published in: V. Marik (ed.): Advanced Topics in Al, Springer Verlag, 1992

Logic and Databases

Johann Eder

Universitat Klagenfurt, Institut fur Informatik
Universitatsstr. 65-67, A-9022 Klagenfurt, Austria
eder@ifi.uni-klu.ac.at

Abstract. Logic and databases have gone a long way together since the
advent of relational databases. Already the first basic query languages for
relational databases beside relational algebra - tuple calculus and domain
calculus - are actually a subset of first order predicate logic. Furthermore
logic proved to be very adequate for establishing a sound theory for rela-
tional databases.

When attempts were made to integrate AI and database technology in
form of expert database systems or knowledge base management systems
logic provided a unifying framework although several differences in the use
of logic in the both fields have been discovered. The confluence of logic
programming and databases triggered deductive databases as new area of
research.

In this overview paper we will discuss shortly the relationship between
relational databases and logic and present the possibilities for coupling
Prolog with databases. The main part of this paper concentrates on de-
ductive databases, in particular on the database language Datalog. We
conclude by mentioning some facets of recent research on logic and data-
bases. The goal of this paper is to provide an overview of the most relevant
developments in the field and providing pointers to the literature.

1 Introduction

Database systems in general are characterized by the properties enumerated below.
These properties define a generic database system and distinguish databases from
all other systems.

. persistence

. management of secondary memory
. concurrent manipulation of data

. reliabilty, security, safety

. ad hoc queries
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The conceptual structure of a database is described in a conceptual schema using
a database model. Logic became relevant for the relational data model [Cod70],
where data is organized in form of relations, which are defined as follows: Let
Dy, ..., D, be sets, called domains, let D be the Cartesian product D1, X ... x D,,.
Avrelation is any subset of D.
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The logical schema of a relational database consists of a set of relations, their
attributes and domains and a set of integrity constraints which define restrictions
on the possible instances of the relations.

Data can be retrieved from relations by applying queries against the database.
These queries can be expressed in different languages derived from relational algebra
and relational calculus. Relational algebra provides the usual set operations (union,
difference, intersection) and relational operations (projection, selection, Cartesian
product, join). Relational calculus is based on logic.

In a logical interpretation of relational databases, the relations correspond to
predicates of first order predicate logic [GMN81, GM78, GMN84b, GMN84a]. For
an example consider the relation R with the attributes A4 and B. We interpret R as
being a predicate. The predicate is true for all instances which are actually stored
in R and false for all other (closed world assumption, [Rei78]).

This interpretation is used for relational calculus, a pureley declarative query
language [Cod72]. Actually, we have two different languages [Pir78], tuple calculus,
where variables range over tuples and domain calculus, where variables range over
the elements of the domains. In relational calculus queries are expressed by logical
formulas. The result of the query consists of all tuples satisfying this formula.

The following example shows a query on a relation hasPart with the attribu-
tes part#t, subpart#, quantity, and a relation parts with attributes part#, name
retrieving the name and quantity of all subparts of part 123:

{< pn, quan > |hasPart(p#, sp#) A parts(sp#, pn) A p# = 123}

Most query languages of relational database systems like SQL, QUEL, or QBE
have their foundation in relational calculus. The declarative nature of query langua-
ges is essential for relational databases, as the actual physical storage structure is
hidden from the user. The actual procedural evaluation of a query is performed by
the database management system (DBMS) using a query optimizer.

Query languages also allow the definition of derived relations. Since the result
of a query is again a relation, a query can be used to define relations whose values
are not stored in the database but are retrieved from the actually stored relations.
Such relations are called views and form the so called Intensional Database - IDB,
while the relations actually physically stored are called base relations forming the
Eztensional Database - EDB [GMN&84b).

Beside being the foundation of query languages, logic is needed to represent
integrity constraints. These are logical formulas which have to be satisfied by the
database extensions, i.e. they define all valid database extensions.

Developments in the field of logic programming, expert systems, and knowledge
based systems which use logic to represent knowledge in form of facts and rules again
triggered research in logic and databases. While those systems are tailored towards
representation and processing of knowledge they usually lack the fundamental pro-
perties of database systems stated above, although they have to represent, store,
and manipulate data like classical database systems.

