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Abstract

This paper describes the development rationale and the architecture of a prototypical expert-database
system. Knowledge processing capabilities of SQL were enhanced by extending the language by recursive
views. This work is based on an evolutionary approach; smooth integration with the base language was
an important development aim.

After a discussion of the main design alternatives, the architecture of a prototype is presented. Finally the
progress of the project is described and possibilities for further extension are indicated.

1 Recursive Views

1.1 Motivation

A host of modern applications demand knowledge processing capabilities in combination with
the support of large scale volume data processing capabilities and multi-user support for
concurrent access and flexible combination of persistent information as provided by todays
data base systems. But classical expert system shells lack important features needed in
conjunction with bulk transaction processing, support for persistence, and integrity
preservation over long spans of time. Hence, systems supporting multi-paradigm applications
become increasingly important.

1The work on this project was partly supported by the Austrian Fonds zur Förderung der wissenschaftlichen
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At the time this project started, various options to achieve the above aim have already been
proposed in the literature (see e.g. [Gall81, Gall84, Brod86, Kers86, Wied 86]). They can be
classified into three broad categories:

- extensions of logical programming languages or expert system shells by
appropriate permanent storage management (back-end storage management);

- development of database systems with "logical" query languages;
- extensions of database systems by "reasoning facilities".

In the project on which we are reporting here, the latter approach had been adopted.
However, we wanted to follow this approach in such a way that we could fully build SQL’s
high acceptance in the marketplace. To achieve this aim, a solid formal definition of certain
SQL features became necessary before searching for an adequate linguistic and architectural
design of such an extension. While the formal aspects have been reported already, this paper
presents the architectural considerations which guided this project.

The choice for this approach has been founded on the consideration that relational database
systems enjoy high penetration into a host of application areas. One reason for this success
surely is the widespread use of standard database languages such as SQL [SQL86,Date87].
SQL can be characterized as an end user oriented, mainly declarative language which plays
a central role in the database field, even in spite of its well known deficiencies [Date87].

One of the most important restrictions of SQL is its lack of computational completeness
[Aho79]. So, an important class of systems such as knowledge based systems or decision
support systems, but also technical systems demanding special search characteristics
[Boud92], are not well supported. A particular reason for this deficiency is that recursive
problems cannot be adequately attacked by means of standard SQL. But recursion plays an
important role in deductive systems. Two of the most prominent textbook examples for this
class of problems are path problems and bill of material calculations. Hence, the main idea
of the XPL*SQL-project was to extend the capabilities of SQL in such a way that the
extended language provides good support for a broad range of recursive problems.

The linguistic mechanism we needed for obtaining our aim was the well known view
mechanism. It allows to create virtual relations by declaring a rule that describes how to
compute them. The view construction mechanism has been extended to support recursive
views.

1.2 General Transitive Closure

The transitive closure T of a relation R is defined as [Eder90a]:

LFP(T = union(R,COMP(R,T)))

COMP means composition and is an equijoin where the join-attributes are eliminated by
projection. The least-fixpoint operator LFP evaluates T to the smallest set, for which the
equation is valid.

To demonstrate this concept, let us consider a binary relation flight(from,to), which associates
cities that can be reached with one single flight. This relation clearly is transitive, so it makes
sense to compute the transitive closure connection of flight, which contains all flight
connections between two cities, formally:



LFP(connection = union (connection, flight flight.to=connection.from connection))

It has to be pointed out, though, that the concept of transitive closure of a relation may not
contain any attributes pertaining to the specific association just established. E.g. in the
example, it is not possible to total the distance or the duration of connections. Certainly, this
is a main disadvantage of pure transitive closure and makes it unsuitable for a large class of
applications. Therefore, the concept was generalized [Eder90a,Eder90b] in the following way:

LFP(GT = union(R,COMPEX(R,GT)))

There, R is a base relation as before, GT is the generalized transitive closure. The main
difference between transitive closure and general transitive closure lies in COMPEX.
COMPEX stands for composition-expression and is a selection on the carthesian product of
R and GT, combined with a projection which may also contain arithmetic expressions. The
introduction of this composition-expression allows the definition of attribute values as
computable functions, whereas the generalization from the equijoin to a selection on the
carthesian product allows to formulate non-trivial conditions for linking tuples. An example
for general transitive closure will be given in a subsequent section.

1.3 Integration of Generalized Transitive Closure into SQL

General transitive closure is a special form of a linear recursive deduction rule. When one
considers SQL, there is a mechanism which allows for the definition of derived relations,
which are better known as views. A view is a virtual relation whose extension is computed
according to a declarative specification, the view definition, which can be seen as a deduction
rule. Whereas one could argue that from such a perspective, SQL is a language with
deductive components, there is one main shortcoming of views in standard SQL. The
language explicitly forbids to reference the view to be defined in the definition part itself, i.e.
recursion is not permitted.

Considering the fact, that views can be interpreted as nonrecursive deduction rules, and that
views are a well understood feature of SQL which is broadly used in practice, it seems to be
promising to extend the view concept and to explicitely allow the definition of recursive
views. This evolutionary approach not only integrates very well with the basic language, it
has as main advantage, that it does not require any change in the application pattern. Neither
a user querying a view, nor any special tool (application generator, report writer, ...) using
those views, need to take special consideration as to whether a view is defined recursively or
in the usual way.

However, there are some minor deficiencies one has to bear in mind using recursive views.
In general, recursive views may not be updated, queries on them can take longer to complete
than on conventional views, and the results of a query may be infinite. While the first and
second points are inherently connected with recursive views, the possibility for infinite results
requires special treatment (see [Eder90a]).

Nevertheless, besides increasing the expressive power of the language, this specific approach
meets some important criteria for extending a language [Mitt88]. The principle of recursive
views is easy and safe to use and it incorporates a minimal number of new constructs. The
new feature is orthogonal to existing language elements, it can be formally described, and it
can be optimized to some extent.



1.4 Syntax of Recursive Views

The syntactical extensions of the definition of SQL are mainly captured in one single place,
namely the recursive-view-definition-statement which is presented (in a slightly simplified
form) in Figure 1. Other aspects of the language, notably the select statement, remained
unchanged.

A simple example of the application of the new construct can be found in the appendix. Now
we briefly give an informal description of some of the nonterminals mentioned in Figure 1.
For a more thorough treatment, we refer to [Eder90a, Eder90b, and Dobr91].

The attributed-column-list extends the standard column-list of SQL. With INC and DEC
respectively, the specification of monotonous characteristics of certain attributes is allowed.
This information is crucial in optimization and assuring the finiteness of certain queries. The
set-type specifies, whether a certain view should be treated as a set-relation, having only
distinct tuples and where duplicates have to be eliminated, or as a multiset-relation, where
duplicate tuples must be taken into account.

It should be noted that recursive views can be used as targets of queries like any other table
or conventional view (with some minimal restrictions, see [Eder90a]). As small as the
syntactical extensions to standard SQL for the definition of recursive views may be, the
possibility to use recursive views in virtually all contexts where ordinary views are permitted
implies that fundamental changes in the SQL-interpreter must be made.

statement ::= ... |
create-view-statement |
create-recursive-view-statement |
...

create-view-statement ::=
CREATE VIEW viewname [ (column-list) ]
AS SELECT [ set-type ] select-list
FROM table-reference-list
[ where-clause ]
[ group-by-clause ] [ having-clause ];

create-recursive-view-statement ::=
CREATE VIEW viewname (attributed-column-list)
AS [ set-type ] FIXPOINT
OF table-name [ (column-list) ]
BY SELECT select-list
FROM table-reference, view-reference
where-clause;

attributed-column-list ::=
column-name [ INC | DEC ] [, attributed-column-list ]

set-type ::=
ALL | DISTINCT

Fig. 1: Syntax Extension



2 Considering Architectural Alternatives

The main design variants we investigated have been to build an entirely new system
completely from scratch, to integrate the new functionality into an existing system, and to
construct an add-on or a frontend to an operational system. We will weigh these alternatives
against each other in the sequel.

In deciding on the architectural alternative to be pursued for the proposed extensions, we
considered technical as well as economic aspects. The reasons for considering technical
arguments need no further explanation. The economic aspects have been considered in spite
of us being located at a university institute. Since our research is mainly sponsored by
governement money, we considered it important that its results would be at least in principle
exploitable by some local software producer or software house without placing undue risks
on the developer of customer of such a system.

2.1 Build from Scratch

The design and implementation of a new DBMS, which supports the concept of recursive
views would not only be challenging, but would also offer a wealth of advantages:

* No restrictions from existing systems would have to be taken into account.
* The whole system could be constructed with special considerations to the

deductive component and its implications.
* The recursive views would be deeply integrated into the DBMS (Fig. 2).
* The highest degree of optimization and, hence, highest performance, would be

possible.
* One single interface for tools and application programs could be defined and

the tools provided could support the complete language.

Fig. 2: Build Totally New System

The main drawbacks of this approach are the extremely high costs and the long development
time that would be needed to build a DBMS totally from scratch. A great deal of the effort
would be used for the design and implementation of functional aspects, which would have
been only of subordinate interest in the given context. These aspects have been particularly
important in our design considerations. Not only, that we didn’t feel in a position to acquire



the ressources for a full fledged development of an operational knowledge-base management
system which would show all properties of a modern database system. We have even been
sceptical about our own greediness, which might arise from good ideas in several directions
off the mainstream line of thought, endangering the project to result in a never ending
venture.

Besides these aspects, several aspects which might stem from the particular economic context
(small country with moderate DP-industry only) in which our university is placed were
considered. There is no large scale international vendor of data base systems around. Hence,
the acceptance of a system based on a full integration of the database and knowledge-base
aspects of the system with managers responsible for the applications to be supported by this
system would have to be projected as being very low. The risk, that the developer of such a
huge system might not survive would probably be too high for a responsible DP-manager.

Further, the evolutionary idea behind the construct and the language extension would be
reduced to the appearance of such a system to the user (investment in training and education),
since changing the vendor of one’s DBMS would rather have the flair of a revolution than
that of a smooth change in most of the cases.

2.2 Extending an Existing System

The internal extension of an existing system, which is well established in the market, has a
much higher degree of potential for success. In contrast with the development of a totally new
system, this approach poses major restrictions on design decisions, because of the high
amount of investments in the basic SQL-DBMS, which must be protected. Yet it is possible
to construct and present a uniform interface for users, application programs and tools. The
integration of recursive views into the system and the supporting tools could be quite strong
(Figure 3).

Fig. 3: Embedded Development

The extension based development would allow for moderate costs. It would also have a much
higher acceptance in the market, because it would not look like a major change in the
computing environment. The impact of such a system could be compared to that of a new
release of a DBMS, just incorporating some (very nice) new features. However, one has to
see very clearly, that such an argument would be deceiving, since the coupling between the
extensions and the base-DBMS would have to be so tight, that with most modifications (new



versions) of the base DBMS, a new version of the XPL-extension would also have to be
supplied. This, however, would also require not only the adequate economic resources but
also very intimate contact between the developer of the DBMS and the developer of the
expert system extensions.

The main disadvantage of this kind of extension is that the developper of the extension must
have full access to all internals (source and documentation) of an existing DBMS, and that
one would have to constantly adapt the extension to the new releases of the database system
itself, which usually would mean that if the developer of the extensions is not also the
developer of the base system itself, he would be heavily dependend on him.

2.3 Add-on to some Existing System

This alternative form of enhancement of a DBMS is implemented in the same way as every
other application program (Figure 4). Therefore, (virtually) no knowledge of the underlying
DBMS internals is required.

This variant has a lot of disadvantages, if seen from a solely technical point of view. The
uniform interface to other application programs and the possibility to make use of the
language extension in the tools supplied with the DBMS must be given up. Further, the user
has to make right from the beginning a choice, whether working with XPL or with pure SQL
is needed. An awkward consequence of this choice would be that in cases, where recursive
views and base views have to be used concurrently, the results of the recursive views would
need to be materialized and explicitly transfered into the "ordinary" database management
system, or the add-on has to be powerfull enough to process also data contained in the
conventional data base of stored facts. This later option would require however full SQL
capabilities and, hence, would lead us to the fourth option.

