
PLOP� A Polymorphic Logic Database Programming

Language

Johann Eder
Universit�at Klagenfurt
Institut f�ur Informatik

Universi�atsstr� ��
A����� Klagenfurt � AUSTRIA

February 	�
 	���

Extended Abstract

The language PLOP is a minimal language for studying polymorphism in a logical database

programming language by means of parametrization of predicate names� The main idea

is to introduce generic predicates which have two lists of parameters� While the second

list contains the usual arguments� the �rst list contains parameters which are used as

predicates in the rules de�ning the generic predicate� Through restriction in the use of

predicate parameters it is possible to give a model theoretic semantics in a two step �rst

order deduction� With the extensions we overcome the lack of predicate polymorphism in

deductive database languages and increase their expressive power�

� Introduction

Query languages for relational databases �Cod��� Cod��� are descendents of relational al�

gebra or relational calculus� a subset of �rst order predicate logic �GMN	
b�� They allow

the formulation of query expressions in which the only names allowed are the names of

database relations� To these languages we want to add well known powerful abstraction

concepts� i�e� naming and parametrization� In the following we will concentrate on re�

lational domain calculus� although this approach can also be applied to other languages

�ERMS����

Through the notion of views� naming had been introduced in relational languages to some

extents� Views can be seen as a name assigned to a query expression� and this name

can be used in other queries� However� the use of view names is restricted to avoid the

formulation of recursive queries� So the use of view names is more like the use of macros�

�

katja
Proceedings of the ISSEK-Workshop, Bled 1992



or like the use of subroutines in the sense of procedural programming� which does not �t

well in the concept of declarative languages � relational calculus in our case�

Languages for deductive databases� Datalog in particular �CGT	�� CGL���� extend rela�

tional calculus by allowing full use of the concept of naming in a declarative style� In

Datalog� names of views derived predicates� can be used in all query expressions like the

names of base relations� However� Datalog does not permit the concept of parametrization�

and thus leading to some disturbing shortcomings� especially the lack of polymorphism

�BI���� To give an example� Consider three base relations Trains� Flights� Streets each

with the same attributes fromCity� toCity� For formulating the views TrainConnection�

FlightConnection� StreetConnection i�e� the transitive closures of the respective relations��

in Datalog we have to de�ne three derived predicates with six rules� The rules only di�er

in the name of the base relation� However� because there is no concept for using predi�

cates as parameters� we can only use the text editor to take advantage of the conceptual

identity of the rules� Of course� this problem is even worse in cases where the rules are

more complex than our simple trabsitive closure example�

To overcome this problem we introduce the concept of predicate parameters in logic

database languages� To avoid some problems of higher order logic we use a many sorted

logic approach� so predicate names cannot be mixed with other arguments� Furthermore�

we restrict the use of predicate parameters with some security conditions in a way� that

we can de�ne the semantics in a two step �rst order deduction�

The syntax is based on Datalog syntax in Prolog style notation� It is extended with the

de�nition of generic predicates� which have two lists of parameters� the �rst list contains

predicate parameters� the second the usual arguments�

The following example gives a �rst impression of such programs�

Examples of Plop�Programs�

� tc defines the transitive closure of a binary relation

tc�R����X� Y� �� R���X� Y��

tc�R����X� Y� �� tc�R�	��X� Z�� R���Z� Y��

� is there a flight connection between vie and klu



� tc�direct�flights��vie� klu��

�



� who are the ancestors of john



� tc�parent��john� X��

The introduction of predicate parameters does not only add predicate polymorphism to

logic database languages but it also increases their expressiveness� With the extension

applied to strati�ed Datalog it is possible to formulate np�complete problems� With the

extensions of an in�nite integer type with the successor and predecessor function� the

language is Turing complete�

In the following sections we �rst de�ne the syntax of pure Plop and it�s model theoretic

semantics� We the discuss evaluation procedures for Plop and sketch some extensions�

� Syntax

��� Names

We �rst de�ne the following in�nite alphabets

� Const a set of constants

� Var a set of variables ranging over Const

� Pred for predicate�constants

� G�Pred a set of generic predicate names

� P�Var a set of Variables ranging over predicates

Constants are denoted by strings starting with a lowercase letter� variables by strings

starting with an uppercase letter� From the context it is always clear� whether a lowercase

string is a constant� a predicate constant� or a generic predicate name� and whether a

string with an upercase �rst letter is a variable or a predicate variable� For convenience

we use names for predicate variables ending in �n� where n is the arity of this predicate

variable�

With each predicate constant� each g�pred� and each predicate variable we associate a

positive integer� the arity of the predicate� With each g�pred we associate another integer

the p�arity�

�



��� Atoms� Literals� etc�

As usual we de�ne a term to be either a variable or a constant� and pt�� � � � tn� as literal�

where p is an n�ary predicate symbol and t�� � � � tn are terms�

Facts are literals� Rules are represented in the general pattern�

L� � �L�� � � � � Ln

Each Li is a literal� We call L� the head of the rule and L�� � � � � Ln the body of the rule�

A literal� fact� rule� or clause without any variable is called ground�

If p�� � � � � pn are predicate constants or predicate variables and c is a g�pred of p�arity

n� then cp�� � � � � pn� is an elementary p�term� If p�� � � � � pn are predicate constants or

predicate variables� or p�terms� and c is a g�pred of p�arity n� then cp�� � � � � pn� is a p�

term� c is called the main predicate of the p�term� The arity of a p�term is the arity of

it�s main predicate�

If s is an elementary p�term with arity n and t�� � � � � tn are terms� then st�� � � � � tn� is an

elementary g�literal�

We de�ne a g�literal generic literal� as being either a literal or an expression of the general

pattern ct�� � � � � tn�� where c is a predicate� a predicate variable� or a p�term of arity n�

and t�� � � � � tn are terms�

If a g�literal contains no variables� we call it ground� if it contains no predicate variables

we call it instantiated�

G�rules are represented in the pattern

G� � �G�� � � � � Gn

Each Gi� i � �� is a g�literal� G� is literal or an elementary g�literal�

A goal is an instantiated g�literal�

A Plop program consists of a set of facts and a set of g�rules� and a goal� The set of facts

is called the extensional database EDB� and the set of g�rules the intensional database

IDB�� No predicate of a fact is allowed to be predicate of a head literal of a rule of the

IDB�

For writing PLOP programs we use Prolog notation�

In the following we require the following safety conditions�

�� All facts are ground�

�� All variables occuring in the head of a rule must also appear in the body of a rule�

�� All predicate variables appearing in the body of a rule also appear in it�s head�






��� Rule Instances

A g�rule with all predicate variables instantiated with predicate names or ground p�terms

are called rule instances�

Due to third safety condition the substitution of predicate variables in the head of a rule

su�ces to specify the rule instances� So given an instantiated literal l with a g�pred p as

main predicate� we derive the set of instantiated rules for l by by substituting the predicate

parameters in all literals in all rules with p as main predicate of the head literal with the

predicate arguments of l�

��� Extensions of pure Plop

We de�ne extensions of pure Plop� evaluable predicates� and strati�ed negation the same

way they are de�ned in Datalog� However� in this paper we will concentrate on pure Plop�

� Model theoretic semantics

The Plop�Base is de�ned as the set of all predicates and all instantiated p�terms�

A Plop�Interpretation is a subset of the Plop Base�

A Plop�Interpretation is a Model for a Plop�program� i� it satis�es all g�rules� It satis�es

a g�rule� i� it satis�es all instances of that g�rule� and it satis�es an instance of a g�rule�

i� it holds� that if all instantiated� literals in the body of the rule are in PM� so is the

instantiated� head�literal�

Theorem� The intersection of two Plop Models is a Plop Model�

The least Plop model is the intersection of all Plop models�

The least Plop Model is a set of predicate names and instantiated p�literals� The intended

program of a Plop program is the set of all rules and the set of all instantiated rules

induced by the instantiated p�terms in the least Plop model� The intended program of

a Plop program does not contain any predicate variables� If we consider all instantiated

p�terms as strings denoting a predicate name� the intended program is a Datalog program

possibly an in�nite one due to recursive nesting of p�terms��

The semantics of a Plop program is now de�ned as the semantics of the intended program

interpreted as Datalog program�

�



� Evaluation

For evaluating Plop programs we have to distinguish di�erent cases�

�� �nite intended program

If the intended program is �nite� we can deduce the intended program in a �rst step

