Proceedings of the ISSEK-Workshop, Bled 1992

PLOP: A Polymorphic Logic Database Programming
Language

Johann Eder
Universitat Klagenfurt
Institut fur Informatik

Universiatsstr. 65

A-9020 Klagenfurt / AUSTRIA

February 12, 1993

Extended Abstract

The language PLOP is a minimal language for studying polymorphismin a logical database
programming language by means of parametrization of predicate names. The main idea
is to introduce generic predicates which have two lists of parameters. While the second
list contains the usual arguments, the first list contains parameters which are used as
predicates in the rules defining the generic predicate. Through restriction in the use of
predicate parameters it is possible to give a model theoretic semantics in a two step first
order deduction. With the extensions we overcome the lack of predicate polymorphism in

deductive database languages and increase their expressive power.

1 Introduction

Query languages for relational databases [Cod70, Cod72] are descendents of relational al-
gebra or relational calculus, a subset of first order predicate logic [GMN84b]. They allow
the formulation of query expressions in which the only names allowed are the names of
database relations. To these languages we want to add well known powerful abstraction
concepts, i.e. naming and parametrization. In the following we will concentrate on re-

lational domain calculus, although this approach can also be applied to other languages
[ERMS91].

Through the notion of views, naming had been introduced in relational languages to some
extents. Views can be seen as a name assigned to a query expression, and this name
can be used in other queries. However, the use of view names is restricted to avoid the

formulation of recursive queries. So the use of view names is more like the use of macros,

katja
Proceedings of the ISSEK-Workshop, Bled 1992

or like the use of subroutines in the sense of procedural programming, which does not fit

well in the concept of declarative languages - relational calculus in our case.

Languages for deductive databases, Datalog in particular [CGT89, CGL90], extend rela-
tional calculus by allowing full use of the concept of naming in a declarative style. In
Datalog, names of views (derived predicates) can be used in all query expressions like the
names of base relations. However, Datalog does not permit the concept of parametrization,
and thus leading to some disturbing shortcomings, especially the lack of polymorphism
[BI90]. To give an example: Consider three base relations Trains, Flights, Streets each
with the same attributes fromCity, toCity. For formulating the views TrainConnection,
FlightConnection, StreetConnection (i.e. the transitive closures of the respective relations),
in Datalog we have to define three derived predicates with six rules. The rules only differ
in the name of the base relation. However, because there is no concept for using predi-
cates as parameters, we can only use the text editor to take advantage of the conceptual
identity of the rules. Of course, this problem is even worse in cases where the rules are

more complex than our simple trabsitive closure example.

To overcome this problem we introduce the concept of predicate parameters in logic
database languages. To avoid some problems of higher order logic we use a many sorted
logic approach, so predicate names cannot be mixed with other arguments. Furthermore,
we restrict the use of predicate parameters with some security conditions in a way, that

we can define the semantics in a two step first order deduction.

The syntax is based on Datalog syntax in Prolog style notation. It is extended with the
definition of generic predicates, which have two lists of parameters, the first list contains

predicate parameters, the second the usual arguments.
The following example gives a first impression of such programs.

Examples of Plop-Programs:

% tc defines the transitive closure of a binary relation

tc(R/2)(X, Y) :- R/2(X, Y).
tc(R/2) (X, Y) :- tc(R/3)(X, Z), R/2(Z, Y).

% is there a flight connection between vie and klu?

?- tc(direct-flights) (vie, klu).

% who are the ancestors of john?

?- tc(parent) (john, X).

The introduction of predicate parameters does not only add predicate polymorphism to
logic database languages but it also increases their expressiveness. With the extension
applied to stratified Datalog it is possible to formulate np-complete problems. With the
extensions of an infinite integer type with the successor and predecessor function, the

language is Turing complete.

In the following sections we first define the syntax of pure Plop and it’s model theoretic

semantics. We the discuss evaluation procedures for Plop and sketch some extensions.

2 Syntax

2.1 Names

We first define the following infinite alphabets
e Const a set of constants

e Var a set of variables ranging over Const

e Pred for predicate-constants

G-Pred a set of generic predicate names

e P-Var a set of Variables ranging over predicates

Constants are denoted by strings starting with a lowercase letter, variables by strings
starting with an uppercase letter. From the context it is always clear, whether a lowercase
string is a constant, a predicate constant, or a generic predicate name, and whether a
string with an upercase first letter is a variable or a predicate variable. For convenience
we use names for predicate variables ending in /n, where n is the arity of this predicate

variable.