Fig. 4: Add-On to Existing System

2.4 Frontend to an Existing System

The merits of this option become directly visible, when considering the shortcommings of the
adds-on alternative. Here, we do not consider the extension to be just an add-on where the
clients (user, application programs and tools) have to switch between the base system and the
enhancement. We rather assume it to be a real front end, allowing the clients to access the
system in a completely transparent way (Figure 5).



The advantage of this solution would be - like with the previous case - that it could be
implemented and maintained with comparatively moderate effort. Further, the interfaces to
both, the data base management system it utilizes underneath, as well as to applications and
tools would be clear cut. Therefore, no severe dependence between the developer of the
DBMS and the developer of the XPL-extension would come up. Hence, even in the economic
and institutional environment in which this development had to be undertaken (and for which
it had been targeted), this approach seemed feasible.

Of course, there is also a price to be paid for such an architectural decision: Any SQL
statement needs to be first analyzed by the XPL system and in case it is an "ordinary" SQL
statement, the same analysis has to be repeated within the DBMS itself. Given the
predominant structure of SQL-statements, this overhead would be marginal though. Hence,
performance surely will be suboptimal due to the partly duplicated execution of operations
and due to the coarse tuning of the frontend with respect to internals of the base system.
Additionally, main components of the SQL-DBMS must be reimplemented (in a simplified
form) in the frontend itself.

Fig. 5: Frontend to existing System

Despite the shallow integration of the frontend, it will not be completely independent from
the SQL-DBMS and it will also not be portable per se, since the (highly implementation
specific) catalog of the underlying system must be accessed.

From a broader perspective, however, this model doesn’t look so bad as stated above,
especially if one considers the possibility to market it as a special "preprocessor". This poses
absolutely no hidden risk for potential customers. They can continue to use their existing
DBMS, existing applications are totally unaware of the extended functionality whereas new
applications can make instant use of the frontend. Since the development costs for the
frontend itself can be held at a relatively low level, it would also be affordable.

This model also allows for real third-party development of the system in contrast with the
internal extension of an existing system. Besides the fact that the specifications of a DBMS’s
external interfaces are publicly available, they also tend to be relatively stable, as compared
to internal interfaces. Further, the evolutionary risk is reduced by the fact that new releases
of systems are usually upwards compatible. Hence, even if the developer of the frontend
cannot keep pace with the developer of the main system, the detrimental effects on the
applications will be limited.



3 Architecture of the Prototype Actually Implemented

In this section, we sketch the architecture and the components of the implemented prototype,
which is a frontend to an existing system (Figure 6). This decision is based on several
reasons. First, we had no access to all internal information of an existing DBMS which would
be necessary to extend it. Second, we had no intention to put much effort into components
which are not in the center of our interest. Further, we didn’t feel in the position to develop
YADE (yet another database environment) and to become another DBMS vendor.

The aim of the prototype was to provide an extended SQL-based command interface, which
allows one to define and query recursive views in addition to the functionality of standard
SQL, and which can be used for further study.

Fig. 6: Architectural Overview

The user interface component consists of a very simple line editor, which can be used to enter
the extended data definition and data manipulation commands, and a rather rudimentary
formatting capability for query results. Error messages are also displayed through these
components. The user interface is solely character based.

All SQL commands coming from the user interface are fed into a lexical analyzer which
transforms the commands from the textual form into an attributed stream of tokens.

This stream of attributes and tokens is the input for the parser. This component analyzes the
stream for its syntactical correctness and constructs a syntax tree representing the structure of
the command.



The semantic analysis component processes the syntax tree and extends it with new attributes.
Here, not only name resolution of database objects (tables and attributes) by means of queries
performed by a catalog component is carried out, but also the semantic correctness of the
command is checked (at least to a certain degree).

