similar
real world objects. The referenced object of both types (e.g. an
object of SalesmanT in PurchaseT and an object EmployeeT in
BillT) are similar and the classes SalesmanC and EmployeeC
their types SalesmanT and EmployeeT have to be integrated.

5.4.3 Method integration. The integration of different
methods is a very difficult part of object oriented schema
integration. Beyond the static description of methods (i. e. the
signature) also the semantics of methods have to be integrated.
The conflicts at signature level, such as naming conflicts, data
type conflicts, scaling conflicts, are similar to those in type
component integration and, therefore, the same detection and
solution strategies are applicable. For the more difficult semantic
integration an informal approach by analyzing the method
operation as well as a formal way is appropriate to detect
relationships between methods. Such relationships can be
classified:

methods with identical semantics: the conceptual model
contains only one method

role-related methods, describing a common generic
method, e.g. methods for computing the age and the
employment time of a person, as they both compute the time
between a given date and today. The conceptual model contains
only that generic method.

equivalent methods, which compute similar results but
differ semantically. E.g. the consumption of a car is computed
in continental Europe as liters per hundred kilometers but as
miles per gallon in the USA. Both methods are equivalent
although the results are semantically different. The introduction
of conversion functions or method overriding in the definition of
the external schemas are appropriate solution strategies.

overlapping methods: a method from type A contains
(probably only partially) one or more methods from the
equivalent type B, e.g. a method computing the sum of a bill
including taxes and one without taxes. Task splitting or explicit
method redundancy solve such conflicts.

general - special methods: a method from type A
performs a more special task than a method from type B.
Although the detection of a "method hierarchy" is a very hard
problem, a schema integration methodology should take care
about it. Method overriding within the type hierarchy is a
possible solution. For example a method computing the area of
a rectangle is much more general than one computing the area
of a square.

A detailed discussion of method integration and finding
relationships between methods including the comparison of
formal specifications is subject of ongoing research.

Johann Eder, Heinz Frank7



5.4.4 Static/dynamic integration
A static/dynamic conflict occurs when the same information

is stored as a static attribute in one schema and as a computed
attribute (method) in a different schema. In our example the
attribute age of StaffT and the method age of PersonT (not
shown in figure 1) represent such a conflict situation. As
solution strategies for such kinds of conflicts are possible:

drop either the attribute or the method
store the information redundantly (as attribute and as

method)

5.4.5 Type merging
Types are merged after all structural conflicts are solved,

i.e. a single type hierarchy is formed. The methodologies for
structural type integration, specialization, generalization and
aggregation are well described in the literature, especially we
refer to Geller et al. (1992).

6. CONCLUSION AND FURTHER RESEARCH

We presented a classification for the problems or conflicts
which have to be covered by schema integration methods for
object-oriented databases. An analysis of such techniques in the
literature showed that, in particular, the integration of methods
and the distinction between types and classes are hardly
supported. We presented a framework for a schema integration
methodology which is tailored towards full object oriented
datamodels. The integration of formal and semiformal
techniques for the comparison of methods is subject of further
research, as well as the application of domain modeling for the
search of similarities between schemas.

REFERENCES

Ahmed, R., De Smedt, P., Du, W., Kent, W., Ketabchi,
M., Litwin, W., Raffi, A. and Shan, M.: "The Pegasus
Heterogeneous Multidatabase System", IEEE Computers,
December 1991, pp. 19-27

Batini, C. and Lenzerini, M.: "A Methodology for Data
Schema Integration in the Entity Relationship Model", IEEE
Transactions on Software Engineering, November 1984, pp.
650-664

Batini, C., Lenzerini, M. and Navathe, S.: "A Comparative
Analysis of Methodologies for Database Schema Integration",
ACM Computer Surveys, December 1986, pp. 323-364

Breitbart, Y., Olson, P. and Thompson, G.: "Database
Integration in a Heterogeneous Database System", in
Proceedings of the International Conference on Data
Engineering, IEEE, 1986, pp. 301-310

Chen, P.: "The Entity-Relationship Model - Toward a
Unified View of Data", ACM Transactions on Database
Systems, March 1976, pp. 9-36

Dobrovnik, M. and Eder, J.: "View Concepts for
Object-Oriented Databases", in Proceedings of the 4th
International Symposium on Systems Research, Informatics and
Cybernetics, Baden Baden, 1993a