With each predicate constant, each g-pred, and each predicate variable we associate a
positive integer, the arity of the predicate. With each g-pred we associate another integer

the p-arity.

2.2 Atoms, Literals, etc.

As usual we define a term to be either a variable or a constant, and p(ti,...t,) as literal,

where p is an n-ary predicate symbol and ¢4, .. .t, are terms.

Facts are literals. Rules are represented in the general pattern:
LO . —Ll,...,Ln
Each L; is a literal. We call Lg the head of the rule and L4, ..., L, the body of the rule.

A literal, fact, rule, or clause without any variable is called ground.

If p1,...,pn are predicate constants or predicate variables and ¢ is a g-pred of p-arity
n, then ¢(p1,...,pn) is an elementary p-term. If pi,...,p, are predicate constants or
predicate variables, or p-terms, and c is a g-pred of p-arity n, then ¢(p1,...,pn) is a p-
term. c is called the main predicate of the p-term. The arity of a p-term is the arity of
it’s main predicate.

If s is an elementary p-term with arity n and ¢4,...,¢, are terms, then s(¢1,...,¢,) is an

elementary g-literal.

We define a g-literal (generic literal) as being either a literal or an expression of the general
pattern ¢(tq,...,%,), where c is a predicate, a predicate variable, or a p-term of arity n,

and tq,...,t, are terms.

If a g-literal contains no variables, we call it ground, if it contains no predicate variables

we call it instantiated.

G-rules are represented in the pattern
GO . —Gl,...,Gn
Each G;,i > 1, is a g-literal, Gy is literal or an elementary g-literal.

A goal is an instantiated g-literal.

A Plop program consists of a set of facts and a set of g-rules, and a goal. The set of facts
is called the extensional database (EDB) and the set of g-rules the intensional database
(IDB). No predicate of a fact is allowed to be predicate of a head literal of a rule of the
IDB.

For writing PLOP programs we use Prolog notation.

In the following we require the following safety conditions:
1. All facts are ground.
2. All variables occuring in the head of a rule must also appear in the body of a rule.

3. All predicate variables appearing in the body of a rule also appear in it’s head.

2.3 Rule Instances

A g-rule with all predicate variables instantiated with predicate names or ground p-terms

are called rule instances.

Due to third safety condition the substitution of predicate variables in the head of a rule
suffices to specify the rule instances. So given an instantiated literal 1 with a g-pred p as
main predicate, we derive the set of instantiated rules for 1 by by substituting the predicate
parameters in all literals in all rules with p as main predicate of the head literal with the

predicate arguments of 1.

2.4 Extensions of pure Plop

We define extensions of pure Plop: evaluable predicates, and stratified negation the same

way they are defined in Datalog. However, in this paper we will concentrate on pure Plop.

3 Model theoretic semantics

The Plop-Base is defined as the set of all predicates and all instantiated p-terms.
A Plop-Interpretation is a subset of the Plop Base.

A Plop-Interpretation is a Model for a Plop-program, iff it satisfies all g-rules. It satisfies
a g-rule, iff it satisfies all instances of that g-rule, and it satisfies an instance of a g-rule,
iff it holds, that if all (instantiated) literals in the body of the rule are in PM, so is the
(instantiated) head-literal.

Theorem: The intersection of two Plop Models is a Plop Model.
The least Plop model is the intersection of all Plop models.

The least Plop Model is a set of predicate names and instantiated p-literals. The intended
program of a Plop program is the set of all rules and the set of all instantiated rules
induced by the instantiated p-terms in the least Plop model. The intended program of
a Plop program does not contain any predicate variables. If we consider all instantiated
p-terms as strings denoting a predicate name, the intended program is a Datalog program

(possibly an infinite one due to recursive nesting of p-terms).

The semantics of a Plop program is now defined as the semantics of the intended program

interpreted as Datalog program.

