published in: Karagiannis D. (ed.): Proc. International Conference on Database and Expert System [
Application, Springer Verlag 1991, pp. 54-59

General Transitive Closures and Aggregate
Functions *

Johann Eder
Universitat Wien
Institut fur Statistik und Informatik
Liebiggasse 4/3-4
A-1010 Wien / AUSTRIA

February 12, 1993

Abstract

General transitive closures are a convenient operation for process-
ing recursive structures with relational languages, because they are
easy to understand, efficiently to implement and expressive enough to
support a broad range of practical applications. To further extend
the expressiveness of general transitive closures, we study the use of
aggregate functions together with general transitive closures. While
general transitive closures are restricted to express linear recursion,
general transitive closures with aggregate functions can be used to ex-
press some nonlinear recursions too. We will give some conditions for
general transitive closures with aggregate functions to be well formed
and bottom up evalueable. We show how these constructs can be in-
tegrated in an extended SQL.

Keywords: deductive databases, recursive query processing, SQL,
general transitive closure

1 Introduction

There is a common understanding in the research community that relational
database systems have reached their limits in supporting the demands for

*This work was partly supported by the Austrian Fonds zur Férderung der wis-
senschaftlichen Forschung under contract P6772P.

katja
published in: Karagiannis D. (ed.): Proc. International Conference on Database and Expert System Application, Springer Verlag 1991, pp. 54-59

new sophisticated information systems. In particular the fact that relational
query languages are not computationally complete and the representation of
complex objects is cumbersome has triggered a lot of research in deductive
databases and object oriented databases.

For introducing deduction we present here a rather pragmatic approach.
We believe that many yet unsupported applications demand comparable
modest deductive capabilities. Therefore, we will present an extension of
SQL for processing of a class of recursive queries rather than introducing
general recursive capabilities. Since SQL is the standard query language for
relational databases these extensions should be easy to use and to integrate
with existing databases. A major advantage of such an approach is that
with the increased capabilities of SQL investments in systems and already
collected data as well as in training of programmers and end-users can be
used and nevertheless new kinds of applications can be built.

Recursion is integrated into the view definition of SQL in form of generalized
transitive closures ([7]). A unique aspect of our approach is that it also
covers relations containing duplicates (multiset relations) to be compatible
with SQL ([8]). As a positive side effect, expressiveness is increased when
general transitive closures are extended to multiset relations. The semantics
of this new construct is defined in a formal way to open possibilities for
automatic query optimization and it is defined procedurally to be better
understood by traditional programmers. Since recursively defined views can
be used in queries like all other views, end users can take advantage of the
increased functionality without knowing anything about recursive queries or
deduction. Furthermore, tools built upon SQL like report writers or fourth
generation languages can be used unchanged on top of recursively defined
views.

In this paper we extend our approach by introducing aggregate functions in
the definition of general transitive closures. This extension allows some non
linear recursive queries to be expressed while general transitive closures are
restricted to linear recursion.

This development differs from the mainstream research in deductive databases
where deductive query languages are developed within the paradigm of logic

programming (see [4] for an overview) as it follows a pragmatic approach

introducing only small extensions and maintaining full upward compatibility

with SQL.

In [12] a different approach for introducing general transitive closures as

means for recursive query processing is reported. Our approach however

is fully integrated into relational languages and does not require the graph
metaphore for expressing recursive queries.

Previous proposals for extending SQL with a capability for processing re-
cursive structures like [5] or the tree traversal construct of [11] differ from
this approach as they work on limited sets of graphs (or relations) and their
semantics is only defined procedurally.

In [1] relational algebra is extended with the operator alpha to express a
certain class of recursive queries. For non-linear recursions a special relation-
valued attribute delta containing the history of the traversal is introduced
transforming intermediate relations to non first normal form.

The approach in [10] also extends SQL and deals with duplicates - like our
approach. However, it is based on calculus in a more top down approach
while we build upon an algebraic fixpoint operator with a bottom up ap-
proach and provide an easier procedural interpretation of general transitive
closures.

The remainder of this paper is organized as follows: In section 2 we review
previous work on general transitive closures for recursive views in SQL. In
section 3 we discuss aggregate functions and define an aggregation opera-
tor. In section 4 we define aggregate closures and discuss their properties.
In section 5 we extend the view definition of SQL to formulate aggregate
closures, and in section 6 we draw some conclusions.