The command executor decomposes the (possibly complex) command into smaller units,
which can be executed in isolation from other units. Each unit is classified, whether it
references a recursive view or just makes use of standard tables and views. If recursive views
are referenced, termination and efficiency become key issues. To allow for the broadest set
of safe applications [Eder90a], we check what expressions can be propagated into the
computation. What is to be propagated is determined in a special part of the command
executor. The thus rearranged statements are then ready for recursive evaluation. The results
of this evaluation are stored in temporary tables, which are maintained by the base DBMS.

Knowing the temporary tables just computed, the command executor reconstructs an SQL-
statement from the syntax tree. This SQL-command may not only be just a part of the initial
SQL-command, it may also differ from it. This difference is due to the fact, that the names
of the recursive views have to be substituted by the names of the temporary tables which
contain the evaluation results of the recursive views referenced. The modified statement will
be evaluated directly by the SQL-DBMS. Results and error messages are sent to the user
interface component.

Note, that up to this point in the analysis process, all SQL-statements need to be analyzed,
regardless of whether they do define or reference recursive views or not. The user does not
need to switch between two different systems, and the extension is totally transparent to him.

The catalog management component updates the symbol table, based on the information
contained in the system catalog of the underlying SQL-DBMS as well as in a special catalog
which is used solely for the storage and retrieval of the definitions of recursive views and
their corresponding attributes.

The view definition component computes the attribute dependency graph [Eder90a], which is
used to classify the attributes of the view. This classification information together with the
view definition is stored in the special catalog tables.

The recursive evaluator implements the algorithms to compute the results of recursive views
[Eder90a, Eder90b]. It uses information from the special extendend catalog (XPL*SQL-
catalog) and those constraints of the query at hand which can be propagated. The schema
information concerning the relevant temporary tables is passed as a parameter to the recursive
evaluator.

4 State of the Project

Currently, the implementation of a first version of the prototype is finished. It builds on the
ALLBASE DBMS, running under HP-UX. It allows to interactively define recursive views
and to query a database including tables, regular views and recursive views. Its actual design
and implementation took about six person month.

As extensions, we forsee that the prototype could be extended to offer a programming
interface allowing application programs to use the enhanced abilities of the system. A lot



more of semantic checks could be added and performed in the frontend itself. This would
allow for the detection of a large number of errors early in the interpretation process; errors
could thus be catched before a lot of time is consumed by the evaluation of recursive views.
This computation could be enhanced further by incorporating the propagation of additional
kinds of restrictions into the evaluation process.

Further work will include adapting the frontend to other DBMSs and to integrate further
extensions, namely extreme-value selections and aggregates. There are also plans to make use
of the enhanced functionality in the context of a software engineering environment, which
demands the ability to define and to use recursive views.

5 Assessment

The choosen architectural variant was adequate and allowed us to concentrate mostly on the
new and specific aspects of the system without forcing us to deal with lots of internals of
existing DBMS or tons of (unavailable) documentation. It was possible to demonstrate major
aspects of the concepts reported in [Eder90a, Eder90b] and to substancially increase the
expressive power of a relational DBMS with a rather limited effort.

We conclude that this architectural variant may be well suited when development takes place
under the assumption of a third party producer with limited resources. It poses few risks,
because it guarantees the highest possible independence from the vendor of the basic DBMS,
and promises rather short development time with moderate cost.

Appendix:

Example of General Transitive Closure

Consider a relation direct with the following schema

direct(from, to, km, mins, hops)

where each of its tuples represent a direct flight which starts in city from and is destined to
city to. The distance and duration of the flights are recorded in columns km and mins. The
attribute hops contains the number of intermediate landings, which is zero in all tuples of
relation direct, since we are considering direct flights only.

The following definition of a recursive view computes all possible flight connections between
all pairs of cities, summing up distance, durations and number of hops:

CREATE VIEW connection (from, to, km INC, mins INC, hops INC)
AS FIXPOINT OF direct
BY SELECT d.from, c.to, d.km + c.km, d.mins + c.mins, c.hops + 1
FROM direct d, connection c
WHERE d.to = c.from;

This view can be used as a query target like every other table or conventional view (with
some minimal restrictions, see [Eder90a]). A more complex example of an application of
recursive views in the context of CPM-charts can be found in [Dobr91].
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