Dobrovnik, M. and Eder, J.: "A Concept of Type Derivation
for Object-Oriented Database Systems", in Proceedings of the
Eight International Symposium on Computer and Information
Sciences (ISCIS VIII), L. Gün et. al. (eds.), Istanbul, 1993b

Eder, J. and Rossak, W.: "Using a Data-Oriented Approach
to Decide on Similarity of Objects During Domain Analysis" in:
R. Trappl (ed.): "Cybernetics and Systems Research ’92, Vol. 1,
World Scientific, 1992, pp. 81 - 88

Geller, J., Perl, Y., Neuhold, E. and Sheth, A.:"Structural
Schema Integration with full and partial correspondence using
the Dual Model", Information Systems, Vol. 17, No. 6, 1992,
pp. 443-464

Gotthard, W., Lockemann, P. and Neufeld, A.: "System-
Guided View Integration for Object-Oriented Databases", IEEE
Transactions on Knowledge and Data Engineering, February
1992, pp. 1-22

Kim, W., Choi, I., Gala, S. and Scheevel, M.: "On
Resolving Schematic Heterogeneity in Multidatabase Systems",
Distributed and Parallel Databases, July 1993, pp. 251-279

Kim, W. and Seo, J.: "Classifying Schematic and Data
Heterogeneity in Multidatabase Systems", IEEE Computer,
December 1991, pp. 12-18

Navathe, S., Elmasri, R. and Larson, J.: "Integrating User
Views in Database Design", IEEE Computers, January 1986, pp.
185-197

Schrefl, M.: "A Comparative Analysis of View Integration
Methodologies", in R. Wagner, R. Traunmüller, H. Mayr (eds.):
"Informationsbedarfsermittlung und -analyse für den Entwurf
von Informationssystemen", Fachtagung EMISA, 1987, pp. 119-
136

Sheth, A. and Larson, J.: "Federated Database Systems for
Managing Distributed, Heterogeneous, and Autonomous
Databases", ACM Computing Surveys, September 1990, pp.
183-235

Tsichritzis, D. and Klug, A. (eds.): "The ANSI/X3/SPARC
DBMS Framework: Report of the Study Group on Database
Management Systems", Information Systems 3 (1978). AFIPS
Press

Wegner, P.: "Dimensions of Object-Oriented Modeling",
IEEE Computers, October 1992, pp. 12-20

Wiederhold, G.: "Mediators in the Architecture of Future
Information Systems", IEEE Computers, March 1992, pp. 38-49

Wiederhold, G., Wegner, P. and Ceri, S.: "Toward
Megaprogramming", Communications of ACM, November 1992,
pp. 89-99

Johann Eder, Heinz Frank8



Appendix 1: Comparison Table

Navathe Batini Gotthard Geller Eder

Data Model E-C-R E-R CERM Dual Model OODB

Representation informal informal informal informal informal

view integration + + + + +

schema integr. + - + - +

class/type integ. - - - not explicit yes

Naming Conflicts renaming implicit renaming

Object/Classes Navathe, Batini, Gotthard, Eder Geller

Types Eder Navathe, Batini, Gotthard, Geller

Attributes Navathe, Batini, Gotthard, Eder Navathe, Batini, Gotthard, Geller

Methods Eder Navathe, Batini, Gotthard, Geller

Scaling Conflicts conversion functions/table

Attributes Navathe, Eder

Methods Eder

Structural Conflicts transformation transformation primitive transforming rules

Object/Class Batini Gotthard Geller, Eder

Types Gotthard Geller, Eder

Attributes Gotthard Geller, Eder

Methods (Eder)

Static/Dynamic Conflicts Eder

Johann Eder, Heinz Frank9



Integration Constraints Navathe Batini Gotthard Geller Eder

class/object identity constraint + +,not
explicit

+ + +

attribute identity constraint + +, not
explicit

+ + +

method identity constraint - - - - +

subclass, selection constraint + - - + +

subtype constraint - - - + +

Redundancy removal

redundant classes/objects merge to
one entity

merge to
one entity

integration
primitives

structural
integration

structural
integration

redundant types - - - -"- -"-

redundant attributes + + integration
primitives

-"- -"-

redundant methods - - - -, not
explicit

method
integration

Schema enrichment

type/class/object relationships categories introduce
new

relation

introduce
new

relation

+ +

component relationships relation
merging

schema
restruct.

schema
restruct.

+ +

method relationships - - - - method
integration

Johann Eder, Heinz Frank10