2 General Transitive Closures

Recursion is often introduced into relational query languages by means of
a fixpoint operator [2]. This means, that a query can be formulated as 1fp
(R = f(R)), where R is a relation, f is a relational expression, and Ifp is the
least fixpoint operator. The semantics of this construct is to evaluate R to
the least set fulfilling the equation. This general recursive construct has the
disadvantage, that a fixpoint does not always exist, and general recursion
can be very inefficient to evaluate. Therefore, it seems more promising,
to restrict the expression f so that a fixpoint always exists, and efficient
evaluation algorithms can be developed.

For this purpose we start from the well known transitive closures and gen-
eralize transitive closures as long as the recursive expressions remain well
defined and bottom up evaluable.

The transitive closure of a binary relation R is defined as least fixpoint of
V = RUcomp(R,V)

Thereby, comp stands for a composition, which is defined as equi-join with
the join attributes projected out.

To overcome some shortcomings in the expressiveness of the transitive clo-
sure, the definition can be extended in the following ways:

e The equi-join can be replaced by a theta-join or by a selection on the
cartesian product.

e The projection may be extended to a projection-expression where the
values of some attributes can be defined by evaluable functions like
arithmetic expressions or string expressions.

The notion of a general transitive closure was introduced in [6] and [12]. In
[7] it was applied to relational languages.

Definition 2.1 (General transitive closure) We define the general tran-
sttwe closure of a relation R by a composition expression compex by the least
fizpoint of the following equation:

V = RU compez(R,V)

Compex stands for a composition expression, which is a selection on the
cartesian product of R and V together with a projection which may include
functions like arithmetic and string expressions. So compex can be described

as projex(select P R x GR)). In other terms, the compex expression can be
described as a usual SELECT statement of SQL.

Since general transitive closure is defined by union, R and GR have to have
the same schema. So the composition expression has to project the cartesian
product of R and GR on this schema. The expressions in this projection
allow the computation of attribute values of a tuple in the projected rela-
tion in terms of attribute values of it’s corresponding tuple in the cartesian
product R x GR.

The selection on the cartesian product of R and GR can be regarded as
transitivity condition, as it determines, if two tuples can be connected. In

the general transitive closure the transitivity condition is more general than
just identity of attribute values.

Example : The relation direct containing inforamation about direct flights
consists of the following attributes: from — city and to — city for the con-
nected cities, departure for the time the plane departs, arrival for the time
it arrives, and distance for the distance of the flight. The query, we want
to formulate, shall produce a table containing all flight connections between
cities together with the total distance of each flight. We define, that there is
a connection between two cities, if there is a direct flight between these two
cities, or there is a connection from the first city to an intermediate city and
a direct flight from the intermediate city to the second city, which departs
after the arrival of the connection from the first city.

The relation connection (short ’C’) is defined as general transitive closure of
the relation direct (short 'D’), i.e as least fixpoint of the following equation:

C=Du 7z-C.f'r'O'm,D.to,C.dim&—I—D.disto'D.f'ro‘m:C.to,D.dep<C.a'r"rD x C

There are two reasons for extending the concept of general transitive closures
to relations containing duplicates:

e Increasing expressiveness. In particular, general transitive closures of
multiset-relations allow to process reconvergent structures.

e Making general transitive closure suitable for relational languages which
allow duplicates in tables.

The operations of relational algebra extend very natural to multiset-relations.
In [8] we formally defined these operations in accordance with the respec-
tive definitions in SQL. We will not distinguish between operations on set-
relations and multiset-relations, where it is not necessary. For the multiset-
union we will use the symbol L, e.g. [a, a, b, b, ¢|U[a,a,b,d]| = [a.a,a,a,b,b,b,c,d].

Definition 2.2 (General transitive closure of multisets) The general
transitive closure of a multiset-relation R by a (multiset-) composition ex-
pression competr is defined by the least fixpoint of the following equation:

V = R U compez(R,V)

The expression compex consists of a multiset-selection on the multiset-
cartesian product of R and T together with a multiset-projection which
may contain functions like arithmetic or string expressions in terms of at-
tributes of the cartesian product. So compex can be regarded as SELECT
statement of SQL without duplicate elimination.

Example : This example deals with the well known parts hierarchy problem
or bill of materials problem. A relation comp is given with the attributes
part, subpart and quantity. A tuple < a,b, ¢ > of this relation means that
part a contains ¢ pieces of part b. In this relation a certain part can be
subpart of different aggregates. (For example the same type of screw may
be used in different machines or even in different subparts of a single ma-
chine). We wish to formulate the query which parts in what quantity a given
aggregate consists of.

We define the relation parts as general transitive closure of multisets of
the relation comp. So the relation parts is defined as least fixpoint of the
following equation:

pCLTtS = comp L T comp.part,parts.subpart,comp.quantityxparts.quantity

Ucomp.subpart:parts.partcomp X pCLTtS

Theorem 2.1 A least fizpoint for the general transitive closure of multisets
always exists.

We define P™(D) as the set of all multisets over the domain D. We define
the partial order < as follows: M; < M,, iff all elements of M; appear in
M, with at least the same cardinality. It is easy to see, that (P™(D),<)isa
complete lattice, and that M; Ucompex(M;, M,) is continous and monotone
with respect to <. Therefore, Tarski’s fixpoint theorem [13] can be applied
and the existence of a least fixpoint is assured.

3 Aggregate Functions

3.1 Definition of Aggregate Functions

In SQL aggregate functions are powerful constructs for formulating queries.
In the syntax of SQL aggregate functions are interwoven with projection

and arithmetic expressions. To be better able to reason about aggregate
functions we introduce a special aggregation operator. This aggregation
operator has the property that the result has the same scheme as the 'input’-
relation - a property we need for recursive views.

In literature aggregate functions for relational query languages have been
introduced in various ways. As we aim at extending SQL we will formalize
aggregate functions as they are defined in SQL.

Definition 3.1 (aggregation) The syntax of the aggregation operator agg
applied to a relation R with schema S is defined as follows: aggrR : Va €
S:a€eLVvO(a)€ L,O € {min, maz, sum}.

We call L the aggregation list, G = {a € S | a € L} the grouping attribute(s)
and A = S — G the aggregated attributes.

The semantics of the aggregation operator is defined as follows: Let P =
aggrR,. Vt € aggr R :

1. 3t' € R : t[G] = t'[G]

2. Vt' € aggrR : t #t' — t[G] # t'[G]

3. Va € §,min(a) € L : tla] = min(m,0g=c R)
4. Vb€ S,maz(b) € L : t[b] = maz(mpog=yc R)
5. Ve S,sum(c) € L :tlc] = Y meog_yq R

Example: Let R be arelation with the attributes a, b, ¢, and d. agg, min(s),maz(c),sum(d)R
would read in SQL as follows:

Select a, min(b), max(c), sum(d)
From R
Group by a

3.2 Properties of Aggregate Functions

In this section we will discuss some properties of aggregate functions. For
the following propositions let D be domain, and R a set-relation and M, M’,
N multiset-relations over D. Further let aggr be an aggregate function for
relations over D.

Proposition 3.1 (set result) aggr M s a set-relation, irrespective whether
R is a set- or a multiset-relation, and the grouping attributes are a key (su-
perkey) of the result relation.

Proposition 3.2 Vt € D : aggr{t} = {t}

It is easy to see that the application of an aggregate operation on a singleton
relation results in this very relation.

Proposition 3.3 (idempotence) aggr(aggrR) = aggrR

Each tuple of aggr R represents a different partition of R. A subsequent ap-
plication of aggr, keeps the partitioning and Prop. 3.3 follows from Prop.3.2.
Hence aggy is idempotent.

Proposition 3.4 aggr(M U M') = aggr(M U aggrM'), and if aggr M =
aggr.M’', then aggpM U N = aggp M' U N

It is easy to see, that in the case of multiset-relations and multiset-union the
aggregation operation can be applied to a part of a relation first, without
changing the result.

Note however, that this proposition does not hold for set-relations and set-
union in general, because of the ’sum’-aggregation.

Proposition 3.5 If L does not contain sum, the following proposition holds:
Let { M } be the set of all tuples contained in the multiset-relation M:

aggrM = aggr{M}

This means, that if L does not contain sum, then the aggregate of a multiset-
relation is the same, irrespective whether duplicates have been eliminated
or not.

Proposition 3.6 Aa € S,sum(a) € L — aggrRU R’ = aggrR U aggr R’

If the aggregation contains only min und max, then the aggregation can be
applied to a part of a relation first.

Proposition 3.7 If K is a key of the relation R and Va € K : a € L, then
aggr(R) = R.

Since K is subset of the grouping attributes, each partition imposed by those
attributes consists of exactly one tuple, as the values of the key-attributes
are unique.

Proposition 3.8 The set of grouping attributes A is a superkey in aggr R.

All aggregated attributes are functional dependent from the grouping at-
tribute, according to the definition of aggregation.

The propositions above will be needed in the sequel to discuss whether
aggregate closures are well formed and bottom up evaluable.

4 Aggregate Closure

4.1 Extending general transitive closure with aggregate func-
tions

The extension of the general transitive closure concept with aggregate opera-
tions increases expressiveness, since general transitive closures are restricted
to linear recursions, while the introduction of aggregate functions. will allow
to express several non-linear recursions.

For aggregate closures the fixpoint with respect to the subset relation cannot
be used (since aggrR € R,andR ¢ aggrR). Therefore, we have to define
an different partial order which includes the subset order.

Definition 4.1 (<p) Let r,t € D. r <p t with respect to the aggregator
aggr with grouping atiribute A ;<

VaeS: ael — rla] = t[a],
min(a) € L — rla] < t[a],
maz(a) € L — rla] > t[a],
sum(a) e L — rla] < {a].

Let R,T € P(D). R <r T with respect to the aggregator aggr < Vr €
RAteT:r <t

Note: Since the result of an aggregate operation is a set, we do not have to
extend the lattice to multisets.

For the following let G be the grouping attribute of the aggregation L, and
P(D)® C P(D) be the set of all relations over D which have G as superkey.

Proposition 4.1 =<y, is a partial order on P(D)C.

It is easy to see that < is reflexive, anti-symmetric and transitive.

Note: There is another partial order with reverse inequality in the case of
sum. However, for the rest of this consideration we will stay with the above
definition for sake of simplicity. The results can be easily transferred to the
other partial order.

Theorem 4.1 (P(D)%, <) is a complete lattice.

Proof: With prop. 4.1 we know, that <y is a partial order on 'P(D)G. We
now have to show, that for any subset of P(D)% inf and sup exist. We
define Lmin as an aggregation list, where sum is replaced in L by min,
and Lmax as an aggregation list where we replace in L min by max, max
by min and sum by max. Let R C P(D)%.inf(R) := aggrmin((UR) X
(NxermaX),sup(R) := aggrmaz U R. It is easy to verify, that inf(R) is a
greatest lower bound and sup(R) is a least upper bound.

Definition 4.2 (Aggregate closure) The aggregate closure ac of a rela-
tion R by a composition expression compezx, and an aggregate operation aggr,
is defined by the least fixpoint of the following equation:

V = aggr(R U compez(R,V))

The aggregate closure ac,, of a multiset-relation M by a composition-expression
compex and an aggregate operation aggyr s defined by the least fixpoint of
the following equation:

Vin = aggr(M U compez(M,V,,))

Example: This example is taken from the anti-trust control problem. A
relation owns is given with the attributes owner, company and share. A
tuple < a, b, ¢ >of this relation says that an owner a has a share of ¢ percent

10

of company b. Companies can themselves be owner of other companies. We
want to formulate a query to determine which companies are controlled by
a given owner. A company is controlled by an owner, if this owner, together
with the companies he controls, holds more than 50% of this company. We
want to specify the query to derive a relation controls, with the attributes
owner, company, and share expressing all control - relationships determined
by the owns relation.

We define a relation controls (short C) as aggregate closure of the relation

has-share (short H) by

aggowner,company,sum(share)H U TC.owner,H.company,H .share
UC.company:H.owner,C.share>50H x C

Like for general transitive closures, the procedural definition of the semantics
of aggregate closures is given through (naive) fixpoint evaluation.

Vold := 0;
Vnew := R;
while Vnew # Vold do
Vold := Vnew;
Vnew := aggr (R U compex(R, Vold))
endwhile;

This algorithm serves only for a procedural definition of the semantics, a
query against an aggregate closure is evaluated with more efficient algo-
rithms like differential fixpoint evaluation [9].

4.2 Monotonicity of Aggregate Closures

General transitive closures have the nice property that the fixpoint always
exists, and that this fixpoint is bottom up evaluable. However this does not
hold for aggregate closures where the fixpoint iteration may not terminate
for three reasons:

1. There is an infinite number of tuples in the result. This may only
happen, if attributes in the grouping list are computed by arithmetic
expressions in the compex expression. This problem also occurs for
general transitive closures.

11

2. Values of some tuples are infinite. This problem may also occur for gen-
eral transitive closures, when attributes are computed and no bound is
specified for the growth of values for these attributes. (For a discussion
thereof see [7])

3. There does not exist a fixpoint. This problem cannot appear for gen-
eral transitive closure. We will demonstrate this problem through the
following example:

Let R be arelation with the schema {a, b, c}. Let the aggregate closure
Vof R be defined as V' = agga b, sum(c) RUTV.0,R6,R.cOVb=R.0,V.c>30,V.c<50 R X
V' . Let the relation R consist of the following tuples:

alb| ¢
x|y |10
x|z |40
z |y |20
y|z| 20

It is easy to see, that a fixpoint for this equation does not exist. There-
fore, we have to derive some conditions which are sufficient that the
fixpoint of an aggregate closure exists, and that it is bottom up evalu-

able.

Since the first two problems were already analyzed for general transitive
closures, we will concentrate on the third problem. Unfortunately, it is
not possible to define a partial order with respect to which the aggregate
closure transformation is monotone. For checking the existence of a fixpoint
we, therefore, have to check, whether the transformation is increasing. And
we will give sufficient conditions for that. For the following let T denote
the aggregate closure transformation,i.e. T(V) = aggr(R U compez(R,V)),
and V* is the value of Vold in the fixpoint iteration algorithm after the it"
iteration.

First we have to define a new partial order, based on the observation, that
T(V) may contain more tuples than V, but ’better ones’. Therefore, the
inequalities for min and max in <y have to be reversed. Note, that <
is the order for chosing among several fixpoints, while jj—; is the order for
which the sequence (T%(0)) shall be monotone.

12

Definition 4.3 (<f) Let r,t € D. r <} t with respect to the aggregator
aggr with grouping attribute G &

VaeS: ael — rla] = t[a],
min(a) € L — rla] > t[a],
maz(a) € L — rla] < tla],
sum(a) e L — rla] < {a].

Let R,Q € P(D). R <} Q with respect to the aggregator aggr :< Vr €
Rite@:r jj—; t.

Definition 4.4 (increasing) The transformation T is increasing, iff for
ali> 0: V' < Vit = T(V).

If the transformation T is increasing, then the sequence (7%(0)) is monotone,
and the problem described above cannot appear, i.e. the fixpoint iteration
cannot dangle between two different relations.

To check whether the transformation is increasing one has to analyze, which
aggregate functions are used, whether there is one or more aggregated at-
tributes, whether it is a set or multiset aggregate closure, whether aggregated
attributes appear in the selection condition, and whether attributes depend
on aggregated attributes.

Here we will give a sufficient condition for T being increasing which is easier
to check.

Definition 4.5 (tuplewise monotone) A composition expression compez
is tuplewise monotone with respect to <L, iff vt,t' € D : {t} =f {t'},Vr €
R : compez({r}, {t}) <% compez({r},{t'}).

For the definition of tuplewise increasing we take the order <, (without +!),
so that for example a tuple in T(t) has a higher value in a min attribute
than t.

Definition 4.6 (tuplewise increasing) A composition expression compez
s tuplewnse increasing with respect to <r,

ffVt € D:Vr € R:7ws_g{t} Sp—g ms_gcompez({r},{t}) or compez({r}, {t}) =
0.

13

Theorem 4.2 If T is a set transformation without the sum - aggregate func-
tion, and compex (of T) is tuplewise monotone and tuplewise increasing,
then T is increasing.

Proof by induction. Obviously, @ jj—; R. We assume that V™! jj—; Vi We
have to show that V* <f Vi*l je. Vt € V¢, 3t' € aggr(R U compez(R,V?))
with ¢ jj—; t', which follows from the induction hypothesis, compex being
monotone and increasing and the properties of aggregation.

Theorem 4.3 If T is a multiset transformation and compex (of T) is tu-
plewise monotone and tuplewise increasing, and all values of attributes ag-
gregated by sum are positive, then T is increasing.

Proof by induction in analogy to the proof of Theorem 4.2. For the sum
aggregated attributes we use the fact that since compex is a tuplewise mono-
tone multiset operation for all sets Q, Q”: Q < Q’ implies that | Q | < | Q’
| and | compex(R, Q) | < | compex(R, Q’) |.

To develop an efficient algorithm for checking whether a transformation is
increasing which also covers more cases than those of the previous theorems
is subject of current research.

5 Extending the view definition in SQL

The formulation of recursively defined tables by means of general transitive
closure or aggregate closure of set- or multiset-relations is proposed to be
embedded in the view definition of SQL. The following syntax of the view
definition statement is an extension of that in standard SQL.

CREATE VIEW <view-name> (<attributed-column-list>)
AS [DISTINCT | ALL] FIXPOINT of [<type>]
<table-name> [(<column-1list>)]
[AGGREGATE <aggregate-list>]
BY SELECT <list>
FROM <table name>, <viewname>
WHERE <constraint-list>

14

Example: As an example of this view-definition we formulate the view
needed to solve the anti-trust problem of example 4. The base table is
the table owns with the attributes owner, company, and share.

CREATE VIEW controls (owner, company, share)
AS FIXPOINT OF owns

BY

AGGREGATE owner, company, sum(share)

SELECT c.owner, o.company, o.share
FROM controls c, owns o
WHERE c.company = o.owner

AND c.share > 50

Traversal recursions as reported in [12] are special cases of this construct.
We will give an example for the formulation of graph related recursions. The
relation G with the attributes a, b, w represents a graph such that a tuple
< a1, by, w1 > stands for a directed arc from node a1 to node b; with weight
w1.

Shortest path:

CREATE VIEW short (a, b, w)

AS FIXPOINT of G

AGGREGATE a, b, min(w)

BY SELECT G.a, short.b, G.w + short.w
FROM G, short

WHERE G.b = short.a

In general, that an aggregate closure represents a graph traversal can be
determined through an analysis of the appearance of the attributes in the
view definition. Let R be the base relation and V the defined view. If the
attributes of V (resp. R) can be partitioned into 3 sets A, B, W, such that A
U B is the grouping attribute of the aggregation, the project-expression list
of compex is V.A, R.B, f(V.W, R.W) and the where-condition of compex is
V.B = R.A, then the aggregate closure represents a graph traversal problem.
Such views can be analyzed using the path-algebra described in [3]. However,
this consideration demonstrates that aggregate closures are more expressive
than graph traversals.

15

6 Conclusion

Aggregate closures - an extension of general transitive closures - have been
introduced to meet demands for increased functionality of query languages
for relational databases. The approach is rather pragmatic as it employs
comparable modest extensions to SQL with the aim to support a range of
practical applications while maintaining full compatibility with SQL and
being secure and easy to understand. It has been shown, that the introduc-
tion of aggregate functions in the definition of recursive views increases the
expressiveness of general transitive closures. However, this extension has
the drawback that the existence of fixpoints is no longer guaranteed, but
we gave a sufficient condition for aggregate closures to be well formed and
bottom up evaluable.

Further research includes the development of an efficient algorithm for ana-
lyzing the existence of a fixpoint of an aggregate closure and for guaranteeing
termination of the fixpoint iteration as well as the adoption of efficient fix-
point algorithms for aggregate closures.

References

[1] R. Agrawal. Alpha: An extension of relational algebra to express a class
of recursive queries. IEEE Trans. on Software Engineering, 15(3):335—
347, 1988.

[2] Alfred Aho and Jeffrey Ullmann. Universality of data retrieval lan-
guages. In Proc. ACM Symp. on Principles of Programming Languages,
pages 110-120, 1979.

[3] B. Carre. Graphs and Networks. Claredon Press, Oxford, 1979.

[4] Stefano Ceri, Georg Gottlob, and Letizia Tanca. Logic Programming
and Databases. Springer Verlag, 1990.

[6] E.K. Clemons. Design of an external schema facility to define and pro-
cess recursive structures. ACM Trans. on Database Systems, 6(2):295—
311, 1981.

[6] U. Dayal and J. M. Smith. Probe: A knowledge-oriented database
management system. In M. Brodie and J. Mylopoulos, editors, On
Knowledge Base Management Systems. Springer- Verlag, 1986.

16

[7]

J. Eder. Extending SQL with general transitive closure and extreme
value selections. IEEE Transactions on Knowledge and Data Engineer-
ing, 2(4):381-390, 1990.

J. Eder. General transitive closure of relations containing duplicates.
Information Systems, 15(3):335-347, 1990.

U. Giintzer, W. Kiessling, and R. Bayer. On the evaluation of recursion
in (deductive) database systems by efficient differential fixpoint itera-
tion. In Proc. 3rd Intern. Conf. on Data Engineering, pages 120-129,
1987.

I. S. Mumick, H. Pirahesh, and R. Ramakrishnan. The magic of dupli-
cates and aggregates. In Proc. of the 16th International Conference on
Very Large Databases, pages 264277, 1990.

Oracle Cooperation. SQL*Plus Users’s Guide, 1987.

A. Rosenthal, S. Heiler, U. Dayal, and F. Manola. Traversal recursion:
A practical approach to supporting recursive applications. In Proc. of
the ACM SIGMOD International Conference on Management of Data,
pages 166-176, 1986.

A. Tarski. A lattice theoretical fixpoint theorem and it’s applications.
Pacific Journal of Mathematics, n.5, 1955.

17