4 Evaluation

For evaluating Plop programs we have to distinguish different cases:

1. finite intended program

If the intended program is finite, we can deduce the intended program in a first step
and evaluate the inted program in a second step. We check whether the intended

program is finite by dedecting cycles in an extended dependency graph.

The definition of generic transitive closure is an example for a finite intended pro-

gram.

2. partitionable program

In this class the number of rule instances is infinite. However, it is possible to
partion the infinite set of instantiated generic predicates into equivalence classes ac-
cording to their extensions, i.e. two instantiated generic predicates with identical
main predicate belong to the same equivalence class, if they are true for the same
substitutions, i.e. if their extensions are identical. We can then substitute instanti-
ated generic predicates of the intended program with the the member of the same
equivalence class with the least nesting depth. If the set of equivalence classes is

finite, the intended program is replaced with an equivalent finite program.

Example of a partionable program:

g(R/2) (X,Y) :- g(p(R/2))(X,Z), p(R/2)(Z,Y).
p(R/2)(X,Y) :- R/2(X,Y), q(Y).

7- g(r) (X,Y).

It is easy to see that the intended program is infinite, and {g(p(r)), p*(r)} is it’s set
of instantiated generic predicates. We can substitute p*(r) with p?(r), where j is the
smallest number such that p*(r) = p’(r), where = means extensional equality. As
the predicates p and q are base relations, and all constants in the possible ground
literals of p*(r) are also in p and q, {p*(r)} can be partitioned into a finite set of

equivalence classes, and, therefore, the program is finitely evaluable.

3. finite evaluable program

This class is especially relevant for Plop programs with stratified negation. It uses
the fact, that if any literal in the body of a rule is empty, the other literals need
not be evaluated and thus the infinite intended program is replaced by an equivalent
finite one. It has to be noted, that this equivalent program can only be determined

during the evaluation and not beforehand.

4. wnfinite program

A fourth class remains, containing all programs which cannot be evaluated finitely.

5 Conclusion

In this paper a logic database language is introduced which extends relational calculus
with the abstraction concepts naming and parametrization. The language is based on
Datalog, it’s extensional, however can also be integrated in other query languages. The
extensions overcome the lack of predicate polymorphism of query languages. Therefore,
the main application of the extensions is supposed be the subclass of programs which yield

a finite intended program.

Currently a prototype implementation of the language is under way, where the optimized
QSQ algorithm for the evaluation of Datalog programs [Vie86, Vie88] is extended for
evaluating Plop programs. Furthermore, efficient algorithms are developed to determine,

whether a Plop program can be evaluated finitely.

References

[BI90] A.J. Bonner, and T. Imielinski. The reuse and Modification of Rulebases by
predicate substitution. In F. Bancilhon, et al., editors, Advances in Database

Technology - EDBT’90 (Proceedings), Springer-Verlag, 1990.

[CGL90] S. Ceri, G.Gottlob, and L.Tanca. Logic Programming and Databases. Springer
Verlag, New York, 1990.

[CGT89] S. Ceri, G. Gottlob, and L. Tanca. What you always wanted to know about
Datalog (and never dared to ask). IEEE Trans. on Knowledge and Data Eng.,
1(1), 1989.

[Cod70] E. Codd. A relational model for large shared data banks. Communications of
the ACM, 13(6), 1970.

[CodT2]

[ERMS91]

[GMN84b]

[Vie86]

[Vie88]

E. Codd. Relational completeness of data base sublanguages. In R. Rustin,
editor, Data Base Systems. Prentice-Hall, Englewood Cliffs, New Jersey, 1972.

J. Eder, A. Rudloff, F. Matthes, and J.W. Schmidt. Data construction with
recursive set expressions. In J. W. Schmidt and A.A. Stogny, editors, Next

Generation Information System Technology, LNCS 504. Springer Verlag, 1991.

H. Gallaire, J. Minker, and J-M. Nicolas. Logic and databases: A deductive
approach. ACM Computing Surveys, 2, 1984.

L. Vieille. Recursive axioms in deductive databases: The Query-Subquery
approach. In L. Kerschberg, editor, Proc. Int. Conf. Ezpert Database Systems,
Charlston, 1986.

L. Vieille. From QSQ to QoSaQ: Global optimization of recursive queries. In
Proc. 2nd Int. Conf Ezpert Database Systems, Tyson Corner, 1988.

