
General Transitive Closures and Aggregate

Functions �

Johann Eder
Universit�at Wien

Institut f�ur Statistik und Informatik
Liebiggasse �����

A����� Wien � AUSTRIA

February ��� �		�

Abstract

General transitive closures are a convenient operation for process�

ing recursive structures with relational languages� because they are

easy to understand� e�ciently to implement and expressive enough to

support a broad range of practical applications� To further extend

the expressiveness of general transitive closures� we study the use of

aggregate functions together with general transitive closures� While

general transitive closures are restricted to express linear recursion�

general transitive closures with aggregate functions can be used to ex�

press some nonlinear recursions too� We will give some conditions for

general transitive closures with aggregate functions to be well formed

and bottom up evalueable� We show how these constructs can be in�

tegrated in an extended SQL�

Keywords� deductive databases� recursive query processing� SQL�

general transitive closure

� Introduction

There is a common understanding in the research community that relational
database systems have reached their limits in supporting the demands for

�This work was partly supported by the Austrian Fonds zur F�orderung der wis�

senschaftlichen Forschung under contract P����P�

�

katja
published in: Karagiannis D. (ed.): Proc. International Conference on Database and Expert System Application, Springer Verlag 1991, pp. 54-59



new sophisticated information systems� In particular the fact that relational
query languages are not computationally complete and the representation of
complex objects is cumbersome has triggered a lot of research in deductive
databases and object oriented databases�

For introducing deduction we present here a rather pragmatic approach�
We believe that many yet unsupported applications demand comparable
modest deductive capabilities� Therefore� we will present an extension of
SQL for processing of a class of recursive queries rather than introducing
general recursive capabilities� Since SQL is the standard query language for
relational databases these extensions should be easy to use and to integrate
with existing databases� A major advantage of such an approach is that
with the increased capabilities of SQL investments in systems and already
collected data as well as in training of programmers and end�users can be
used and nevertheless new kinds of applications can be built�

Recursion is integrated into the view de�nition of SQL in form of generalized
transitive closures ����	� A unique aspect of our approach is that it also
covers relations containing duplicates �multiset relations	 to be compatible
with SQL ��
�	� As a positive side e�ect� expressiveness is increased when
general transitive closures are extended to multiset relations� The semantics
of this new construct is de�ned in a formal way to open possibilities for
automatic query optimization and it is de�ned procedurally to be better
understood by traditional programmers� Since recursively de�ned views can
be used in queries like all other views� end users can take advantage of the
increased functionality without knowing anything about recursive queries or
deduction� Furthermore� tools built upon SQL like report writers or fourth
generation languages can be used unchanged on top of recursively de�ned
views�

In this paper we extend our approach by introducing aggregate functions in
the de�nition of general transitive closures� This extension allows some non
linear recursive queries to be expressed while general transitive closures are
restricted to linear recursion�

This development di�ers from the mainstreamresearch in deductive databases
where deductive query languages are developed within the paradigm of logic
programming �see ��� for an overview	 as it follows a pragmatic approach
introducing only small extensions and maintaining full upward compatibility
with SQL�

In ��� a di�erent approach for introducing general transitive closures as
means for recursive query processing is reported� Our approach however





is fully integrated into relational languages and does not require the graph
metaphore for expressing recursive queries�

Previous proposals for extending SQL with a capability for processing re�
cursive structures like ��� or the tree traversal construct of ���� di�er from
this approach as they work on limited sets of graphs �or relations	 and their
semantics is only de�ned procedurally�

In ��� relational algebra is extended with the operator alpha to express a
certain class of recursive queries� For non�linear recursions a special relation�
valued attribute delta containing the history of the traversal is introduced
transforming intermediate relations to non �rst normal form�

The approach in ���� also extends SQL and deals with duplicates � like our
approach� However� it is based on calculus in a more top down approach
while we build upon an algebraic �xpoint operator with a bottom up ap�
proach and provide an easier procedural interpretation of general transitive
closures�

The remainder of this paper is organized as follows� In section  we review
previous work on general transitive closures for recursive views in SQL� In
section � we discuss aggregate functions and de�ne an aggregation opera�
tor� In section � we de�ne aggregate closures and discuss their properties�
In section � we extend the view de�nition of SQL to formulate aggregate
closures� and in section � we draw some conclusions�

� General Transitive Closures

Recursion is often introduced into relational query languages by means of
a �xpoint operator ��� This means� that a query can be formulated as lfp
�R � f�R		� where R is a relation� f is a relational expression� and lfp is the
least �xpoint operator� The semantics of this construct is to evaluate R to
the least set ful�lling the equation� This general recursive construct has the
disadvantage� that a �xpoint does not always exist� and general recursion
can be very ine�cient to evaluate� Therefore� it seems more promising�
to restrict the expression f so that a �xpoint always exists� and e�cient
evaluation algorithms can be developed�

For this purpose we start from the well known transitive closures and gen�
eralize transitive closures as long as the recursive expressions remain well
de�ned and bottom up evaluable�

�



The transitive closure of a binary relation R is de�ned as least �xpoint of

V � R � comp�R� V 	

Thereby� comp stands for a composition� which is de�ned as equi�join with
the join attributes projected out�

To overcome some shortcomings in the expressiveness of the transitive clo�
sure� the de�nition can be extended in the following ways�

� The equi�join can be replaced by a theta�join or by a selection on the
cartesian product�

� The projection may be extended to a projection�expression where the
values of some attributes can be de�ned by evaluable functions like
arithmetic expressions or string expressions�

The notion of a general transitive closure was introduced in ��� and ���� In
��� it was applied to relational languages�

De�nition ��� �General transitive closure� We de�ne the general tran�
sitive closure of a relation R by a composition expression compex by the least
�xpoint of the following equation�

V � R � compex�R� V 	

Compex stands for a composition expression� which is a selection on the
cartesian product of R and V together with a projection which may include
functions like arithmetic and string expressions� So compex can be described
as projex� select P R x GR		� In other terms� the compex expression can be
described as a usual SELECT statement of SQL�

Since general transitive closure is de�ned by union� R and GR have to have
the same schema� So the composition expression has to project the cartesian
product of R and GR on this schema� The expressions in this projection
allow the computation of attribute values of a tuple in the projected rela�
tion in terms of attribute values of it�s corresponding tuple in the cartesian
product R x GR�

The selection on the cartesian product of R and GR can be regarded as
transitivity condition� as it determines� if two tuples can be connected� In

�



the general transitive closure the transitivity condition is more general than
just identity of attribute values�

Example � The relation direct containing inforamation about direct �ights
consists of the following attributes� from � city and to � city for the con�
nected cities� departure for the time the plane departs� arrival for the time
it arrives� and distance for the distance of the �ight� The query� we want
to formulate� shall produce a table containing all �ight connections between
cities together with the total distance of each �ight� We de�ne� that there is
a connection between two cities� if there is a direct �ight between these two
cities� or there is a connection from the �rst city to an intermediate city and
a direct �ight from the intermediate city to the second city� which departs
after the arrival of the connection from the �rst city�

The relation connection �short �C�	 is de�ned as general transitive closure of
the relation direct �short �D�	� i�e as least �xpoint of the following equation�

C � D � �C�from�D�to�C�dist�D�dist�D�from�C�to�D�dep�C�arrD � C

There are two reasons for extending the concept of general transitive closures
to relations containing duplicates�

� Increasing expressiveness� In particular� general transitive closures of
multiset�relations allow to process reconvergent structures�

� Making general transitive closure suitable for relational languages which
allow duplicates in tables�

The operations of relational algebra extend very natural to multiset�relations�
In �
� we formally de�ned these operations in accordance with the respec�
tive de�nitions in SQL� We will not distinguish between operations on set�
relations and multiset�relations� where it is not necessary� For the multiset�
union we will use the symbolt� e�g� �a� a� b� b� c�t�a� a� b� d� � �a�a� a� a� b� b� b� c� d��

De�nition ��� � General transitive closure of multisets� The general
transitive closure of a multiset�relation R by a �multiset�� composition ex�
pression compex is de�ned by the least �xpoint of the following equation�

V � R t compex�R� V 	

�



The expression compex consists of a multiset�selection on the multiset�
cartesian product of R and T together with a multiset�projection which
may contain functions like arithmetic or string expressions in terms of at�
tributes of the cartesian product� So compex can be regarded as SELECT
statement of SQL without duplicate elimination�

Example � This example deals with the well known parts hierarchy problem
or bill of materials problem� A relation comp is given with the attributes
part� subpart and quantity� A tuple � a� b� c � of this relation means that
part a contains c pieces of part b� In this relation a certain part can be
subpart of di�erent aggregates� �For example the same type of screw may
be used in di�erent machines or even in di�erent subparts of a single ma�
chine	� We wish to formulate the query which parts in what quantity a given
aggregate consists of�

We de�ne the relation parts as general transitive closure of multisets of
the relation comp� So the relation parts is de�ned as least �xpoint of the
following equation�

parts � compt �comp�part�parts�subpart�comp�quantity�parts�quantity

�comp�subpart�parts�partcomp� parts

Theorem ��� A least �xpoint for the general transitive closure of multisets
always exists�

We de�ne Pm�D	 as the set of all multisets over the domain D� We de�ne
the partial order � as follows� M� � M�� i� all elements of M� appear in
M� with at least the same cardinality� It is easy to see� that �Pm�D	��	 is a
complete lattice� and thatM�tcompex�M��M�	 is continous and monotone
with respect to �� Therefore� Tarski�s �xpoint theorem ���� can be applied
and the existence of a least �xpoint is assured�

� Aggregate Functions

��� De�nition of Aggregate Functions

In SQL aggregate functions are powerful constructs for formulating queries�
In the syntax of SQL aggregate functions are interwoven with projection

�



and arithmetic expressions� To be better able to reason about aggregate
functions we introduce a special aggregation operator� This aggregation
operator has the property that the result has the same scheme as the �input��
relation � a property we need for recursive views�

In literature aggregate functions for relational query languages have been
introduced in various ways� As we aim at extending SQL we will formalize
aggregate functions as they are de�ned in SQL�

De�nition ��� �aggregation� The syntax of the aggregation operator agg
applied to a relation R with schema S is de�ned as follows� aggLR � �a �
S � a � L � ��a	 � L�� � fmin�max� sumg�

We call L the aggregation list� G � fa � S j a � Lg the grouping attribute�s�
and A � S �G the aggregated attributes�

The semantics of the aggregation operator is de�ned as follows� Let P �
aggLR�� �t � aggLR �

�� �t� � R � t�G� � t��G�

�� �t� � aggLR � t 	� t� 
 t�G� 	� t��G�

	� �a � S�min�a	 � L � t�a� � min��a�G�t�G�R	


� �b � S�max�b	 � L � t�b� � max��b�G�t�G�R	

�� �c � S� sum�c	 � L � t�c� �
P
�c�G�t�G�R

Example� Let R be a relation with the attributes a� b� c� and d� agga�min�b��max�c��sum�d�R

would read in SQL as follows�

Select a� min�b�� max�c�� sum�d�

From R

Group by a

��� Properties of Aggregate Functions

In this section we will discuss some properties of aggregate functions� For
the following propositions let D be domain� and R a set�relation and M� M��
N multiset�relations over D� Further let aggL be an aggregate function for
relations over D�

�



Proposition ��� �set result� aggLM is a set�relation� irrespective whether
R is a set� or a multiset�relation� and the grouping attributes are a key �su�
perkey� of the result relation�

Proposition ��� �t � D � aggLftg � ftg

It is easy to see that the application of an aggregate operation on a singleton
relation results in this very relation�

Proposition ��� �idempotence� aggL�aggLR	 � aggLR

Each tuple of aggLR represents a di�erent partition of R� A subsequent ap�
plication of aggL keeps the partitioning and Prop� ��� follows from Prop����
Hence aggL is idempotent�

Proposition ��� aggL�M tM �	 � aggL�M t aggLM
�	� and if aggLM �

aggLM
�� then aggLM tN � aggLM

� tN

It is easy to see� that in the case of multiset�relations and multiset�union the
aggregation operation can be applied to a part of a relation �rst� without
changing the result�

Note however� that this proposition does not hold for set�relations and set�
union in general� because of the �sum��aggregation�

Proposition ��	 If L does not contain sum� the following proposition holds�
Let f M g be the set of all tuples contained in the multiset�relation M�
aggLM � aggLfMg

This means� that if L does not contain sum� then the aggregate of a multiset�
relation is the same� irrespective whether duplicates have been eliminated
or not�

Proposition ��
 	 �a � S� sum�a	 � L
 aggLR �R
� � aggLR � aggLR

�

If the aggregation contains only min und max� then the aggregation can be
applied to a part of a relation �rst�






Proposition ��� If K is a key of the relation R and �a � K � a � L� then
aggL�R	 � R�

Since K is subset of the grouping attributes� each partition imposed by those
attributes consists of exactly one tuple� as the values of the key�attributes
are unique�

Proposition ��� The set of grouping attributes A is a superkey in aggL R�

All aggregated attributes are functional dependent from the grouping at�
tribute� according to the de�nition of aggregation�

The propositions above will be needed in the sequel to discuss whether
aggregate closures are well formed and bottom up evaluable�

� Aggregate Closure

��� Extending general transitive closure with aggregate func�
tions

The extension of the general transitive closure concept with aggregate opera�
tions increases expressiveness� since general transitive closures are restricted
to linear recursions� while the introduction of aggregate functions� will allow
to express several non�linear recursions�

For aggregate closures the �xpoint with respect to the subset relation cannot
be used �since aggLR 	� R� andR 	� aggLR	� Therefore� we have to de�ne
an di�erent partial order which includes the subset order�

De�nition ��� ��L� Let r� t � D� r �L t with respect to the aggregator
aggL with grouping attribute A �

�a � S � a � L 
 r�a� � t�a��
min�a	 � L 
 r�a� � t�a��
max�a	 � L 
 r�a� � t�a��
sum�a	 � L 
 r�a� � t�a��

Let R� T � P�D	� R �L T with respect to the aggregator aggL � �r �
R�t � T � r �L t�

�



Note� Since the result of an aggregate operation is a set� we do not have to
extend the lattice to multisets�

For the following let G be the grouping attribute of the aggregation L� and
P�D	G � P�D	 be the set of all relations over D which have G as superkey�

Proposition ��� �L is a partial order on P�D	G�

It is easy to see that �L is re�exive� anti�symmetric and transitive�

Note� There is another partial order with reverse inequality in the case of
sum� However� for the rest of this consideration we will stay with the above
de�nition for sake of simplicity� The results can be easily transferred to the
other partial order�

Theorem ��� �P�D	G��L	 is a complete lattice�

Proof� With prop� ��� we know� that �L is a partial order on P�D	G� We
now have to show� that for any subset of P�D	G inf and sup exist� We
de�ne Lmin as an aggregation list� where sum is replaced in L by min�
and Lmax as an aggregation list where we replace in L min by max� max
by min and sum by max� Let R � P�D	G�inf�R	 �� aggLmin��

S
R	 �

�
T
X�R �GX	� sup�R	 �� aggLmax

S
R� It is easy to verify� that inf�R	 is a

greatest lower bound and sup�R	 is a least upper bound�

De�nition ��� �Aggregate closure� The aggregate closure ac of a rela�
tion R by a composition expression compex� and an aggregate operation aggL
is de�ned by the least �xpoint of the following equation�

V � aggL�R � compex�R� V 		

The aggregate closure acm of a multiset�relation M by a composition�expression
compex and an aggregate operation aggL is de�ned by the least �xpoint of
the following equation�

Vm � aggL�M t compex�M�Vm		

Example� This example is taken from the anti�trust control problem� A
relation owns is given with the attributes owner� company and share� A
tuple � a� b� c �of this relation says that an owner a has a share of c percent

��



of company b� Companies can themselves be owner of other companies� We
want to formulate a query to determine which companies are controlled by
a given owner� A company is controlled by an owner� if this owner� together
with the companies he controls� holds more than ��� of this company� We
want to specify the query to derive a relation controls� with the attributes
owner� company� and share expressing all control � relationships determined
by the owns relation�

We de�ne a relation controls �short C	 as aggregate closure of the relation
has�share �short H	 by

aggowner�company�sum�share�H t �C�owner�H�company�H�share

�C�company�H�owner�C�share��	H � C

Like for general transitive closures� the procedural de�nition of the semantics
of aggregate closures is given through �naive	 �xpoint evaluation�

Vold �� ��
Vnew �� R�

while Vnew 	� Vold do

Vold �� Vnew�

Vnew �� aggL �R t compex�R� Vold��

endwhile�

This algorithm serves only for a procedural de�nition of the semantics� a
query against an aggregate closure is evaluated with more e�cient algo�
rithms like di�erential �xpoint evaluation ����

��� Monotonicity of Aggregate Closures

General transitive closures have the nice property that the �xpoint always
exists� and that this �xpoint is bottom up evaluable� However this does not
hold for aggregate closures where the �xpoint iteration may not terminate
for three reasons�

�� There is an in�nite number of tuples in the result� This may only
happen� if attributes in the grouping list are computed by arithmetic
expressions in the compex expression� This problem also occurs for
general transitive closures�

��



� Values of some tuples are in�nite� This problemmay also occur for gen�
eral transitive closures� when attributes are computed and no bound is
speci�ed for the growth of values for these attributes� �For a discussion
thereof see ���	

�� There does not exist a �xpoint� This problem cannot appear for gen�
eral transitive closure� We will demonstrate this problem through the
following example�

Let R be a relation with the schema fa� b� cg� Let the aggregate closure
V of R be de�ned as V � agga�b�sum�c�Rt�V�a�R�b�R�c�V�b�R�a�V�c�
	�V�c��	R�
V � Let the relation R consist of the following tuples�

a b c

x y ��
x z ��
z y �
y z �

It is easy to see� that a �xpoint for this equation does not exist� There�
fore� we have to derive some conditions which are su�cient that the
�xpoint of an aggregate closure exists� and that it is bottom up evalu�
able�

Since the �rst two problems were already analyzed for general transitive
closures� we will concentrate on the third problem� Unfortunately� it is
not possible to de�ne a partial order with respect to which the aggregate
closure transformation is monotone� For checking the existence of a �xpoint
we� therefore� have to check� whether the transformation is increasing� And
we will give su�cient conditions for that� For the following let T denote
the aggregate closure transformation� i�e� T �V 	 � aggL�R� compex�R� V 		�
and Vi is the value of Vold in the �xpoint iteration algorithm after the ith

iteration�

First we have to de�ne a new partial order� based on the observation� that
T�V	 may contain more tuples than V� but �better ones�� Therefore� the
inequalities for min and max in �L have to be reversed� Note� that �L

is the order for chosing among several �xpoints� while ��
L is the order for

which the sequence �T i��		 shall be monotone�

�



De�nition ��� ���
L� Let r� t � D� r ��

L t with respect to the aggregator
aggL with grouping attribute G �

�a � S � a � L 
 r�a� � t�a��
min�a	 � L 
 r�a� � t�a��
max�a	 � L 
 r�a� � t�a��
sum�a	 � L 
 r�a� � t�a��

Let R�Q � P�D	� R ��
L Q with respect to the aggregator aggL � �r �

R�t � Q � r ��
L t�

De�nition ��� �increasing� The transformation T is increasing� i� for
all i � � Vi ��

L Vi�� � T�Vi��

If the transformation T is increasing� then the sequence �T i��		 is monotone�
and the problem described above cannot appear� i�e� the �xpoint iteration
cannot dangle between two di�erent relations�

To check whether the transformation is increasing one has to analyze� which
aggregate functions are used� whether there is one or more aggregated at�
tributes� whether it is a set or multiset aggregate closure� whether aggregated
attributes appear in the selection condition� and whether attributes depend
on aggregated attributes�

Here we will give a su�cient condition for T being increasing which is easier
to check�

De�nition ��	 �tuplewise monotone� A composition expression compex
is tuplewise monotone with respect to ��

L � i� �t� t� � D � ftg ��
L ft�g� �r �

R � compex�frg� ftg	��
L compex�frg� ft�g	�

For the de�nition of tuplewise increasing we take the order �L �without ��	�
so that for example a tuple in T�t	 has a higher value in a min attribute
than t�

De�nition ��
 �tuplewise increasing� A composition expression compex
is tuplewise increasing with respect to �L�
i� �t � D � �r � R � �S�Gftg �L�G �S�Gcompex�frg� ftg	 or compex�frg� ftg	 �
��

��



Theorem ��� If T is a set transformation without the sum � aggregate func�
tion� and compex �of T� is tuplewise monotone and tuplewise increasing�
then T is increasing�

Proof by induction� Obviously� � ��
L R� We assume that V i�� ��

L V i� We
have to show that V i ��

L V i��� i�e� �t � V i� �t� � aggL�R� compex�R� V
i		

with t ��
L t�� which follows from the induction hypothesis� compex being

monotone and increasing and the properties of aggregation�

Theorem ��� If T is a multiset transformation and compex �of T� is tu�
plewise monotone and tuplewise increasing� and all values of attributes ag�
gregated by sum are positive� then T is increasing�

Proof by induction in analogy to the proof of Theorem ��� For the sum
aggregated attributes we use the fact that since compex is a tuplewise mono�
tone multiset operation for all sets Q� Q�� Q ��

L Q� implies that j Q j � j Q�
j and j compex�R� Q	 j � j compex�R� Q�	 j�

To develop an e�cient algorithm for checking whether a transformation is
increasing which also covers more cases than those of the previous theorems
is subject of current research�

� Extending the view de�nition in SQL

The formulation of recursively de�ned tables by means of general transitive
closure or aggregate closure of set� or multiset�relations is proposed to be
embedded in the view de�nition of SQL� The following syntax of the view
de�nition statement is an extension of that in standard SQL�

CREATE VIEW �view�name� ��attributed�column�list��

AS 	DISTINCT 
 ALL� FIXPOINT of 	�type��

�table�name� 	��column�list���

	AGGREGATE �aggregate�list� �

BY SELECT �list�

FROM �table name�� �viewname�

WHERE �constraint�list�

��



Example� As an example of this view�de�nition we formulate the view
needed to solve the anti�trust problem of example �� The base table is
the table owns with the attributes owner� company� and share�

CREATE VIEW controls �owner� company� share�

AS FIXPOINT OF owns

BY

AGGREGATE owner� company� sum�share�

SELECT c�owner� o�company� o�share

FROM controls c� owns o

WHERE c�company � o�owner

AND c�share � �

Traversal recursions as reported in ��� are special cases of this construct�
We will give an example for the formulation of graph related recursions� The
relation G with the attributes a� b� w represents a graph such that a tuple
� a�� b�� w� � stands for a directed arc from node a� to node b� with weight
w��

Shortest path�

CREATE VIEW short �a� b� w�

AS FIXPOINT of G

AGGREGATE a� b� min�w�

BY SELECT G�a� short�b� G�w � short�w

FROM G� short

WHERE G�b � short�a

In general� that an aggregate closure represents a graph traversal can be
determined through an analysis of the appearance of the attributes in the
view de�nition� Let R be the base relation and V the de�ned view� If the
attributes of V �resp� R	 can be partitioned into � sets A� B� W� such that A
� B is the grouping attribute of the aggregation� the project�expression list
of compex is V�A� R�B� f�V�W� R�W	 and the where�condition of compex is
V�B � R�A� then the aggregate closure represents a graph traversal problem�
Such views can be analyzed using the path�algebra described in ���� However�
this consideration demonstrates that aggregate closures are more expressive
than graph traversals�

��



� Conclusion

Aggregate closures � an extension of general transitive closures � have been
introduced to meet demands for increased functionality of query languages
for relational databases� The approach is rather pragmatic as it employs
comparable modest extensions to SQL with the aim to support a range of
practical applications while maintaining full compatibility with SQL and
being secure and easy to understand� It has been shown� that the introduc�
tion of aggregate functions in the de�nition of recursive views increases the
expressiveness of general transitive closures� However� this extension has
the drawback that the existence of �xpoints is no longer guaranteed� but
we gave a su�cient condition for aggregate closures to be well formed and
bottom up evaluable�

Further research includes the development of an e�cient algorithm for ana�
lyzing the existence of a �xpoint of an aggregate closure and for guaranteeing
termination of the �xpoint iteration as well as the adoption of e�cient �x�
point algorithms for aggregate closures�

References

��� R� Agrawal� Alpha� An extension of relational algebra to express a class
of recursive queries� IEEE Trans� on Software Engineering� ����	�����
���� ��

�

�� Alfred Aho and Je�rey Ullmann� Universality of data retrieval lan�
guages� In Proc� ACM Symp� on Principles of Programming Languages�
pages ������� �����

��� B� Carre� Graphs and Networks� Claredon Press� Oxford� �����

��� Stefano Ceri� Georg Gottlob� and Letizia Tanca� Logic Programming
and Databases� Springer Verlag� �����

��� E�K� Clemons� Design of an external schema facility to de�ne and pro�
cess recursive structures� ACM Trans� on Database Systems� ��	����
���� ��
��

��� U� Dayal and J� M� Smith� Probe� A knowledge�oriented database
management system� In M� Brodie and J� Mylopoulos� editors� On
Knowledge Base Management Systems� Springer�Verlag� ��
��

��



��� J� Eder� Extending SQL with general transitive closure and extreme
value selections� IEEE Transactions on Knowledge and Data Engineer�
ing� ��	��
������ �����

�
� J� Eder� General transitive closure of relations containing duplicates�
Information Systems� ����	��������� �����

��� U� G�untzer� W� Kiessling� and R� Bayer� On the evaluation of recursion
in �deductive	 database systems by e�cient di�erential �xpoint itera�
tion� In Proc� 	rd Intern� Conf� on Data Engineering� pages ������
��
��

���� I� S� Mumick� H� Pirahesh� and R� Ramakrishnan� The magic of dupli�
cates and aggregates� In Proc� of the ��th International Conference on
Very Large Databases� pages ������ �����

���� Oracle Cooperation� SQL�Plus Users�s Guide� ��
��

��� A� Rosenthal� S� Heiler� U� Dayal� and F� Manola� Traversal recursion�
A practical approach to supporting recursive applications� In Proc� of
the ACM SIGMOD International Conference on Management of Data�
pages �������� ��
��

���� A� Tarski� A lattice theoretical �xpoint theorem and it�s applications�
Paci�c Journal of Mathematics� n��� �����

��




