
�

Logic and Databases

Johann Eder

Universit�at Klagenfurt� Institut f�ur Informatik
Universit�atsstr� ������ A���		 Klagenfurt� Austria

eder
i��uni�klu�ac�at

Abstract� Logic and databases have gone a long way together since the
advent of relational databases� Already the �rst basic query languages for
relational databases beside relational algebra � tuple calculus and domain
calculus � are actually a subset of �rst order predicate logic� Furthermore
logic proved to be very adequate for establishing a sound theory for rela�
tional databases�
When attempts were made to integrate AI and database technology in
form of expert database systems or knowledge base management systems
logic provided a unifying framework although several di�erences in the use
of logic in the both �elds have been discovered� The con�uence of logic
programming and databases triggered deductive databases as new area of
research�
In this overview paper we will discuss shortly the relationship between
relational databases and logic and present the possibilities for coupling
Prolog with databases� The main part of this paper concentrates on de�
ductive databases� in particular on the database language Datalog� We
conclude by mentioning some facets of recent research on logic and data�
bases� The goal of this paper is to provide an overview of the most relevant
developments in the �eld and providing pointers to the literature�

� Introduction

Database systems in general are characterized by the properties enumerated below�
These properties de�ne a generic database system and distinguish databases from
all other systems�

�� persistence
	� management of secondary memory
� concurrent manipulation of data
�� reliabilty� security� safety
�� ad hoc queries

The conceptual structure of a database is described in a conceptual schema using
a database model� Logic became relevant for the relational data model �Cod����
where data is organized in form of relations� which are de�ned as follows� Let
D�� � � � � Dn be sets� called domains� let D be the Cartesian product D��� � � ��Dn�
Arelation is any subset of D�

katja
published in: V. Marik (ed.): Advanced Topics in AI, Springer Verlag, 1992



�

The logical schema of a relational database consists of a set of relations� their
attributes and domains and a set of integrity constraints which de�ne restrictions
on the possible instances of the relations�

Data can be retrieved from relations by applying queries against the database�
These queries can be expressed in di�erent languages derived from relational algebra
and relational calculus� Relational algebra provides the usual set operations �union�
di�erence� intersection� and relational operations �projection� selection� Cartesian
product� join�� Relational calculus is based on logic�

In a logical interpretation of relational databases� the relations correspond to
predicates of �rst order predicate logic �GMN��� GM��� GMN��b� GMN��a�� For
an example consider the relation R with the attributes A and B� We interpret R as
being a predicate� The predicate is true for all instances which are actually stored
in R and false for all other �closed world assumption� �Rei�����

This interpretation is used for relational calculus� a pureley declarative query
language �Cod�	�� Actually� we have two di�erent languages �Pir���� tuple calculus�
where variables range over tuples and domain calculus� where variables range over
the elements of the domains� In relational calculus queries are expressed by logical
formulas� The result of the query consists of all tuples satisfying this formula�

The following example shows a query on a relation hasPart with the attribu�
tes part�� subpart�� quantity� and a relation parts with attributes part�� name
retrieving the name and quantity of all subparts of part �	�

f� pn� quan � jhasPart�p�� sp��� parts�sp�� pn� � p� � �	g

Most query languages of relational database systems like SQL� QUEL� or QBE
have their foundation in relational calculus� The declarative nature of query langua�
ges is essential for relational databases� as the actual physical storage structure is
hidden from the user� The actual procedural evaluation of a query is performed by
the database management system �DBMS� using a query optimizer�

Query languages also allow the de�nition of derived relations� Since the result
of a query is again a relation� a query can be used to de�ne relations whose values
are not stored in the database but are retrieved from the actually stored relations�
Such relations are called views and form the so called Intensional Database � IDB�
while the relations actually physically stored are called base relations forming the
Extensional Database � EDB �GMN��b��

Beside being the foundation of query languages� logic is needed to represent
integrity constraints� These are logical formulas which have to be satis�ed by the
database extensions� i�e� they de�ne all valid database extensions�

Developments in the �eld of logic programming� expert systems� and knowledge
based systems which use logic to represent knowledge in form of facts and rules again
triggered research in logic and databases� While those systems are tailored towards
representation and processing of knowledge they usually lack the fundamental pro�
perties of database systems stated above� although they have to represent� store�
and manipulate data like classical database systems�

The already available logical interpretation of databases seemed a good star�
ting point for integrating these technologies� However� relational calculus had severe



�

limitations in expressiveness restricting its use for knowledge processing� While non�
recursive rules can be represented in form of view de�nitions� it is not possible to
represent recursive queries or recursive rules in relational calculus �AJ���� For exam�
ple it is not possible to explode the bill�of�materials table in the example above�

In a �rst attempt logic programming systems have been coupled with database
systems� such that the database takes care of the data and the logic programming
system is responsible for knowledge representation� It turned out� that coupling is
very easy from a conceptual point of view� but naive coupling showed to pay big
performance penalties due to the mismatch of these systems� Considerable e�ort has
been directed towards improvement of the interfaces� The problems and achievments
in coupling Prolog and relational databases are outlined in the following section�

� Coupling Prolog and Relational Databases

Prolog has a lot in common with relational domain calculus and can� therefore� easily
be used as query language for relational databases �Zan���� As a Turing complete
programming language the expressive power of Prolog is strictly greater than that of
relational languages� Therefore� it overcomes their restrictions sketched above as the
rules of Prolog powerfully enrich the possibility for de�ning and evaluating derived
relations� In particular� predicates and rules in Prolog can be recursively de�ned�
When using Prolog as query language� the tuples in relations of the database are
considered as facts in Prolog�

Nevertheless� coupling Prolog and relational databases show some dissonances�
Facts and rules in Prolog are organized in a total order and the semantics of a Prolog
program depends on this order� In contrast� relations in a database are considered as
unordered sets of tuples and the result of a query is independent from any physical
order� The processing of Prolog programs is tuple oriented while relational databases
are set oriented� Prolog o�ers procedural features like the cut predicate to allow the
programmer to control the inference process� The order of evaluation of a Prolog
program is pre�determined� whereas expressions in relational calculus are purely
declarative and the actual evaluation is left to a query processor which may rearrange
the query for optimization purposes� Optimization of queries was crucial for the
success of relational databases� The procedural nature of the Prolog engine leaves
the burden of optimization with the programmer�

To give an example� consider the evaluation of a join operation in Prolog�

�� p�X�Y �� q�Y� a�

The inference process of Prolog is equivalent to the nested loop algorithm for eva�
luating joins� while other algorithms �sort�merge� hash join� are much more e�cient�
Prolog makes little use of the binding of an attribute to a constant �a in our exam�
ple� and cannot rearrange the query while rewriting the query as ��q�Y� a�� p�X�Y �
might reduce evaluation cost by orders of magnitude� The Prolog engine has no
information about the physical storage structure and cannot make use of indices�
Furthermore� the tuple�at�a�time processing of Prolog leads to poor bu�er perfor�
mance�



	

Di�erent approaches of coupling Prolog and databases have been presented �e�g�
�CW��� Boc��� CD��� Deno��� CGW��� Qui��� WW���� They di�er in the Prolog
engine �especially how the main memory database is managed�� the Prolog inter�
face �how database predicates are discovered� ranging from full transparency� i�e�
database predicates are recognized without user support � to no transparency� where
the programmer has to write explicit queries in a database language�� the database
interface �how complex the queries sent to the database may be� ranging from simple
single�predicate queries to unrestricted complex �even recursive � queries� and the
way query results are returned� either single tuples� or the whole result sets�� and the
database engine �the level of the query language o�ered from the database�� Beside
conceptual considerations of the interaction� engineering techniques like cacheing of
data and queries are used to improve the performance of the coupled system�

In loosely coupled systems the interaction between the Prolog engine and the
database takes place at load time� i�e� the Prolog engine recognizes uninstantiated
database predicates� issues according queries to the database and asserts the results
as facts to the program� During the execution of the Prolog program the database
is not consulted�

In tightly coupled systems Prolog and the database interact during the inference
process� In less sophisticated systems each time the Prolog engine tries to satisfy
a database predicate� a query is sent to the database� In more sophisticated sy�
stems the Prolog engine discovers succeeding database and comparison predicates
�base conjunctions� and transforms them together to a single query which is then
transfered to the database� This approach overcomes some of the problems detailed
above�

Coupling approaches achieved interesting results by improving the interface bet�
ween relational databases and Prolog� Nevertheless� substantial problems remain�
Most researchers agree that deep integration of database management and rule pro�
cessing is required�

� Datalog

Datalog is a language for deductive databases which are deductive systems in the
sense of AI and logic with the characteristics of database systems� It is a simpli�ed
logic programming language which is integrated with database management� From
the point of view of logical programming a Datalog program consist of function
free Horn clauses� from a database point of view it is a relational domain calculus
language extended with recursion�

��� Pure Datalog

The syntax of Datalog is similar to that of Prolog� Datalog distinguishes two sets of
predicates� extensional predicates which are the relations stored in the database and
intensional predicates de�ned by rules in the Datalog program� Facts are the tuples
of extensional predicates� Rules are represented in the general pattern�

L� � �L�� � � � � Ln






Each Li is a literal of the form Pi�t�� � � � � tki� such that pi is a predicate symbol
and the tj are terms� A term may only be a constant or a variable� but not a functor
term as in other logic programming languages� Like in Prolog the name of a variable
has to start with a capital letter while constants and predicate names start with a
lower case letter� We call Lo the head of the rule and L�� � � � � Ln the body of the
rule� A literal� fact� rule� or clause without any variable is called ground�

The extensional database �EDB� of a Datalog program consists of all ground
facts physically stored in the database� The intensional database �IDB� is Datalog
program �P� consisting of rules� EDB�predicates may appear in P only in the body
of rules� IDB�predicates in the head and in the body�

To assure that all results of Datalog programs are �nite any Datlog program has
to obey the following safety conditions�

� Each fact of P is ground�
� Each variable occuring in the head of a rule must also occur in its body

The following example gives a solution to the problem of exploding the relation
hasPart of the example in section 	 to a bill�of�material�

bill�P� SubP � � �hasPart�P� SubP ��
bill�P� SubP � � �bill�P� I�� hasPart�I� SubP �

A goal is represented by a list of literals of the following pattern�

L�� � � � � Ln

where the Li are de�ned as above� �Some authors require goals to consist of only
one literal� This is no restriction� since we can write a goal�rule with a special goal
predicate as it�s head and the multi�literal goal as its body� And then we use the
goal�predicate as literal for the goal��

In database terms� a Datalog program de�nes a set of views� A query is repre�
sented as goal� Materialization of these views for query processing is the task of a
Datalog system�

Datalog programs are interpreted in First�Order Logic �FOL� as follows�

� Each fact F corresponds to an atomic formula in FOL�
� Each rule R � L� � �L�� � � � � Ln corresponds to a FOL formula �X� � � ��Xm�L��
� � �� Ln � L��� where X�� � � � � Xm are all variables occuring in R�

� A set of Datalog clauses corresponds to the conjunction of all corresponding
formulas�

The Herbrand Base HB of a Datalog Programm is the set of all ground facts
which can be expressed� We divide HB in its extensional part EHB which consists of
all ground facts with EDB predicates� and accordingly� in its intensional part IHB�

The semantics of a Datalog program P is de�ned as a mapping MP from EHB
to IHB which maps each possible EDB to the set of intensional result facts� i�e the
set of all facts of IHB which are logical consequences of the corresponding formulas
of P and EDB� In the presence of a goal this set is restricted to all facts subsumed
by the goal�



�

In a model theoretic interpretation� MP is de�ned by the least Herbrand model
of P �EDB�

The least Herbrand model is the disjunction of all Herbrand models� A Herbrand
model is a Herbrand interpretation which satis�es P �EDB� A Herbrand interpre�
tation is a subset of the Herbrand Base� i�e� all ground facts which are considered
as being true� A Herbrand interpretation I satis�es EDB� if all facts of EDB are
also in I� It satis�es a rule L� � �L�� � � � � Ln of P� i� for each substitution � of the
rule which replaces variables with constants� whenever all literals of the body of the
substituted rule are in I also its head literal is in I�

In a proof theoretic interpretation the semantics of a Datalog program is de�ned
as the set of all ground facts which can be derived by successive application of the
elementary production principle �EPP� on P and EDB� EPP is a meta rule de�ning
which facts can be derived from a rule and a set of facts in one step� Consider a
Datalog rule R � L� � �L�� � � � � Ln and a set of ground facts F � fF�� � � � � Fng� For a
substitution � of R we can infer the fact represented by the substituted head literal
in a one step� if all substituted literals in the body are in the set of known facts�
If we apply EPP to all rules and all known facts we derive all facts which may be
infered from P and F in one step and we can take them into the set of known facts�
Applying this procedure in turn delivers all facts which are logical consequences of
F and P�

The proof theoretic semantics leads directly to an evaluation procedure for Da�
talog programs by �xpoint iteration� Starting with F � EDB and applying this
procedure until no new facts can be infered from F and P with EPP delivers the
materialization of all IDB predicates� For all Datalog programs this evaluation pro�
cedure will terminate with a �nite result�

��� Optimization

Although the proof theoretic interpretation of Datalog programs leads directly to an
evaluation procedure� this method of processing queries is very ine�cient� In the last
years various techniques for e�cient evaluation have been developed and research on
optimization methods still go on� Here� we only can give a rough overview of these
techniques�

According to �CGT��� the techniques can be classi�ed according to the following
criteria�

� formalism� Some methods use logical formalism� while others transform a Data�
log Program to a set of algebraic equations and evaluate these equations�

� search strategy� Bottom�up methods start from the facts of EDB and infer new
facts� while Top�down methods start from the goal and search for facts which
satisfy the premises of a rule yielding the goal as conclusion� Within the top�down
approach we distinguish between depth �rst and breadth �rst search�

� objectives� In pure evaluation methods the optimization is done during the eva�
luation� Rewriting methods map a Datalog program P to another program P�
which is more e�cient to evaluate with a basic evaluation procedure�



�

� type of considered information� Syntactic optimization methods consider only the
syntactic structure of the program while semantic optimization methods take
additional semantic knowledge about the database �e�g� integrity constraints�
into account�

�BR��� gives an overview and comparison of di�erent evaluation and optimization
techniques� Important evaluation techniques are the seminaive evaluation �or di�e�
rential �xpoint evaluation� �GKB��� HQC��� the method of Henschen and Naqvi
�HN��� and the Query�Subquery algorithm �Vie��� Vie���� The most renowned opti�
mization algorithms include the Magic Set method �BMSU��� BR��� Ram��� Sag����
the Counting method �SZ���� and Static Filtering �KL����

��� Extensions of Pure Datalog

An important extension of pure Datalog is the use of negation in rule bodies� With
this extensions Datalog no longer requires all clauses to be Horn clauses� A drawback
of the use of negation is that a unique minimal Herbrand model is not guaranteed�
Strati�ed Datalog allows only a restricted use of negation� If it is possible to arrange
the predicates of a Datalog program in a series of numbered sets called strata such
that no predicate of a lower stratum appears in the body of any rule with a predicate
from a higher stratum as head predicate we call the program strati�ed�

To determine whether a program is strati�ed an extended dependency graph is
constructed� The nodes in this graph are the intensional predicates of the program�
A directed arc is drawn from p to q� if q appears in the body of a rule with p as
head predicate� If q is negated in one of the rule� the arc is marked with �� If ther
is no cylcle in the graph containing a marked arc� the program is strati�ed�

Strati�ed programs are evaluated bottom up in the sequence of their strata� This
procedure uniquely de�nes a Herbrand model as result of the program� Although
there may exist several strati�cations for a Datalog program with negation they all
have the same result� Note� however� that not all programs with negated literals in
the body are strati�ed�

Further extensions of Datalog include the de�nition of built in predicates like
�� ���� or for arithmetic operations ��� ���� ��� the use of functors for dealing with
complex objects� or the the use of sets as arguments� Such extensions can be studied
in LDL� a deductive database systems implementing extended Datalog �NT����

� Conclusions

Logic turned out to provide a solid and fruitful basis for the integration of database
technology with knowledge processing capabilities� Research in logic and databases
brought theoretically sound foundations for the building of deductive database sy�
stems� Several prototype implementations are in development or have been already
presented� among them EDUCE and EKS�V� from ECRC� LDL from MCC� and
NAIL� from Stanford University� Ongoing research in the �eld includes the develop�
ment of yet more sophisticated optimization techniques� higher order deduction �eg�





�ERMS���� and the application of logic to object oriented databases �e�g� �Bee����
Deductive databases will have a major impact on future knowledge based systems�

We will conclude with some references for further reading� The topic of logic
and databases is subject of a specialized textbook �CGT���� and is also extensively
covered in �Ull���� �CGT��� provides an introduction to Datalog� �NT��� presents
the logic database language LDL� an already implemented extension of Datalog� An
Overview of logic and databases can be found in �GM�	�� �UZ��� discuss achieve�
ments and furture directions of research in the �eld�

References

�AJ��� A� Aho and J�Ullmann� Universality of data retrieval languages� In Proc� ACM
Symp� on Principles of Programming Languages� �����

�Bee��� C� Beeri� Formal methods for object oriented databases� Data � Knowledge

Engineering� 
� �����
�BMSU�� F� Bancilhon� D� Maier� Y� Sagiv� and J�D� Ullmann� Magic sets and other

strange ways to implement logic programs� In Proc� ACM SIGMOD�SIGACT

Symp� on Principles of Database Systems� ����
�Boc�� J� Bocca� On the evaluation strategy of EDUCE� In Proc� ACM SIGMOD

Conf�� ����
�BR�� F� Bancilhon and R� Ramakrishnan� An amateur�s introduction to recursive

query processing� In Proc� ACM SIGMOD Conference� ����
�BR�� C� Beeri and R� Ramakrishnan� On the power of Magic� In Proc� �th ACM

SIGMOD�SIGACT Symp� on Principles of Database Systems� ����
�BR� F� Bancilhon and R� Ramakrishnan� Performance evaluation of data intensive

logic programs� In J� Minker� editor� Foundations of Deductive Databases and
Logic Programming� Morgan Kaufmann� ���

�CD� F� Cuppens and R� Demolombe� A Prolog�relational DBMS interface using
delayed evaluation� In C� Beeri� J�W� Schmidt� and U� Dayal� editors� Proc�
�rd Int� Conf� on Data and Knowledge Bases� Jerusalem� ���

�CGT��� S� Ceri� G� Gottlob� and L� Tanca� Logic Programming and Databases� Springer
Verlag� New York� �����

�CGT�� S� Ceri� G� Gottlob� and L� Tanca� What you always wanted to know about
Datalog �and never dared ask�� IEEE Trans� on Knowledge and Data Eng��
����� ����

�CGW�� S� Ceri� G� Gottlob� and G� Wiederhold� E�cient database access through Pro�
log� IEEE Trans� on Software Engineering� ����

�Cod��� E� Codd� A relational model for large shared data banks� Communications of
the ACM� ������ �����

�Cod��� E� Codd� Relational completeness of data base sublanguages� In R� Rustin�
editor� Data Base Systems� Prentice�Hall� Englewood Cli�s� New Jersey� �����

�CW�� C�L� Chan and A� Walker� PROSQL� A Prolog programming interface
with SQL�DS� In L� Kerschberg� editor� Expert Database Systems� Bejamin�
Cummings� ����

�Deno�� D� Denoel� et al� Query translation for coupling Prolog with a relational DBMS�
In Workshop on Integration of Logic Programming ans Databases� Venice� ����

�ERMS��� J� Eder� A� Rudlo�� F� Matthes� and J�W� Schmidt� Data construction with
recursive set expressions� In J� W� Schmidt and A�A� Stogny� editors� Next
Generation Information System Technology� LNCS 
�	� Springer Verlag� �����



�

�GMN�� H� Gallaire� J� Minker� and J�M� Nicolas� editors� Advances to Database Theory�
volume I� Plenum Press� ����

�GKB�� U� G�untzer� W� Kiessling� and R� Bayer� On the evaluation of recursion in
�deductive� database systems by e�cient di�erential �xpoint iteration� In Proc�
�rd Intern� Conf on Data Engineering� IEEE�CS Press� ����

�GM�� H� Gallaire and J� Minker� editors� Logic and Databases� Plenum Press� ����
�GM��� J� Grant and J� Minker� The impact of logic programming on databases�

Comm� of the ACM� �
���� �����
�GMN	a� H� Gallaire� J� Minker� and J�M� Nicolas� editors� Advances in Database

Theory� Vol II� Plenum Press� ��	�
�GMN	b� H Gallaire� J� Minker� and J�M� Nicolas� Logic and databases� A deductive

approach� ACM Computing Surveys� �� ��	�
�HN	� L� J� Henschen and S�A� Naqvi� On compiling queries in recursive �rst order

databases� Journal of the ACM� ������ ��	�
�HQC� J� Han� G� Qadahand� and C� Chaou� The processing and evaluation of transi�

tive closure� In J�W� Schmidt et al�� editor� Advances in Database Technology�
LNCS ���� Springer Verlag� ���

�KL�� M� Kifer and E� L� Lozinski� Filtering data �ow in deductive database systems�
In Proc� �st Int� Conf� on Database Theory� Rome� ����

�NT�� S� Naqvi and S� Tsur� A Logical Language for Data and Knowledge Bases�
Computer Science Press� New York� ����

�Pir�� A� Pirotte� High level database query languages� In Gallaire and Minker
�GM���

�Qui�� Quintus Computer Systems Inc�� Mountain View� California� Quintus Prolog

Data Base Interface Manual� ����
�Ram� R� Ramakrishnan� Magic Templates� a spellbinding aproach to logic evaluation�

In Proc� of the Logic Programming Conf�� ���
�Rei�� R� Reiter� On closed world databases� In Gallaire and Minker �GM���
�Sag��� Y� Sagiv� On testing e�ective computability of Magic programs� In C� Delobel�

M Kiferd Y� Masunaga� editors� Proc� �nd Int� Conf� Deductive and Object�

Oriented Databases� volume 
�� of LNCS� Springer Verlag� �����
�SZ� D� Sacca and C� Zaniolo� Magic counting methods� In Proc� ACM SIGMOD

Conf�� ���
�Ull�� J� Ullman� Principles of Database and Knowledge�Base Systems� Vol� I � II�

Computer Science Press� �����
�UZ��� J�D� Ullmann and C� Zaniolo� Deductive databases� Achievements and future

directions� ACM SIGMOD Record� ���	�� �����
�Vie�� L� Vieille� Recursive axioms in deductive databases� The Query�Subquery ap�

proach� In L� Kerschberg� editor� Proc� Int� Conf� Expert Database Systems�
Charlston� ����

�Vie� L� Vieille� From QSQ to QoSaQ� Global optimization of recursive queries� In
Proc� �nd Int� Conf Expert Database Systems� Tyson Corner� ���

�WW� K�F� Wong and M�H� Williams� Design considerations for a Prolog database
engine� In C� Beeri� J�W� Schmidt� and U� Dayal� editors� Proc� �rd Intern�

Conf� on Data and Knowledge Bases� Jerusalem� ���
�Zan�� C� Zaniolo� Prolog� A database language for all seasons� In L� Kerschberg�

editor� Expert Database Systems� Benjamin�Cummings� ����

This article was processed using the LTEX macro package with LMAMULT style