The already available logical interpretation of databases seemed a good star-
ting point for integrating these technologies. However, relational calculus had severe



limitations in expressiveness restricting its use for knowledge processing. While non-
recursive rules can be represented in form of view definitions, it is not possible to
represent recursive queries or recursive rules in relational calculus [AJ79]. For exam-
ple it is not possible to explode the bill-of-materials table in the example above.

In a first attempt logic programming systems have been coupled with database
systems, such that the database takes care of the data and the logic programming
system is responsible for knowledge representation. It turned out, that coupling is
very easy from a conceptual point of view, but naive coupling showed to pay big
performance penalties due to the mismatch of these systems. Considerable effort has
been directed towards improvement of the interfaces. The problems and achievments
in coupling Prolog and relational databases are outlined in the following section.

2 Coupling Prolog and Relational Databases

Prolog has a lot in common with relational domain calculus and can, therefore, easily
be used as query language for relational databases [Zan86]. As a Turing complete
programming language the expressive power of Prolog is strictly greater than that of
relational languages. Therefore, it overcomes their restrictions sketched above as the
rules of Prolog powerfully enrich the possibility for defining and evaluating derived
relations. In particular, predicates and rules in Prolog can be recursively defined.
When using Prolog as query language, the tuples in relations of the database are
considered as facts in Prolog.

Nevertheless, coupling Prolog and relational databases show some dissonances.
Facts and rules in Prolog are organized in a total order and the semantics of a Prolog
program depends on this order. In contrast, relations in a database are considered as
unordered sets of tuples and the result of a query is independent from any physical
order. The processing of Prolog programs is tuple oriented while relational databases
are set oriented. Prolog offers procedural features like the cut predicate to allow the
programmer to control the inference process. The order of evaluation of a Prolog
program is pre-determined, whereas expressions in relational calculus are purely
declarative and the actual evaluation is left to a query processor which may rearrange
the query for optimization purposes. Optimization of queries was crucial for the
success of relational databases. The procedural nature of the Prolog engine leaves
the burden of optimization with the programmer.

To give an example, consider the evaluation of a join operation in Prolog:

7 - p(X, Y)a 'J(Yv a)

The inference process of Prolog is equivalent to the nested loop algorithm for eva-
luating joins, while other algorithms (sort-merge, hash join) are much more efficient.
Prolog makes little use of the binding of an attribute to a constant (o in our exam-
ple) and cannot rearrange the query while rewriting the query as ?—¢(Y, a), p(X,Y)
might reduce evaluation cost by orders of magnitude. The Prolog engine has no
information about the physical storage structure and cannot make use of indices.
Furthermore, the tuple-at-a-time processing of Prolog leads to poor buffer perfor-
mance.



Different approaches of coupling Prolog and databases have been presented (e.g.
[CW86, Boc86, CD88, Deno86, CGW89, Qui87, WW88]. They differ in the Prolog
engine (especially how the main memory database is managed), the Prolog inter-
face (how database predicates are discovered, ranging from full transparency- i.e.
database predicates are recognized without user support - to no transparency, where
the programmer has to write explicit queries in a database language), the database
interface (how complex the queries sent to the database may be, ranging from simple
single-predicate queries to unrestricted complex -even recursive - queries, and the
way query results are returned, either single tuples, or the whole result sets), and the
database engine (the level of the query language offered from the database). Beside
conceptual considerations of the interaction, engineering techniques like cacheing of
data and queries are used to improve the performance of the coupled system.

In loosely coupled systems the interaction between the Prolog engine and the
database takes place at load time, i.e. the Prolog engine recognizes uninstantiated
database predicates, issues according queries to the database and asserts the results
as facts to the program. During the execution of the Prolog program the database
is not consulted.

In teghtly coupled systems Prolog and the database interact during the inference
process. In less sophisticated systems each time the Prolog engine tries to satisfy
a database predicate, a query is sent to the database. In more sophisticated sy-
stems the Prolog engine discovers succeeding database and comparison predicates
(base conjunctions) and transforms them together to a single query which is then
transfered to the database. This approach overcomes some of the problems detailed
above.

Coupling approaches achieved interesting results by improving the interface bet-
ween relational databases and Prolog. Nevertheless, substantial problems remain,
Most researchers agree that deep integration of database management and rule pro-
cessing is required.