and evaluate the inted program in a second step� We check whether the intended

program is �nite by dedecting cycles in an extended dependency graph�

The de�nition of generic transitive closure is an example for a �nite intended pro�

gram�

�� partitionable program

In this class the number of rule instances is in�nite� However� it is possible to

partion the in�nite set of instantiated generic predicates into equivalence classes ac�

cording to their extensions� i�e� two instantiated generic predicates with identical

main predicate belong to the same equivalence class� if they are true for the same

substitutions� i�e� if their extensions are identical� We can then substitute instanti�

ated generic predicates of the intended program with the the member of the same

equivalence class with the least nesting depth� If the set of equivalence classes is

�nite� the intended program is replaced with an equivalent �nite program�

Example of a partionable program�

g�R����X�Y� �� g�p�R�����X�Z�� p�R����Z�Y��

p�R����X�Y� �� R���X�Y�� q�Y��


� g�r��X�Y��

It is easy to see that the intended program is in�nite� and fgpir��� pir�g is it�s set

of instantiated generic predicates� We can substitute pir� with pjr�� where j is the

smallest number such that pir� � pjr�� where � means extensional equality� As

the predicates p and q are base relations� and all constants in the possible ground

literals of pir� are also in p and q� fpir�g can be partitioned into a �nite set of

equivalence classes� and� therefore� the program is �nitely evaluable�

�� �nite evaluable program

�



This class is especially relevant for Plop programs with strati�ed negation� It uses

the fact� that if any literal in the body of a rule is empty� the other literals need

not be evaluated and thus the in�nite intended program is replaced by an equivalent

�nite one� It has to be noted� that this equivalent program can only be determined

during the evaluation and not beforehand�


� in�nite program

A fourth class remains� containing all programs which cannot be evaluated �nitely�

� Conclusion

In this paper a logic database language is introduced which extends relational calculus

with the abstraction concepts naming and parametrization� The language is based on

Datalog� it�s extensional� however can also be integrated in other query languages� The

extensions overcome the lack of predicate polymorphism of query languages� Therefore�

the main application of the extensions is supposed be the subclass of programs which yield

a �nite intended program�

Currently a prototype implementation of the language is under way� where the optimized

QSQ algorithm for the evaluation of Datalog programs �Vie	�� Vie		� is extended for

evaluating Plop programs� Furthermore� e�cient algorithms are developed to determine�

whether a Plop program can be evaluated �nitely�

References

�BI��� A�J� Bonner� and T� Imielinski� The reuse and Modi�cation of Rulebases by

predicate substitution� In F� Bancilhon� et al�� editors� Advances in Database

Technology � EDBT��� �Proceedings�� Springer�Verlag� �����

�CGL��� S� Ceri� G�Gottlob� and L�Tanca� Logic Programming and Databases� Springer

Verlag� New York� �����

�CGT	�� S� Ceri� G� Gottlob� and L� Tanca� What you always wanted to know about

Datalog and never dared to ask�� IEEE Trans� on Knowledge and Data Eng��

���� ��	��

�Cod��� E� Codd� A relational model for large shared data banks� Communications of

the ACM� ����� �����

�



�Cod��� E� Codd� Relational completeness of data base sublanguages� In R� Rustin�

editor� Data Base Systems� Prentice�Hall� Englewood Cli�s� New Jersey� �����

�ERMS��� J� Eder� A� Rudlo�� F� Matthes� and J�W� Schmidt� Data construction with

recursive set expressions� In J� W� Schmidt and A�A� Stogny� editors� Next

Generation Information System Technology� LNCS ��
� Springer Verlag� �����

�GMN	
b� H� Gallaire� J� Minker� and J�M� Nicolas� Logic and databases� A deductive

approach� ACM Computing Surveys� �� ��	
�

�Vie	�� L� Vieille� Recursive axioms in deductive databases� The Query�Subquery

approach� In L� Kerschberg� editor� Proc� Int� Conf� Expert Database Systems�

Charlston� ��	��

�Vie		� L� Vieille� From QSQ to QoSaQ� Global optimization of recursive queries� In

Proc� 	nd Int� Conf Expert Database Systems� Tyson Corner� ��		�

	