3 Datalog

Datalog is a language for deductive databases which are deductive systems in the
sense of Al and logic with the characteristics of database systems. It is a simplified
logic programming language which is integrated with database management. From
the point of view of logical programming a Datalog program consist of function
free Horn clauses, from a database point of view it is a relational domain calculus
language extended with recursion.

3.1 Pure Datalog

The syntax of Datalog is similar to that of Prolog. Datalog distinguishes two sets of
predicates: ertensional predicates which are the relations stored in the database and
intensional predicates defined by rules in the Datalog program. Facts are the tuples
of extensional predicates. Rules are represented in the general pattern:

Lo:—Ll,...,Ln
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Each L; is a literal of the form P;(¢1,...,%xt) such that p; is a predicate symbol
and the ¢; are terms. A term may only be a constant or a variable, but not a functor
term as in other logic programming languages. Like in Prolog the name of a variable
has to start with a capital letter while constants and predicate names start with a
lower case letter. We call L, the head of the rule and Lq,..., L, the body of the
rule. A literal, fact, rule, or clause without any variable is called ground.

The extensional database (EDB) of a Datalog program consists of all ground
facts physically stored in the database. The intensional database (IDB) is Datalog
program (P) consisting of rules. EDB-predicates may appear in P only in the body
of rules, IDB-predicates in the head and in the body.

To assure that all results of Datalog programs are finite any Datlog program has
to obey the following safety conditions:

— Each fact of P is ground.
— Each variable occuring in the head of a rule must also occur in its body

The following example gives a solution to the problem of exploding the relation
hasPart of the example in section 2 to a bill-of-material:

bill(P, SubP) : —hasPart(P, SubP);
bill(P, SubP) : —bill(P, I), hasPart(I, SubP)

A goal is represented by a list of literals of the following pattern:
Li,..., Ly

where the L, are defined as above. (Some authors require goals to consist of only
one literal. This is no restriction, since we can write a goal-rule with a special goal
predicate as it’s head and the multi-literal goal as its body. And then we use the
goal-predicate as literal for the goal.)

In database terms, a Datalog program defines a set of views. A query is repre-
sented as goal. Materialization of these views for query processing is the task of a
Datalog system.

Datalog programs are interpreted in First-Order Logic (FOL) as follows:

— Each fact F corresponds to an atomic formula in FOL.

— Eachrule R: Lg: —Ly,..., L, corresponds to a FOL formula VX ... VX, (L1 A
...A Ly = Lg), where X1,..., X, are all variables occuring in R.

— A set of Datalog clauses corresponds to the conjunction of all corresponding
formulas.

The Herbrand Base HB of a Datalog Programm is the set of all ground facts
which can be expressed. We divide HB in its extensional part FHB which consists of
all ground facts with EDB predicates, and accordingly, in its intensional part IHB.

The semantics of a Datalog program P is defined as a mapping Mp from EHB
to IHB which maps each possible EDB to the set of intensional result facts, i.e the
set of all facts of IHB which are logical consequences of the corresponding formulas
of P and EDB. In the presence of a goal this set is restricted to all facts subsumed
by the goal.



In a model theoretic interpretation, Mp is defined by the least Herbrand model
of PUEDB.

The least Herbrand model is the disjunction of all Herbrand models. A Herbrand
model is a Herbrand interpretation which satisfies P U EDB. A Herbrand interpre-
tation is a subset of the Herbrand Base, i.e. all ground facts which are considered
as being true. A Herbrand interpretation 7 satisfies EDB, if all facts of EDB are
also in Z. It satisfies a rule Lo : —Lq,..., L, of P, iff for each substitution 8 of the
rule which replaces variables with constants, whenever all literals of the body of the
substituted rule are in 7 also its head literal is in 7.

In a proof theoretic interpretation the semantics of a Datalog program is defined
as the set of all ground facts which can be derived by successive application of the
elementary production principle (EPP) on P and EDB. EPP is a meta rule defining
which facts can be derived from a rule and a set of facts in one step. Consider a
Datalog rule R: Lo : —Ly,..., L, and a set of ground facts F = {Fy,..., F,}. For a
substitution 8 of R we can infer the fact represented by the substituted head literal
in a one step, if all substituted literals in the body are in the set of known facts.
If we apply EPP to all rules and all known facts we derive all facts which may be
infered from P and F in one step and we can take them into the set of known facts.
Applying this procedure in turn delivers all facts which are logical consequences of
F and P.

The proof theoretic semantics leads directly to an evaluation procedure for Da-
talog programs by fixpoint iteration. Starting with F = EDB and applying this
procedure until no new facts can be infered from F and P with EPP delivers the
materialization of all IDB predicates. For all Datalog programs this evaluation pro-
cedure will terminate with a finite result.

3.2 Optimization

Although the proof theoretic interpretation of Datalog programs leads directly to an
evaluation procedure, this method of processing queries is very inefficient. In the last
years various techniques for efficient evaluation have been developed and research on
optimization methods still go on. Here, we only can give a rough overview of these
techniques.

According to [CGT90] the techniques can be classified according to the following
criteria:

— formalism: Some methods use logical formalism, while others transform a Data-
log Program to a set of algebraic equations and evaluate these equations.

— search strategy. Bottom-up methods start from the facts of EDB and infer new
facts, while Top-down methods start from the goal and search for facts which
satisfy the premises of a rule yielding the goal as conclusion. Within the top-down
approach we distinguish between depth first and breadth first search.

— objectives: In pure evaluation methods the optimization is done during the eva-
luation. Rewriting methods map a Datalog program P to another program P’
which is more efficient to evaluate with a basic evaluation procedure.



— type of considered information: Syntactic optimization methods consider only the
syntactic structure of the program while semantic optimization methods take
additional semantic knowledge about the database (e.g. integrity constraints)
into account.

[BR86] gives an overview and comparison of different evaluation and optimization
techniques. Important evaluation techniques are the seminaive evaluation (or diffe-
rential fixpoint evaluation) [GKB87, HQC88] the method of Henschen and Naqvi
[HN84] and the Query-Subquery algorithm [Vie86, Vie88]. The most renowned opti-
mization algorithms include the Magic Set method [BMSU86, BR87, Ram88, Sag91],
the Counting method [SZ88], and Static Filtering [KL86].

3.3 Extensions of Pure Datalog

An important extension of pure Datalog is the use of negation in rule bodies. With
this extensions Datalog no longer requires all clauses to be Horn clauses. A drawback
of the use of negation is that a unique minimal Herbrand model is not guaranteed.
Stratified Datalog allows only a restricted use of negation. If it is possible to arrange
the predicates of a Datalog program in a series of numbered sets called strata such
that no predicate of a lower stratum appears in the body of any rule with a predicate
from a higher stratum as head predicate we call the program stratified.

To determine whether a program is stratified an extended dependency graph is
constructed. The nodes in this graph are the intensional predicates of the program.
A directed arc is drawn from p to q, if q appears in the body of a rule with p as
head predicate. If q is negated in one of the rule, the arc is marked with —. If ther
is no cylcle in the graph containing a marked arc, the program is stratified.

Stratified programs are evaluated bottom up in the sequence of their strata. This
procedure uniquely defines a Herbrand model as result of the program. Although
there may exist several stratifications for a Datalog program with negation they all
have the same result. Note, however, that not all programs with negated literals in
the body are stratified.

Further extensions of Datalog include the definition of built in predicates like
=, >, <, or for arithmetic operations (+, *, —, /), the use of functors for dealing with
complex objects, or the the use of sets as arguments. Such extensions can be studied
in LDL, a deductive database systems implementing extended Datalog [N'T89].

4 Conclusions

Logic turned out to provide a solid and fruitful basis for the integration of database
technology with knowledge processing capabilities. Research in logic and databases
brought theoretically sound foundations for the building of deductive database sy-
stems. Several prototype implementations are in development or have been already
presented, among them EDUCE and EKS-V1 from ECRC, LDL from MCC, and
NAIL! from Stanford University. Ongoing research in the field includes the develop-
ment of yet more sophisticated optimization techniques, higher order deduction (eg.



[ERMS91], and the application of logic to object oriented databases (e.g. [Bee90].
Deductive databases will have a major impact on future knowledge based systems.

We will conclude with some references for further reading. The topic of logic
and databases is subject of a specialized textbook [CGT90], and is also extensively
covered in [Ull89]. [CGT89] provides an introduction to Datalog, [NT89] presents
the logic database language LDL, an already implemented extension of Datalog. An
Overview of logic and databases can be found in [GM92], [UZ90] discuss achieve-
ments and furture directions of research in the field.
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